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 Portioning large fish fillets for packaging is usually performed manually by 
skilled workers. Automating this process and obtaining packaged products 

with attractive shapes and affordable weights will be beneficial for 

promoting purchase decisions. Towards developing an automated fish fillet 

portioning system, this study investigated a computer vision approach for 
determining the fillet volume. A belt conveyor would transport a fish fillet to 

the image capture booth, where its cross-section areas would be calculated 

for volume determination. The developed system could be operated with a 

conveyor speed ranging from 7.5 to 30.6 mm/s. The system performance 
was evaluated at a conveyor speed of 7.5 mm/s using small catfish fillets 

from 142.2 to 225.4 cm3. A mean percent error of 9.2% was observed, and 

the smallest percent error of 3.8% was obtained with a 225.4 cm3 fillet. With 

minor measurement errors obtained for larger fillets, the proposed computer 

vision system showed great potential for developing a cost-effective 

automated system for customized fish fillet partitioning to accelerate 

purchase decisions and also for quality control and classification of the fish 

fillets. 
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1. INTRODUCTION 

Fish are among the healthiest foods and are rich in essential nutrients, including high-quality 

proteins, various fatty acids, minerals, and vitamins [1]. Fish consumption was also linked to health benefits; 

for example, a reduction in coronary heart disease and stroke was reported with an increased fish intake [2], 

[3]. As a result, the consumption of fish or seafood in general has been a part of national dietary 

recommendations in many countries, particularly in most countries in Europe [4]. However, the daily or 

weekly recommended serving differed in many national guidelines, which could be a fixed amount or within 

a recommended range [4], [5]. 

Fish products sold at local markets are available in different presentation formats, such as whole 

fish, fish steaks, fish fillets, round cuts, and ready-to-cook products. Among these formats, fillets are 

preferred over alternatives [6], [7], probably due to their ease of preparation [7], [8]. It was reported that 

consumers were generally willing to pay a premium price for fish fillets [7], [9]. Thus, large fish fillets 

should be sliced into smaller volumes that fall within the recommended serving ranges. This “good-for-

health” information would encourage fish consumption because consumers would consent to paying higher 

premiums with health claims, as reported in [7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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A few studies have reported good relationships between a few morphometric parameters and fish 

weight. For example, the coefficient of determination reached 0.9822 for the regression model between the 

total length and logarithm of Rohu’s weight [10]. Similarly, high coefficients of determination were obtained 

between the weight and exponential fork length of Jackfish and Pickerel [11]. Therefore, the volume and 

weight of large fish fillets with a high degree of homogeneity may significantly correlate, suggesting the 

potential for determining the weight of a fish fillet from its volume for portioning purposes. 

Smart cutting and robotics advances have long been introduced to the meat industry [12], [13]. 

Chickens could be cut into bun-sized portions, nuggets, or tapered-strip fillets of specified length and weight 

according to a template designed in a computer vision system (CVS) [14]. The weight of a chicken breast 

could be obtained by 3D scanning for economically optimized carcass cutting [15]. These advanced 

technologies also fostered automation in the fish industry. By applying X-ray technology, bones in a salmon 

fillet could be detected, and the fillet volume could be estimated for customized cutting and automated fillet 

packaging [16]–[18]. However, such X-ray solutions and corresponding systems are still costly and suitable 

only for large fish processing companies. 

Machine vision has seen increasing growth in food evaluation and quality control in recent decades. 

As a non-destructive method, CVSs can be implemented for low-cost online applications in large-scale fish 

processing [19]. Many vision-based applications have been proposed for various fish processing tasks, such 

as post-trimming [20], blood defect detection [21], freezer burn identification [22], fish fillet authentication 

[23], and bone residue detection [24]. Based on CVSs, artificial intelligence was also applied to provide 

robust quality control of fish products. For example, deep learning could help to detect salmon muscle gaping 

for fillet grading [25]. Low-cost convolutional neural network models YOLOv5 and YOLOv8 were 

implemented in real time to detect salmon residues [26]. Laser projectors commonly coupled with machine 

vision were applied in 3D model reconstruction [27]–[29] and surface profiling [30]–[32]. However, few 

vision-based techniques for volume measurement from cross-sections have been developed for the meat 

industry [15]. Applying commercially available volume measurement and partitioning technologies will 

likely incur high implementation costs. Thus, developing low-cost CVSs for determining the fish fillet 

volume has considerable application potential. In addition, it is possible to extend a CVS with more advanced 

quality evaluation features, a few of which have been aforementioned. 

As an initial effort towards developing low-cost technologies for fish processing, this study 

investigated a computer vision approach for determining fish fillet volume for optimal partitioning. The 

hardware was chosen for cost-efficiency and the potential development of stand-alone embedded systems for 

practical applications [33], [34]. Successfully developing such CVSs will show an outlook on cost-effective 

solutions for automated fillet portioning with advanced quality evaluation features, hence promoting 

customers’ purchases of quality-controlled fish fillets with favorable weights, sizes, and shapes. 

 

 

2. METHOD 

2.1.   Rationality of determining a fish fillet’s weight from its volume 

Portioning fish fillets into favorable slices based on their volumes for optimal packaging was 

proposed with the hypothesis of a linear relationship between a fillet’s weight and volume. This relationship 

was validated in a preliminary study of catfish fillets obtained from local marts. As shown in Figure 1, a 

strong correlation between the weight and volume of catfish fillets was observed, with a significant 

coefficient of determination (i.e., R2=0.9432). Therefore, a CVS was proposed to determine the fish fillet 

volume to support portioning high-value fish fillets with optimal weight to encourage a purchase decision. 

This CVS would also facilitate weight evaluation of portioned fillets when customers’ affordability of high-

value fillets or recommended daily serving amount is of concern. 

 

 

 
 

Figure 1. Relationship between the weight and volume of catfish fillets 
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2.2.  System overview 

Figure 2 shows an overview of the CVS developed to determine the fish fillet volume. The main 

components of this system include the following: i) A webcam (ACOME AWC11AWC, full HD, 30 fps) 

mounted on the ceiling of the image capture booth with a tilt angle of 45° was used; ii) A red line laser 

(SYD1230, 5 mW, wavelength of 650 nm) was used to determine the area of a cross-section of the sample; 

iii) A belt conveyor with dimensions of mm, which is driven by a stepper motor (Nema 17); iv) An image 

capture booth mounted on the belt conveyor; v) An STM32F103C8T6 Blue Pill development kit was used to 

control the belt conveyor system and receive control commands from a computer; and vi) A computer with a 

GUI was used for system control, image acquisition, and measurement of the fish fillet volume. 

The working principle of the system is summarized as follows: i) When the sample is transported to 

the starting position for image acquisition, where the laser light is projected on the sample, the sample images 

are continuously acquired until the sample is out of the projected laser light; ii) The projected laser curve is 

detected from the images; iii) The area of the cross-section at the projected laser light is calculated; and  

iv) The sample volume is computed from the cross-sectional areas. 

 

 

 
 

Figure 2. Overview of the proposed computer vision system 

 

 

2.3.  Algorithms for determining the volume of fish fillets 

Let 𝑉 be the volume of a sample transported on the belt conveyor with a constant speed 𝑣, passing by 

the projected laser light within a period 𝛥𝑡 in which 𝑛 images are captured. Let 𝑆𝑖  be the volume of the cross-

section area calculated from the ith image. Although cross-section areas could be measured using stereo vision 

techniques [34], the single-camera approach was implemented for cost-effectiveness with acceptable accuracy. 

Figure 3 illustrates the concept of calculating the sample volume using a single camera from consecutive 

cross-section areas in Figure 3(a) and the distance between successive cross-sections in Figure 3(b). 

 

𝑉 = ∑ 𝑆𝑖 × 𝑑𝑖
𝑛
𝑖=1  (1) 

 

where 𝑑𝑖 is the travel distance of the sample between two consecutive image captures in Figure 3(b). Because 

the sample is transported at a constant speed, this so-called cross-section distance can be defined as (2). 

 

𝑑 = 𝑑𝑖, 𝑖 = [1,  𝑛] (2) 

 

Therefore, the sample volume can be computed as (3). 

 

𝑉 = 𝑑 ∑ 𝑆𝑖
𝑛
𝑖=1 = (𝑣 × 𝛥𝑡) ∑ 𝑆𝑖

𝑛
𝑖=1  (3) 

 

The cross-section area of the ith sample is calculated following the discrete integration principle, as 

illustrated in Figure 4. 

 

𝑆𝑖 = ∑ 𝑤𝑗ℎ𝑗𝑗  (4) 

 

where 𝑤𝑗 and ℎ𝑗 are the width and height of a sampling point j on the sample surface at the cross-section in 

Figure 4(a), respectively. Thus, the area of a cross-section at the projected laser light can be computed from 

the location of the laser curve in the image as (5). 

 

𝑆𝑖 = ∑ (width of 𝑝𝑗) × (height of 𝑝𝑗)𝑗  (5) 
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where pixel 𝑝𝑗 on the detected laser curve in Figure 4(b) corresponds to the sampling point j on the sample 

surface. It should be noted that ℎ𝑗 corresponds to the pixel distance (𝑦𝑗 − 𝑦𝑏) from 𝑝𝑗 to the baseline at the 

start position for image acquisition, as depicted in Figure 2. 

 

 

 
 

Figure 3. Illustration of (a) the volume calculation principle from (b) cross-section areas 

 

 

  
(a) (b) 

 

Figure 4. Calculating a cross-section area (a) illustrated in the 2D coordinates and (b) applied in an image of 

the projected laser light on the sample 

 

 

2.3.1. Detection of the projected laser curve on the fillet 

Figure 5 shows the main steps for detecting the laser curve critical for calculating cross-section 

areas of the sample. From the original image in Figure 5(a), a region of interest is selected in Figure 5(b) to 

reduce unnecessary computations [35]. Then, Gaussian blur is applied to the cropped image with kernel size 

(5×5) to remove noise [36], followed by thresholding in the HSV color space with low and high thresholds of 

[154, 0, 155] and [180, 0, 155], respectively. An example of an image after being filtered and thresholded is 

depicted in Figure 5(c), showing the laser curve of bright pixels whose intensity values were 255. For an 

accurate cross-section area calculation, thinning was performed. Considering each column of the image 

matrix, the intensity of all bright pixels except the middle pixel was converted to 0. As a result, the laser 

curve was thinned, consisting of single pixels on consecutive columns of the image matrix in Figure 5(d). An 

illustration of this thinning algorithm is presented in Figure 6. 

 

2.3.2. Calculation of the cross-section area based on the projected laser curve 

The sample was captured from the webcam with a tilt angle of 45°; therefore, the actual width of a 

pixel 𝑝𝑗 and its distance from the baseline (𝑦𝑗 − 𝑦𝑏) depended on its vertical coordinate 𝑦𝑗. As shown in 

Figure 7, camera calibration was implemented to correct any distortion [34], and the corners on the 

chessboard were detected. With the known dimensions of the squares on the chessboard, a function was 

obtained to calculate the pixel width from its vertical coordinate. Another function was fitted based on the 

actual height of the corners of the belt conveyor and its distance from the baseline. 
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Figure 5. Illustration of the main steps for detecting the laser curve projected on the sample surface: (a) an 

original image of the projected laser light, (b) region of interest determination, (c) filtering and thresholding 

the region of interest, and (d) thinning the thresholded image 

 

 

 

 

Figure 6. Thinning of a detected laser curve 

 

 

 
 

Figure 7. Camera calibration setup 
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2.4.  Assessment of system performance 

The measurement error 𝑒 and percent error 𝛿 were calculated to assess the system performance. 

 

𝑒 = 𝑉𝑚 − 𝑉𝑎 (6) 

 

𝛿 =
|𝑉𝑚−𝑉𝑎|

𝑉𝑎
× 100% (7) 

 

where 𝑉𝑚 and 𝑉𝑚 are the measured and actual volumes of a sample, respectively. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Effect of the conveyor speed  

With a fixed frame rate of the webcam, the conveyor speed was an essential factor in calculating the 

sample volume because it determined the cross-section distance d, which was the distance between two 

consecutive cross-sections whose areas could be calculated in Figure 2. Figure 8 shows two kinds of objects 

under investigation. As shown in Figure 8(a), a cuboid wood sample of approximately 3.5 x 4.0 x 4.0 cm3 

was used to investigate the effect of the conveyor speed so that the optimal conveyor speed will be 

implemented to calculate the system performance with catfish fillets in Figure 8(b). 

Table 1 shows the performance of the system with varying conveyor speeds. Operating the system at 

a conveyor speed of 30.6 mm/s resulted in a measurement percent error of approximately 5.0%. A lower 

operation speed of 7.5 mm/s led to a slightly larger percent error of approximately 6.1% (approximately 0.6-

cm3 mean error); however, it would be more precise considering a smaller standard deviation. Although the 

system could achieve higher throughput with a greater translational speed of the conveyor, it might result in 

less accuracy when evaluated with a sample with a rough surface as a trade-off. Therefore, a conveyor speed 

of 7.5 mm/s was chosen for higher precision and accuracy for samples with irregular surfaces. 

 

 

  
(a) (b) 

 

Figure 8. Sample types for evaluating the system accuracy: (a) a wood cuboid and (b) a catfish fillet 

 

 

Table 1. Measurement of a cubic wood sample at different conveyor speeds 
Speed (mm/s) Mean ± standard deviation (cm3) Percent error (%) 

7.5 52.5 ± 0.8 6.1 

15.3 53.5 ± 1.0 4.3 

30.6 53.1 ± 1.4 5.0 

61.2 38.7 ± 4.0 30.8 

 

 

3.2.  Evaluation of system accuracy 

3.2.1. Evaluation with artificial samples of different volumes 

Table   shows the system’s accuracy initially evaluated with wood cuboids of different volumes. 

The greatest percent error was 15.7%, corresponding to the error of 4.7 cm3 observed with a 30 cm3 cuboid. 

The smallest percent error was only 2.9%, corresponding to the absolute error of 4.3 cm3 observed with a 

150-cm3 cuboid. With comparable absolute errors, these results demonstrated that the percent errors were 

larger for smaller samples, which can be explained by the formula for calculating the percent error 

significantly depending on the sample volume in (7). The mean absolute error was only about 4.2 cm3, 

indicating a potential for measuring the area of large fish fillets for automated and customized partitioning. 
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Table 2. Measurement of cubic wood samples with different volumes 
Actual volume (cm3) Measured volume (cm3) Error (cm3) Percent error (%) 

30.0 34.7 4.7 15.7 

30.3 31.3 1.0 3.3 

55.9 62.8 6.9 12.3 

56.2 61.8 5.6 10.0 

60.0 63.4 3.4 5.7 

62.9 66.5 3.6 5.7 

150.0 145.7 -4.3 2.9 

 

 

3.2.2. Evaluation with catfish fillets 
The system performance was also evaluated with catfish fillets purchased from local marts. Table 3 

shows the measurement statistics with samples ranging from 142.2 to 225.4 cm3 in area. The errors were in 

the range of [8.5; 28.9] cm3. According to the regression between the volume and weight of catfish fillets in 

Figure 1, the maximum error of 28.9 cm3 corresponds to a weight estimation error of about 22 g in a 

portioned fillet, which will not likely affect a customer’s purchase intention.  

The percent error was within [3.8%; 17.0%], with a mean of approximately 9.2%. The measured 

volumes were greater than the actual volumes, which could be due to the rough surfaces of the samples 

leading to a slightly inaccurate estimation of the volume between two consecutive cross-sections. These 

errors can be minimized with an increased capture frame rate to reduce the cross-section distance for more 

accurate volume measurement by the discrete integration principle. Table 3 shows less significant 

measurement errors for larger samples. Because the samples were portioned fillets purchased from local 

marts, the system will be more accurate in measuring fillet volumes when applied in the automated 

portioning of large fish fillets.   
 
 

Table 3. Measurement of catfish fillets with different volumes 
Actual volume (cm3) Measured volume (cm3) Error (cm3) Percent error (%) 

142.2 156.7 14.5 10.2 

151.6 166.6 15.0 9.9 

170.5 199.4 28.9 17.0 

179.1 199.3 20.2 11.3 

187.0 201.8 14.8 7.9 

225.0 235.4 10.4 4.6 

225.4 233.9 8.5 3.8 

 

 

4. CONCLUSION  

In this study, a low-cost CVS was introduced to measure the volume of fish fillets. The system could 

be operated at conveyor translational speeds ranging from 7.5 to 30.6 mm/s. The system had a mean absolute 

percent error of about 9.2% when measuring catfish fillets with rough surfaces. It was more accurate with 

larger samples, indicating its efficient use for volume measurement of large fish fillets. With a strong 

relationship between the volume and weight of a fish fillet, the proposed CVS can be used to determine the 

weight of large fish fillets for subsequent partitioning into portions with favorable sizes, weights, and shape 

patterns for optimal packaging. Because a CVS can be extended with more vision-based features, advanced 

quality control features such as shape uniformity and defect detection can be integrated into the system. 

Therefore, the proposed CVS shows considerable potential for developing a cost-effective automated system 

for partitioning and quality classification of high-valued fish fillets. 
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