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  The rise of intelligent and connected vehicles has led to new vehicular 

applications, but vehicle computing capabilities remain limited. Mobile 

edge computing (MEC) can mitigate this by offloading computation tasks 

to the network's edge. However, limited computational capacities in 

vehicles lead to increased latency and energy consumption. To address this, 

roadside units (RSUs) with cloud servers, known as edge computing 

devices (ECDs), can be expanded to provide energy-efficient scheduling 

for task computation. A new energy-efficient scheduling method called 

multi-objective optimization energy computation (MOEC) is proposed, 

based on multi-objective particle swarm optimization (MOPSO) to reduce 

ECDs' energy usage and execution time. Simulation results using 

MATLAB show that MOEC can balance the trade-off between energy 

usage and execution time, leading to more efficient offloading. 
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1. INTRODUCTION 

With the proliferation of intelligent transportation systems, the volume of data produced by vehicles 

and their associated sensors has increased dramatically. Nevertheless, most vehicles lack the requisite 

capability for local data processing and storage. Consequently, computational responsibilities need to be 

transferred to distant cloud data centers. This is achieved through roadside units utilizing the vehicle-to-

infrastructure (V2I) connection mode [1]. There are some drawbacks to this approach, in the internet of 

vehicles (IoV) network which experiences high transmission delays and inconsistent connections [2], [3].  

Roadside units (RSUs) are strategically placed alongside road networks and highways to provide 

communication services for connected vehicles. To enhance the effectiveness of computational tasks for 

vehicles in cognitive internet of vehicles (CIoV), the function of RSUs has been extended to serve as edge 

computing devices (ECDs), offering processing and storage capabilities [4]. The mobile edge computing 

(MEC) [5]–[13] is an approach deploys cloud services closer to the radio access network’s edge, facilitating 

the computation offloading [14] of tasks to nearby ECDs, located in close vicinity to the vehicles, instead of 

relying on distant cloud infrastructure [15]. In the framework of the CIoV, assigning tasks to ECDs can 

indeed enhance the quality of the driver's experience by addressing delays in transmission and improving 

connection stability [16]. However, when offloaded computational tasks accommodated in ECDs, it is crucial 

to prioritize the limited resources of these devices. Specifically, when operating on an ECD, there is a 

https://creativecommons.org/licenses/by-sa/4.0/
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necessity to restrict the quantity of concurrently active tasks. In such cases, there might be instances where 

computing tasks within the area of coverage of one ECD necessitate transfer to a different ECD for 

processing. Enhancing all ECDs' response times and lowering their energy usage are crucial for facilitating 

the computation of offloading between ECDs.  

When a connected vehicle sends information to an ECD, the ECD calculates the energy required 

to process the information and also calculates the energy required by neighboring ECDs to  process it. 

Based on this calculation, the ECD decides which neighboring ECD should process the information with 

less energy consumption. The information is then redirected to the selected ECD for processing [17]. This 

load-balancing technique [18], [19] helps with task scheduling [20], [21] by distributing tasks across the 

network, preventing any single ECD from becoming overloaded. By avoiding overloading, ECDs can 

achieve higher operational efficiency and consume lower amounts of energy. ECDs can function with 

increased efficiency, reduced energy consumption, and extended lifetime. This, in turn, helps to optimize 

the overall network’s energy usage, making it more sustainable and cost-effective. The key contribution 

provided by this paper is implementation of multi-objective particle swarm optimization (MOPSO) to 

achieve multi-objective optimization, leading to decreased energy usage in ECDs and decrease execution 

time for computing tasks. This novel approach addresses the existing gaps in energy efficient computation 

for computational task allocation in CIoV, offering a more efficient and sustainable solution for intelligent 

transportation systems. 

Numerous studies have explored energy-efficient strategies in edge computing/MEC implementation, 

with a focus on task scheduling/offloading in related papers. Ning et al. [17] proposed an MEC-enabled  

energy-efficient scheduling (MEES) method in IoV, which includes delay estimation, energy consumption 

estimation, task scheduling, processing, and result feeding back. The framework aims to minimize the energy 

consumption of RSUs while considering task latency constraints. They developed a heuristic algorithm that 

jointly considers task scheduling among MEC servers and downlink energy consumption of RSUs. The 

performance evaluations demonstrated the effectiveness of the framework in terms of energy consumption, 

latency, and task blocking possibility.  

Liu et al. [22] introduced two computation offloading algorithms, binary offloading and partial 

offloading, in order to handle the issue of tasks being divided into indivisible and divisible tasks. The binary 

offloading method transfers the entire task to the MEC server and uses an enhanced method for upper 

confidence bounds to choose the best offloading site. The partial offloading algorithm divides complex tasks 

into time slots processed by different MEC servers, using the Q-learning algorithm to establish the most 

effective offloading strategy. The outcomes of the simulation imply that the binary offloading algorithm has 

lower delay cost and energy use during processing the computational intensive tasks, while the partial 

offloading algorithm significantly improves real-time performance and conserves mobile terminal energy.  

Xu et al. [23] proposed an edge computing enabled computation offloading technique called edge 

computing offloading (ECO). It reduces computing task energy usage and execution time while addressing 

privacy conflicts. First, to acquire the routing vehicles from the origin vehicle in which the computing task 

is located to the destination vehicle, vehicle-to-vehicle (V2V) communication-based routing for a vehicle  

is developed. Then, non-dominated sorting genetic algorithm II (NSGA-II) is utilized to achieve the  

multi-objective optimization. Subsequent experimental evaluations verify the efficiency and effectiveness 

of ECO.  

Behbehani et al. [24] developed a mixed integer linear programming (MILP) model that optimizes 

distribution of processing demands that comprise vehicles, computing in the edge also in the cloud. The 

model intends to lessen power usage, and compared to conventional clouds, the findings show power savings 

over 70%–90% for low workloads. However, for medium and large demand sizes, the results indicate a 

limited amount of cloud use due to capacity limitations on the vehicular and edge nodes, leading to 20%-30% 

power savings. 

The structure of this paper is organized as follows. Section 2 presents the methodology, providing 

the mathematical modeling for problem formulation, the scheduling computation for CIoV in edge 

computing based on multi-objective particle swarm optimization, and the simulation environment. Section 3 

presents and discusses the results. Finally, section 4 presents conclusion and future scope. 

 

 

2. METHOD 

This section analyzes mathematical models for problem formulation, including offloading time and 

energy usage estimation. It discusses a scheduling computation strategy for CIoV in edge computing 

environments, based on MOPSO. The strategy includes V2V transmission techniques for efficient offload 

path acquisition and computation scheduling, validated through a simulation setup. 
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2.1.  Formulation of problems and the system model 

This subsection presents a model for CIoV in cloud-edge computing systems, addressing a multi-

objective optimization issue of computation scheduling. In cloud-edge computing, Figure 1 depicts a 

communication structure for CIoV [25]. Table 1 contains essential terms and their corresponding descriptions. 

 

 

 
 

Figure 1. Communication structure for CIoV  

 

 

Table 1. Defines the following key terms 
Key term Definition 

𝑀 Number of ECDs 

𝐷 Collection of ECD, where 𝐷 = {𝑑1, 𝑑2, . . , 𝑑𝑚} 

𝑅 Collection of RSU, where 𝑅 = {𝑟1, 𝑟2, . . , 𝑟𝑚} 

𝑆 Collection of servers, where 𝑆 = {𝑠1, 𝑠2, . . , 𝑠𝑚} 

𝑁 The total count of vehicles 

𝑉 Collection of vehicles, where 𝑉 = {𝑣1, 𝑣2, . . , 𝑣𝑛} 

𝑞 All-server capacity 

𝑇 Computing task, where 𝑇 = {𝑡1, 𝑡2, . . , 𝑡𝑛} 

𝑡𝑛 The nth computational task in 𝑇 

𝑢𝑛 Requested quantity of the 𝑡𝑛 resource units 

𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 Time consumed to implement 𝑇 

𝐸𝐵𝐿 Baseline energy usage for all the servers 

𝐸𝐸𝑅 Energy usage by resource units employed 

𝐸𝑈𝑅 Energy usage by unemployed resource units 

𝐸 Total energy usage by all the servers 

 

 

2.1.1. Model of execution time 

It is crucial to consider execution time, feedback period for sending back the execution's findings 

back to vehicle, and vehicle to ECD offloading time while using a vehicle to perform computations [23]. As 

the vehicles move alongside the road, they traverse multiple ECDs based on their current location. To 

determine whether a particular vehicle 𝑣𝑛 , where (𝑛 = {1,2, . . . . , 𝑁}) is a part of the service sector of the 𝑚th 

ECD at a given instant in time 𝑖, a flag is utilized. The flag is measured using: 

 

𝐹𝑛
𝑚(𝑖) = {

 0, 𝑣𝑛 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑑𝑚

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (1) 

 

To transmit the 𝑡𝑛 computational assignment to the intended destination segment's vehicle, V2V technology 

should be utilized. The time required for transmission of the 𝑡𝑛 computing task, can be calculated using: 

 

𝑡𝑇𝑋(𝑖) = ∑ ∑ 𝐹𝑛
𝑚𝑁

𝑛′=1
𝑀
𝑚=1 (𝑖). 𝑄𝑛

𝑛′
(𝑖). (1 − 𝐹𝑛′

𝑚(𝑖)) .
𝑤𝑛

𝜆𝑣2𝑣
. (𝜃𝑛.𝑛′ + 1) (2) 
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where 𝜃𝑛,𝑛′ in the equation is the count of vehicles that were routed to 𝑣𝑛′ from 𝑣𝑛 rate of data transmission 

using V2V technology is represented by 𝜆𝑉2𝑉, while binary variable 𝑄𝑛
𝑛′

(𝑖) is used to determine, if 𝑡𝑛 is 

delivered from 𝑣𝑛 to 𝑣𝑛′ at a given time instant 𝑖. The calculation of 𝑄𝑛
𝑛′

(𝑖) is given by: 

 

𝑄𝑛
𝑛′

(𝑖) = {
 0, 𝑡𝑛 𝑖𝑠 𝑡𝑟𝑎𝑠𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑣𝑛 𝑡𝑜 𝑣𝑛′

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 

For the 𝑚𝑡ℎ (𝑚 = {1, 2, . . . , 𝑀}) computing task 𝑡𝑚, the duration of offloading is established by: 

 

𝑡𝑂𝐿(𝑖) = ∑ 𝐹𝑛
𝑚𝑀

𝑚=1 (𝑖).
𝑤𝑛

𝜆𝑣2𝐼
 (4) 

 

The rate of data transmission in V2I technology is denoted by 𝜆𝑉2𝐼. The duration required for task execution 

relies on both the task length and resource units’ performance. If 𝑞 represents the all-server capacity and 𝑢𝑛 

represents resource units quantity requested for 𝑡𝑛. The amount of time needed for the execution of the 

task 𝑡𝑛 is: 

 

𝑡𝐸𝑋(𝑖) = ∑ 𝐹𝑛
𝑚𝑀

𝑚=1 (𝑖).
𝐼𝑛

𝑢𝑛.𝑝
 (5) 

 

Every resource unit possesses a processing power denoted by 𝑝. After the execution of a task, the vehicles 

must receive feedback regarding the results. The time required for this feedback can be calculated by (6): 

 

𝑡𝐹𝐵(𝑖) =
𝑤𝑛

′

𝜆𝑣2𝐼
 (6) 

 

Data’s size in the output generated from the execution of 𝑡𝑛 is denoted by 𝑤𝑛
′ . For the implementation of 𝑡𝑛, 

the overall time required is: 

 

𝑡𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 𝑓𝑜𝑟 𝑡𝑛 (𝑖) = 𝑡𝑇𝑋(𝑖) + 𝑡𝑂𝐿(𝑖) + 𝑡𝐸𝑋(𝑖) + 𝑡𝐹𝐵(𝑖) (7) 
 

Subsequently, the overall duration required to implement all the tasks involving computation [23] is: 

 

𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑡𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 𝑓𝑜𝑟 𝑡𝑛 (𝑖)𝑁
𝑛=1  (8) 

 

2.1.2. Model for energy usage 

The amounts of energy used by ECDs are primarily attributed to the RSUs and the servers. As the 

amount of energy used by RSUs is dynamically regulated based on their employment status while they 

remain in operational mode, our attention is mainly on the servers. Amount of energy used by servers 

includes baseline energy consumed while they are running, energy used by the unoccupied resource units 

also energy utilized by resource units that are occupied [23]. The servers’ service time is the primary factor in 

determining energy usage. The 𝑠𝑚 service time can be computed by (9): 

 

𝑠𝑡𝑚(𝑖) = 𝑚𝑎𝑥
𝑛=1 𝑡𝑜 𝑁

(𝐿𝑛
𝑚 (𝑖). 𝑡𝐸𝑋(𝑖)) (9) 

 

The binary variable Ln
m (i) assesses if 𝑡𝑛 is carried out on 𝑠𝑚. 

 

𝐿𝑛
𝑚(𝑖) = {

 0, 𝑡𝑛 𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑜𝑛 𝑠𝑚

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

 

Baseline energy consumption of all ECDs' servers' is: 

 

𝐸𝐵𝐿 = ∑ 𝑠𝑡𝑚
𝑀
𝑚=1 (𝑖). 𝛼 (11) 

 

The ECD servers have a power rate denoted by the variable α. The process of determining the energy usage 

for resource units utilized employed is: 

 

𝐸𝐸𝑅 = ∑ ∑ 𝐿𝑛
𝑚𝑁

𝑛=1
𝑀
𝑚=1 (𝑖). 𝑠𝑡𝑚(𝑖). 𝛽 (12) 
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The variable β represents the power rate of resource units that are employed. The process of determining the 

energy usage for resource units that are unemployed is carried out by: 
 

𝐸𝑈𝑅 = ∑ (𝑞 − ∑ 𝐿𝑛
𝑚𝑁

𝑛=1
𝑀
𝑚=1 (𝑖)). 𝑠𝑡𝑚(𝑖). 𝛾 (13) 

 

The variable γ represents the power rate of resource units that are unemployed. Following that, the aggregate 

of all servers' energy usage [23] is determined using: 

 

𝐸 = 𝐸𝐵𝐿 + 𝐸𝐸𝑅 + 𝐸𝑈𝑅 (14) 
 

2.2.  Scheduling computation based on the multi-objective particle swarm optimization 

Under this subsection, Firstly, the offloading path for the computational tasks is acquired through 

the adoption of V2V transmission. Furthermore, we utilize multi-objective optimization in order to determine 

the most effective scheduling strategy for these tasks, balancing objectives like minimizing execution time 

and reducing energy consumption. This approach maximizes overall performance in CIoV. 

 

2.2.1. V2V transmission to offload path acquisition 

In order to offload computing tasks to the goal ECD using V2V communication, a vehicle path to 

the final vehicle from the initial vehicle must be designed [26]. The offloading process can be optimized 

through strategic path design. This maximizes the potential of V2V communication in CIoV, reducing 

latency and enhancing computational efficiency. 
 

Algorithm 1. Offloading path acquisition 

Input: Vehicles (V), ECD 

Output: Path (P) 

Step 1: While vehicles are covered under the initial ECD do 

Step 2: Calculate distance between two vehicles 

Step 3: Calculate distance between the goal vehicles and the vehicles 

Step 4: End while 

Step 5: Choose the minimum distance between initial vehicle and the goal vehicle 

Step 6: Return P 
 

2.2.2. Computation scheduling based on multi-objective optimization energy computation (MOEC)  

This subsection proposes a scheduling method for cloud-edge computing, addressing the  

multi-objective optimization problem with multiple goals. To address this, we employ MOPSO [27]–[31] 

which is an accurate and robust strategy in handling complex optimization tasks. MOPSO effectively 

balances multiple conflicting objectives, making it ideal for optimizing cloud-edge computing schedules. 

Here, we adopt MOEC to solve the energy-related aspects of the optimization problem. By integrating 

MOPSO, the proposed scheduling method MOEC ensures efficient and balanced task distribution, 

considering factors such as execution time and energy consumption. 

a. Initialize parameters: Define the swarm or population size, maximum iterations and other parameters like 

the inertial, cognitive, social coefficients and mutation rate, etc. 

b. Initialize population and repository: Population represents the collection of particles with their positions 

and velocities in search space. It determines each particle's fitness value in the initial population. 

Repository maintains non-dominated solutions obtained in the process of optimization. Initialize a 

population swarm of particles, each of which represents a solution, encoding the distribution of 

computing tasks 𝑇 to the servers 𝑆. For each particle: 

− Randomly assign computing tasks to servers, respecting the all-server capacity q. 

− Initialize velocity and position vectors to guide search in solution space. 

Fitness evaluation: for each particle, calculate the objectives: 

− 𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙: total time usage for all tasks assigned. 

− E: compute total energy consumption using 𝐸𝐵𝐿, 𝐸𝐸𝑅, and 𝐸𝑈𝑅 considering the distribution of tasks 

and resource utilization. 

Create a repository that stores the best non dominated solutions among the swarm to form a “Pareto front” 

that found so far. Non-dominated means no other solution is better in both objectives 𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 and 𝐸. 

c. While (stop condition==false): Continue until a termination condition is met (Like getting a good 

enough solution quality or reaching a maximum count of iterations). 

d. Choose leader “ℎ”: Choose a leader from the population or repository to direct the motion of each 

particle. To maintain a diverse collection of solutions, the leader should be chosen according to its Pareto 

optimality and typically a diversity mechanism.  
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e. Update positions and velocities: Update velocity for each particle according to its current velocity, 

distance to that’s personal best position and distance to the chosen leader ‘ℎ’. Each particle’s position 

should be updated according to the new velocity. The new position represents its new solution. 

f. Perform mutation (if necessary): Apply mutation by introducing random perturbations or alterations to 

some particles to explore new regions in search space if desired to add diversity to the population and 

prevent too rapid convergence.  

g. Boundary checks on position and velocity: Check that the new positions and velocities stay within the 

defined boundaries. Bring any element of a position or velocity vector back inside the boundaries if it 

goes beyond.  

h. Update the optimal positions: Update personal best positions and global best positions based on 

dominance or fitness criteria. Use objectives ‘𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙’ and ‘𝐸’ to evaluate the fitness of new positions. 

Update a particle's personal best in terms of Pareto dominance if, its new position is better than its 

previous one. Add new non-dominated solutions to the repository, ensuring that it eliminates duplicates 

and maintains its representation of the current. 

i. Termination check: The algorithm continues iterating until set counts of iterations have passed, no 

significant improvement is observed, or another stopping condition is satisfied. 

j. Result: Output the Pareto front that represents the best trade-offs found between time consumption 

𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 and total energy consumption E for executing computing tasks on servers. 

As a result, the MOPSO algorithm updates particle velocities, positions and the repository to find 

non-dominated solutions for multi-objective optimization problems. The iterative process continues, with 

particles exploring and exploiting the search space, until termination conditions are met. Upon meeting these 

conditions, the algorithm concludes by identifying optimal or near-optimal solutions that balance the multiple 

objectives of the optimization problem. 
 

2.3.  Simulation setup 

This subsection includes several extensive simulations carried out to evaluate effectiveness of 

suggested scheduling method for edge computing, referred as MOEC by using MATLAB 2020 which 

introduces the MATLAB 9.8 runtime. It enables parallel computing for hundreds of functions. This feature 

allows users to use local multicore processors and graphics processing units (GPUs), and scale computations 

to compute clusters, improving performance and productivity in large-scale data processing tasks. 

For our simulation, we consider varying numbers of vehicles, specifically 20, 40, 60, 80, 100, and 

120. The rate of data transmission using V2V technology denoted as λV2V, and the rate of data transmission 

using V2I technology, denoted as λV2I, are both set to 1 Gbps and 600 Mbps respectively, following the 

values mentioned in [1], [12]. The simulation parameter settings used are represented in Table 2. The 

Simulation setup was used to test the system models for problem formulation and scheduling computation 

strategies. Subsequently, the proposed MOEC performance is assessed on vehicle scales in terms of time and 

energy usage.  
 

 

Table 2. Simulation parameter settings 
Description of the parameter Value 

Data transmission rate using V2V technology λV2V 1 Gbps 

The entire number of ECDs is M 20 

The ECDs servers have a power rate of α 300 W 

Employed resource units have a power rate of β 50 W 

Unemployed resource units have a power rate γ 30 W 

Data transmission rate using V2I technology λV2I 600 Mbps 

Every resource unit possesses a processing power 2000 MHz 

 

 

3. RESULTS AND DISCUSSION 

The proposed scheduling or offloading MOEC method is compared to the existing ECO method for 

a comprehensive comparative analysis. To illustrate the variations and efficacy of these methods, a thorough 

comparison is provided. This paper employs a comparative approach, which is detailed in the following 

subsections. 
 

3.1.  Existing ECO 

The previously developed ECO [15] method's purpose is to strike a balance between optimizing the 

use of time and lowering energy consumption. The method involves conducting multiple experiments to 

evaluate its performance and identify optimal solutions. To determine a set of comparatively superior 

solutions, multiple-criteria decision-making (MCDM) with simple additive weighting (SAW) techniques 
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were employed. These techniques help in assessing and selecting the best offloading strategies based on the 

fitness of the solutions regarding time and energy objectives. 

 

3.2.  Analysis of comparison 

This paper provides a detailed comparison of the proposed MOEC methodology with the ECO 

method under same experimental conditions. Execution time and energy usage are the two primary 

parameters used to evaluate the performance. To illustrate the real resource utilization of all ECDs 

participating in hosting the computing tasks, number of employed ECDs, resource utilization, and number of 

computational tasks offloaded across the ECDs show the outcomes. 

 

3.2.1. The usage of ECDs- a comparison  

Both ECO and proposed MOEC approaches are compared, along with the amount of ECDs used. 

According to Figure 2, a total of 20 ECDs are used in this experiment. The MOEC technique employs ECDs 

more frequently as the number of vehicles increases, as illustrated in the figure. Notably, All ECDs need to 

be operational in order to meet the requirements for the deployment of the computing tasks once there are 

100 vehicles. 

MOEC is highly scalable and efficient in handling higher loads. While ECO employs fewer ECDs 

across all vehicle numbers, indicating potential limitations in handling larger numbers. MOEC's significant 

increase in ECD usage as vehicle numbers rise supports its potential for real-world applications where 

demand can vary greatly. 

 

 

 
 

Figure 2. The quantity of ECDs employed at various vehicle size by ECO and proposed MOEC:  

a comparison 

 

 

3.2.2. The usage of resources- a comparison 

It is guaranteed that the resource unit will be occupied once all computing jobs have been 

transferred to the ECDs using the appropriate techniques. Figure 3 compares the resource utilization of the 

ECDs by the ECO and the proposed MOEC at different vehicle scales. The resource utilization is determined 

by estimating the number of engaged ECDs and the amount of resource units allotted to each ECD. Higher 

resource utilization results from allocating more resource units but using fewer ECDs. The findings 

illustrated in Figure 3 demonstrate that MOEC consistently outperforms ECO in resource utilization across 

various vehicle scales, with an estimated 80% utilization rate. 

Efficient resource utilization is essential for addressing increased demand and reducing waste. The 

higher resource utilization rates of MOEC, compared to ECO, validate that MOEC would be more effective 

in resource management. MOEC's consistent 80% utilization indicates its capability to handle various 

operational demands efficiently. 

 

3.2.3. Amount of computational task offloaded among ECDs: a comparison 

In common practice, the computing task is delegated to the neighboring ECD. However, in cases 

when the vehicle sizes are modest, there is a random distribution of the vehicles among different ECD 

ranges. Under these conditions, assigning all computational tasks to the surrounding ECDs may lead to many 

ECDs being active simultaneously, resulting in excessive energy consumption. We solve this in our 
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experiment by offloading the computational burden from the surrounding ECD to a neighboring ECD. When 

the area of coverage of the destination ECD differs from that of the origin ECD, this allows the offloading of 

computing task across ECDs. Figure 4 compares both ECO and proposed MOEC techniques for the amount 

of computational tasks offloaded among ECDs. It shows that MOEC efficiently utilizes resources by 

distributing computational tasks across ECDs as vehicle size increases. Despite both ECO and MOEC 

showing an increase in offloaded tasks, ECO offloads more tasks for most vehicle counts, especially when 

vehicles exceed 60. 

ECO's higher offloaded tasks indicate reliance on external devices, causing higher energy and time 

consumption. MOEC's fewer offloaded tasks suggest local computations or efficient task management 

strategies, reducing offloading. As the system scales, both algorithms' offloaded tasks reflect growing 

computational demand. MOEC's superior efficiency in managing resources ensures better performance as the 

number of vehicles increases. 

 

 

 
 

Figure 3. Resource usage between ECO and proposed MOEC at various vehicle size: a comparison 

 

 

 
 

Figure 4. Amount of computational task offloaded among ECDs by ECO and proposed MOEC at various 

vehicle size: a comparison 

 

 

3.2.4. Energy usage: a comparison 

As stated in Section 3, there are three parts to energy consumption: the baseline energy use for all 

the servers in the ECDs, the energy usage of resource units which are in use, and the energy usage of the 

units that are not in use. The results reveal these three energy usage factors for ECO and the proposed MOEC 

techniques across various vehicle scales in Figure 5. It is evident from Figure 5(a) that when the vehicle scale 

grows, ECO shows an increase in baseline energy consumption for all the servers in the ECDs especially 

beyond 60 vehicles, reaching up to about 2 kWh at 120 vehicles. However, the MOEC approach consumes 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Multi-objective optimized task scheduling in cognitive internet of vehicles: towards … (M. Divyashree) 

1237 

less energy than ECO since it employs fewer ECDs. The energy usage of employed resource units across the 

various vehicles size is seen in Figure 5(b). As it uses almost the same amount of resource units for 

computing activities, the MOEC technology achieves comparable energy consumption of the utilized 

resource units across various vehicle scales. In Figure 5(c) the MOEC strategy yields slightly higher energy 

consumption from idle resource units which can be viewed in the context of its overall optimization goals. 

Energy usage comparison in Figure 6, underlines the MOEC method's superior performance even further. As 

an instance, if there are over 100 vehicles, less than 1 kWh of energy is used by the MOEC method, whereas 

ECO uses more energy than 1 kWh.  
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5. Proposed MOEC and ECOs comparison of several energy consumption factors at various vehicle 

size (a) baseline energy usage by all the servers in the ECDs’, (b) energy usage by resource units employed, 

and (c) energy usage by idle resource units 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 1229-1241 

1238 

 
 

Figure 6. Energy usage by proposed MOEC and the ECO at various vehicle size: a comparison 

 

 

These findings reveal that MOEC is more energy-efficient and scalable than ECO, highlighting the 

significance of energy efficiency in edge computing. MOEC's lower baseline, employed, and unemployed 

resource energy requirements make it suitable for large-scale implementations. While ECO's higher reliance 

on offloading tasks results in increased energy usage. 

 

3.2.5. Time consumed: a comparison 

The offloading time and total time consumption between the proposed MOEC and the ECO method 

are compared at various vehicle scales in Figures 7 and 8 respectively. An essential statistic for calculating 

time consumption is the offloading time. Figure 7 clearly shows that MOEC method has quicker offloading 

times than the ECO method across all vehicle scales. The average time for offloading tasks in ECO is  

0.5 seconds for 20 vehicles, while MOEC takes 0.6 seconds. As the number of vehicles increases, the gap 

widens, with MOEC taking about 1 second for 120 vehicles, highlighting its superior efficiency. In Figure 8, 

we compared the total time used about the two offloading techniques. The ECO method requires time longer 

than the MOEC solution especially beyond 80 vehicles, indicating that ECO requires more time to complete 

tasks as vehicle numbers grow. 

The MOEC method outperforms the ECO method in offloading time and total time consumption, 

especially as vehicle count increases. MOEC's efficient scheduling and task management strategies result in 

lower offloading times, maintaining around 1 second even with 120 vehicles, compared to ECO's  

4.5 seconds. MOEC also shows lower total time consumption, indicating superior scalability. This highlights 

MOEC's potential for practical traffic management applications, maintaining efficiency and minimizing 

delays under high computational demands. 

 

 

 
 

Figure 7. Offloading time usage of ECO and proposed MOEC at various vehicle size: a comparison 
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Figure 8. Time usage of ECO and proposed MOEC at various vehicle size: a comparison 

 

 

4. CONCLUSION 

The rapid advancement of CIoV technology has led to complex computational demands, 

necessitating the offloading of tasks to remote infrastructure. Among the various paradigms available for 

handling these tasks, the MEC framework has proven to be highly effective. It involves offloading the 

vehicle’s computational tasks to the ECDs located in close proximity. This study uses MOEC, a computation 

scheduling technique leveraging edge computing, to achieve multi-objective optimization, decreasing both 

execution time of computational tasks and energy usage of ECDs in CIoV environments.  

In the proposed MOEC approach initially, origin vehicle establishes V2V communication-based 

routing to destination vehicle by recognizing routing vehicles. MOPSO is then used to accomplish multi-

objective optimization to enhance the efficiency of task scheduling within the MOEC framework. Later 

experimental assessments confirm the effectiveness and efficiency of MOEC.  

The future goal is to further predict traffic congestion in CIoV systems by the use of advanced 

algorithms for machine learning and artificial intelligence techniques. This could use predictive modeling to 

better anticipate traffic patterns which enhances efficiency, reduces travel time, and improves user 

experience. This contributes to the advancement of more responsive transportation systems. 

This research addresses challenges in CIoV and lays the groundwork for future intelligent 

transportation systems by incorporating edge computing and predictive analytics. It proposes innovative 

solutions to enhance efficiency, safety, and reliability of transportation networks. It aims to optimize data 

processing and decision-making processes, collaborating to the evolution of smarter and more adaptive 

transportation systems. 
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