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 This paper provides a systematic review of code smell detection studies 

published from 2001 to 2023, addressing their significance in identifying 

underlying issues in software systems. Through stringent inclusion criteria, 

116 primary studies were analyzed, focusing on various aspects such as 

publication venue, code smell categories, subject systems, supported 

programming languages, evaluation criteria, and detection techniques. The 

analysis reveals that 50% of the papers were conference proceedings, with 

80% utilizing Java-supported techniques and commonly used subject 

systems like Apache Xerces, GanttProject, and ArgoUML. Metrics-based 

methods (33%) and search-based approaches (32%) were predominantly 

employed, with machine learning emerging in 20% and rule-based methods 

in 15% of the studies. Notably, recent studies have shown an increased 

adoption of machine learning techniques. The identified code smells include 

god class, feature envy, long method, and data class, with precision and 

recall being the most commonly used evaluation metrics. This review aims 

to inform future research directions and aid the software engineering 

community in developing novel detection techniques to enhance code 

quality and system reliability. 
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1. INTRODUCTION 

Code smells are structures in the code that indicate violation of design rules. Code smells are not 

preventing the program from providing its required functionality. However, they indicate weaknesses in 

software design. Code smells may increase the risk of software failure. The existence of code smells may 

give a sign about wider design problems, and they affect the software understandability and effectiveness [1]. 

Since code smells play a key role in shaping the quality of software, several studies were presented to detect 

their presence in the source code. 

Fowler et al. [2] listed 22 code smells classified into seven key categories. These categories are 

bloaters, object-oriented abusers, change preventers, dispensable, couplers, encapsulates, and general 

category. For example, the size and volume of the smell in bloaters can be unmanageable and out of control. 

This smell would appear in a method with too many lines of code which has a higher complexity than short 

methods. Bloaters would appear also in large classes which involve lots of fields and methods. Additionally, 

it would appear in methods with long parameter list which indicates a sign of code smell.  

In contrast, object-oriented abusers involve different bad use of object-oriented structures to develop 

software programs. For example, the use of switch statement will lead to code duplication. In addition, the 

use of a temporary field will create problems since the reference of variables cannot be accessed outside its 

https://creativecommons.org/licenses/by-sa/4.0/
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scope. Avoiding the use of long parameter lists leads to the use of temporary variables. Another popular 

abuse of object-oriented classes is the “Refuse Bequest” where a sub class partially inherits its parent. Hence, 

part of the parent methods will be used. 

Change preventers code smells make programs difficult to change. Hence, maintenance tasks will be 

more difficult. The key reason for change prevention is the assignment of more than one function/feature to a 

class or method. One of the most popular forms of change preventers is divergent change which occurs when 

a class involves a lot of irrelevant methods. Another code smell related to change preventers is the shotgun 

surgery where cascading relationship used to connect classes together. Any change in one class will 

propagate to affect all classes in the same chain. 

Conversely, dispensable code smells are unnecessary code that must be removed. For example, code 

may contain useless classes (lazy class) or unnecessary data fields in a class (data class). Data classes are 

unable to use their fields and require other classes to use these classes. Another form of dispensable is the 

code duplication where similar code is repeated several times. This code can be replaced or unified. 

Several studies were presented in the literature to address the issues related to various types of code 

smells. These issues concern code smell detection techniques, code smell impact, code smell causes, and 

code smell catalogue. Hence, there is a need to appraise and summarize the collective findings and identify 

the latest developments. While acknowledging the valuable review studies conducted by previous 

researchers, it should be noted that this study follows a systematic review methodology and employs a 

rigorous selection and analysis process focusing specifically on the years 2001 to 2023. The timeframe 

chosen for the review reflects the intention to capture the most recent developments in the field of code smell 

detection, acknowledging the fast-paced nature of research advances during this period. The objective of this 

study is to complement previous review research by examining studies conducted in subsequent years and 

extending the analysis to include the period 2001 to 2023, thus highlighting recent advances and emerging 

trends in code smell techniques. To the best of the authors’ knowledge, this is the first systematic review 

paper on code smell detection to cover the years 2001 to 2023. We retrieved studies from reputable 

publishing venues and databases, and analyze them to answer the following research questions: 

RQ1: What is the distribution of studies per year in the context of the code smell detection? 

RQ2: What are the categories of publications included in this review research? 

RQ3: What is the distribution of the studies included in this review, categorized by the employed code smell 

detection technique? 

RQ4: What programming languages are employed by various code smell detection techniques in the included 

studies? 

RQ5: What subject systems were used to validate code smell detection techniques in the included studies?  

RQ6: What code smells were detected by various techniques in the included studies?  

RQ7: What evaluation criteria were utilized by code smell detection techniques in the reviewed studies?  

We believe that summarizing literature in the code smell detection field will open new research 

directions and will help the software engineering community to address the necessity of utilizing new 

detection techniques. The rest of the paper is organized as follows: section 2 presents previous work in 

surveying code smells and related literature. Section 3 provides an overview of the topic, highlights the 

impacts of code smells and provides an overview of code smell detection techniques. Research methodology 

is presented in section 4; the analysis and results are presented in section 5. The paper concludes in section 6. 

Finally, avenues for future work are suggested in section 7. 

 

 

2. RELATED WORK 

Several systematic literature reviews were presented in the literature. All these reviews focused on 

comparing code smell detection approaches in terms of different criteria. Our findings in this review are 

comprehensive, consistent, and complement the conclusions presented by other studies. 

The survey study conducted by Roy and Cordy [3] presented the state of the art in clone detection 

research. The survey provides a view of the existing clone taxonomies, detection approaches and 

experimental evaluations of clone detection tools. Additionally, Fontana et al. [4] presented an experimental 

evaluation of six code smell detection tools. The key differences between the addressed tools were 

highlighted in the evaluation. 

The review of Rasool and Arshad [5] presented an up-to-date review on the state-of-the-art 

techniques and tools used for mining code smells from the source code of different software applications. 

They classified selected code smell detection techniques and tools based on their detection methods and 

analyzed the results of the selected techniques. Rasool and Arshad focused on Fowler’s 22 code smells [2], 

[5]. Sabir et al. [6] reviewed 78 primary studies published from January 2000 till December 2017. The 

review of Sabir et al. focused on the code smell detection techniques used in object and service- oriented 

paradigms. Zhang et al. [7] reviewed 39 studies related to code smells detection. Their research focused on 
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“Duplicated Code” whereas some code bad smells such as “Message Chains” received little attention. 

Zhang et al. study showed that very few studies report the impact of using code bad smells. Instead, most 

studies focused on developing tools and methods to automatically detect code bad smells. 

The literature review of Sobrinho et al. [8] showed that even though bad smells of different types 

are studied together, only a small number of studies explored the relations between them. They suggested that 

there are additional potential relations that warrant further investigation. Sobrinho et al. also noted that 

researchers have different levels of interest, some of them publishing sporadically and others continuously. 

Further, the review of Sobrinho et al. found that the communities studying duplicated code and other types of 

bad smells are largely separated. Finally, Sobrinho et al. observed that some venues are more likely to 

disseminate knowledge on duplicate code (which often is listed as a conference topic on its own), while 

others have a more balanced distribution among other smells. 

The study of Misbhauddin and Alshayeb [9] provided an overview of existing research in the field 

of model refactoring. A total of 3,295 articles, related to the field of unified modeling language (UML) model 

refactoring, were extracted from well-known electronic databases. A multi-stage selection process was used 

to ensure proper inclusion of relevant studies for review and analysis. Ninety-four primary studies were 

eventually selected and analyzed. The results showed that a few quality techniques and approaches have been 

proposed in this area, but it still has some important open issues and limitations to be addressed in future. 

AlDallal [10] focused on the identification of refactoring opportunities where more attention 

refactoring opportunities are explored. Their results showed “extract class” and “move method” were found 

to be the most frequently considered refactoring activities. The results show that researchers use six primary 

existing approaches to identify refactoring opportunities and six approaches to empirically evaluate the 

identification techniques. 

Azeem et al. [11] presented a systematic literature review study on machine learning techniques for 

code smell detection. Azeem et al. analyzed papers published between 2000 and 2017. The results showed 

that god class, long method, functional decomposition, and spaghetti code have been heavily considered in 

the literature. Decision trees and support vector machines are the most commonly used machine learning 

algorithms for code smell detection. 

The review paper presented by AbuHassan et al. [12] identified 145 studies related to smell 

detection in software design and code. AbuHassan et al. addressed several questions related to the analysis of 

the existing smell detection techniques in terms of abstraction level (design or code), targeted smells, used 

metrics, implementation, and validation. The results showed that 57% of the studies did not use any 

performance measures, 41% of them omitted details on the targeted programming language, and the detection 

techniques were not validated in 14% of these studies. 

The study of Reis et al. [13] aimed to identify the main code smells detection techniques and tools 

discussed in the literature, and to analyze to which extent visual techniques have been applied to support code 

smell detection. The results showed that most used approaches to code smells detection are search-based 

(30.1%), metric-based (24.1%), and symptom-based approaches (19.3%). Most of the reviewed studies 

(83.1%) used open-source software, with the java language occupying the first position (77.1%). In terms of 

code smells, god class (51.8%), feature envy (33.7%), and long method (26.5%) are the most covered ones. 

 

 

3. BACKGROUND 

This section provides comprehensive research background related to code smells and presents the 

causes of code smells, impact of code smells, and key concepts relevant to the research topic. Researchers 

focused on investigating the consequences of code smells and how these code smells can be detected to 

address their impact on software quality. Based on the available literature, the key causes of code smells can 

be summarized as follows: 

a. Design patterns impact: the relationship between design patterns and code smells is still not well 

investigated. The implementation of design pattern instances in the source code leads to more coupled 

classes and increase the number of classes. Some studies suggest that design patterns, in general, reduce 

the chance of code smells. 

b. Software developers experience: the skills and the experience of software developers play a role in 

implementing a program that suffers from code smells. The study of [14] reveals that 32% of software 

developers are aware about code smells. 

c. Lack of code smell detection tools during software development: most of software development tools and 

frameworks are not supporting automatic code smell detection during the development process. The study 

of [14] and [15] reveal that the developers focus on the functionality of the software and ignore the signs 

of code smells during the development process. 
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Several studies have been presented in the literature to investigate the impact of code smells on 

software programs [16]–[25]. These studies mainly summarized the impact of code smell into two key 

consequences. The first consequence is the increase of code bugs or defects in the software. Cloning or 

duplicating code increases the chances of software bugs [17]. For example, the study of [23] suggested that 

code duplication did not play a key role in producing bugs in the software. The study also claim that code 

cloning does not develop new bugs. The study of Li and Shatnawi [20] identified the relationship between 

code smells and class error probability. The study concluded that shotgun surgery, god class, and god 

methods have a negative impact on the class error probability. 

Maintaining software involves efforts to add new functions or features and modifying the code to 

fulfil new requirements. The study of [16] showed how the lack of design heuristics affects software 

maintainability. The study also compared between two versions of an implementation (with god class smell 

and without god class smell). The study concluded that high cohesion and low coupling in software programs 

affect the maintainability efforts. 

The second impact is the increase in the maintenance effort. Several hypotheses were introduced to 

relate the impact of code smells with software changeability. The continuous modifications of the program 

increase the code smell. Smell classes evolved more frequently compared to non-smell classes. The study of 

[17] investigated the impact of code smells on software change proneness. The study found that long class 

and Message Chain are the most frequent smells in several releases of Eclipse and Azureus, and each new 

release introduces some new smells while removing the older smells. 

The study of [24] presented an empirical study that investigated inter-smell relations and their 

effects on the incidence of maintenance problems. By analyzing how professional developers conducted tasks 

on four different systems, the study found empirical evidence that certain inter-smell relations were 

associated with problems during maintenance. Another study of [25] investigates the effects of code smells at 

the activity level. Six professional developers were hired to perform three maintenance tasks on four 

functionally equivalent Java Systems. Each developer performs two maintenance tasks. The logs of the 

developers were traced, and an annotation approach was defined to assess if code smells impact maintenance 

activities. The study showed that different code smells affect different activity effort. The techniques used to 

detect code smells in the literature [3]–[12], [13] can be grouped into four key categories. Code smells 

detected by different detection approaches are presented in Table 1. The detection techniques are grouped 

based on the used detection method into four key categories [26], [27]: 

a. Metrics-based approaches use software metrics such as “lines of code”, “coupling” between objects, 

“cohesion”, and “depth of inheritance tree” to detect code smells based on certain threshold values. The 

selection of threshold values affects the overall accuracy of the detection process. Software metrics 

helped to detect the following code smells: refused bequest, data clumps, shotgun surgery, large class, 

long method, and lazy class. Since there is no unified benchmark to set the threshold values, this approach 

is still not practical, in terms of accuracy, to detect code smells.  

b. Search-based approaches: these approaches use different search algorithms to detect code smells in the 

source code. Heuristic search algorithms were used to extract rules that can be used during the search 

process. 

c. Rule based approaches: rule-based systems convert the problem into a set of condition action rules. If-

then rules are widely used to feed an inference engine equipped with a working knowledge about the 

problem. Software metrics were used to capture knowledge and the available information. Moreover, 

rule-based approaches describe code smell symptoms and produce rules that will be translated into 

detection algorithms to identify code smells. 

d. Machine learning approaches: these approaches use a set of predictors for a machine learning classifier to 

reach a decision. Machine learning approaches depend on the quality of a balanced dataset and on the 

quality of the training model. For example, to detect code smells, the training model can learn from 

standard design practices and compared to developer coding practice [17]. 

 

 

Table 1. Categories of code smells 
Category Code smell 

Bloaters Long parameter list, long method, large class, data clumps, and primitive obsession 

Object oriented abusers Temporary fields, switch statement, refused bequest, parallel inheritance hierarchies, and alternative 
classes with different interfaces 

Change preventers Shotgun surgery, and divergent change 

Dispensable Data class, lazy class, duplicate code, dead code, speculative generality 
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4. METHOD 

This systematic review research aims to conduct a fair and comprehensive evaluation and 

interpretation of available research published from 2001 to 2023 in the field of code smell detection. To the 

best of our knowledge, less than 10 studies were published before 2001 that focus on software code smell. 

The guidelines suggested by [18], [28], and [29]–[31] were followed in undertaking this systematic review. 

The first phase of the research involved planning the review, which was further divided into determining the 

necessity for a review, developing the research questions, and describing the search approach to find relevant 

research papers. The second phase involved conducting the review, which was subdivided into defining the 

appropriate research selection criteria, including the inclusion/exclusion criteria, developing the quality 

evaluation rules to filter research publications, constructing the data extraction strategy to address the study 

objectives, and then synthesizing the data taken from the publications. The third phase of the research was 

the reporting phase.  

 

4.1.  Planning phase 

The area of code smell research is experiencing rapid growth, and there are several code smell 

detection techniques presented in the literature. Therefore, there is a need to summarize the findings and 

outcomes of previous research and identify the latest developments in the field. The synthesized information 

will help in the identification of research patterns and the development of statistics that will in turn shed light 

on limitations and gaps in the literature, in addition to current and future directions of research. Accordingly, 

this review will ultimately provide answers to the following research questions: 

RQ1: What is the distribution of studies per year in the context of the code smell detection? 

RQ2: What are the categories of publications included in this review research? 

RQ3: What is the distribution of the studies included in this review, categorized by the employed code smell 

detection technique? 

RQ4: What programming languages are employed by various code smell detection techniques in the included 

studies? 

RQ5: What subject systems were used to validate code smell detection techniques in the included studies? 

RQ6: What code smells were detected by various techniques in the included studies? 

Our search process is comprehensive and covers the whole spectrum related to the area of the code smell 

detection techniques. The search queries used to retrieve the related primary studies are as follows: 

a. Search Query 1: code AND smells; 

b. Search Query 2: bad AND smells;  

c. Search Query 3: antipattern; 

d. Search Query 4: (detect OR identify OR recover) AND smells. 

We applied our adopted search queries to well-known reputable scientific databases. These 

databases include Springer, ACM, IEEE, science direct, and Google Scholar. Based on the search terms 

mentioned above and using the specified period (2001 to 2023), 689 publications were initially retrieved. 193 

were identified as duplicates among the different libraries and removed. Hence, 496 publications were kept 

for the next phase. 

 

4.2.  Review phase  

Different approaches have been introduced by researchers to detect code smells at the source code 

level. To select the primary studies that will be included in this review, several inclusion and exclusion 

criteria were identified. The inclusion criteria can be summarized as follows: i) Publications must be 

published from 2001 till August 2023; ii) Publications must be published in a journal, conference proceeding, 

book chapter, workshop or symposium; iii) Publications must propose/discuss at least one code smell 

detection technique; and iv) Existence of practical experiments at the code level. 

We excluded the following studies: i) Publications that are written in a language other than English; 

ii) Publications that their main focus is not code smells detection; iii) Publications that are books or theses; 

iv) Publications that are published as reports; and v) Publications that propose code smell detection based on 

the design level not at the code level. 

 

4.3.  Analysis phase  

The completed compilation of articles selected for comprehensive evaluation underwent a rigorous 

examination to extract information addressing the previously stated research inquiries. Initially, we started 

with 689 articles. After removing duplicates and applying title and abstract filters, as well as 

inclusion/exclusion criteria, we reviewed a total of 140 articles in full. Ultimately, 116 articles met our 

criteria, specifically focusing on the existence of practical experiments at the code level. A total of 116 

primary studies were included in this review. We performed a manual validation of the retrieved studies to 
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ensure that the retrieved studies related to our proposed inclusion and exclusion criteria. The findings are 

detailed in the results section, and the steps in this stage are illustrated in Figure 1. 

 

 

 
 

Figure 1. The sequence of actions taken to choose the publications 

 

 

5. RESULTS AND DISCUSSION  

The third stage of this systematic review study involved presenting the results. The final list of 

research articles comprised a total of 116 publications [32]–[147]. A comprehensive and thorough 

examination of these papers was conducted to extract relevant information addressing the research questions. 

The extracted data were quantitatively described, facilitating the identification of patterns in studies 

conducted between 2001 and 2023. Additionally, the analysis unveiled both commonalities and discrepancies 

among the studies. 

 

RQ1: What is the distribution of studies per year in the context of the code smell detection? 

The retrieved primary studies involve papers from journals, conference proceedings, book chapters, 

workshops, and symposiums. The number of included primary studies per year is presented in Figure 2. As 

can be seen from Figure 2, most of the recent publications are Journal papers. In 2017, 11 conference papers 

were published related to code smell detection. We could not find any papers related to code smell detection 

published in 2003. 

 

RQ2: What are the categories of publications included in this review research? 

Figure 3 shows the type of publications included in this review. As Figure 3 shows, most of the 

included primary studies are conference proceedings (50% of the primary studies, with a total of 58 studies). 

We grouped the primary studies published in workshops, book chapters, and symposiums into one category 
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(Other) with a total of 23 studies. Journal papers represent 30% of our papers’ repository with a total of 35 

journal papers. 

 

 

 
 

Figure 2. Number of included studies per year 

 

 

 
 

Figure 3. Type of publications 

 

 

RQ3: What is the distribution of the studies included in this review, categorized by the employed code 

smell detection technique? 

Code smell detection techniques were compared based on the category of the technique, type of 

detected code smells, supported programming languages, subject systems, and evaluation criteria used to 

evaluate the technique. Out of the 116 studies included in this analysis, only one study used a manual 

approach where the detection is done based on human perception [87]. The manual detection process usually 

takes a long time, and the number of false positive smells are usually high. 

Figure 4 shows the percentage of studies included in this review based on the used detection 

technique. Figure 4 depicts that the predominant approaches in the literature for detecting code smells are 

metrics-based. In contemporary research, there is a growing utilization of machine learning techniques to 

identify code smells, displacing other traditional detection methods. 
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Figure 4. The percentage of studies based on the used detection technique 

 

 

RQ4: What programming languages are employed by various code smell detection techniques in the 

included studies? 

Based on the analysis of 116 studies, it was noted that Java is the most used language where it is 

used in 93 studies (80 % of the included studies). Further, three of the recent techniques used Python [91], 

[119], and [143]. MATLAB is only used in one study [86]. Android is used in the primary studies [111], 

[114], and [137]. Figure 5 shows the programming languages used by different detection techniques to detect 

code smells. 

 

 

 
 

Figure 5. Programming languages used by studies included in this review 

 

 

RQ5: What subject systems were used to validate code smell detection techniques in the included studies? 

Different subject systems were used to validate code smell detection techniques. These subject 

systems vary in their size, language, and the implemented code smells. Apache Xerces, GanttProject, and 

ArgoUML are frequently used as subject systems in empirical studies on code smell detection due to their 

rich set of code smells and extensive use in the software engineering community. Appendix summarizes their 

common usage. 

We noticed that even though subject systems were used by the majority of techniques, such as 

Apache Xerces, their true positives code smell instances are not explicitly revealed. Hence, a standard 
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benchmark is required to ease the validation process. This code smells benchmark should reveal the true 

positive instances of code smells implemented in the subject systems. Table 2 lists the subject systems used 

only once in literature. We found 60 subject systems appear only in one primary study. The use of these 

subject systems makes the validation process difficult since there is no standard benchmark that reveals true 

positive smell instances. 

 

 

Table 2. Subject systems used in one study 
# Subject System # Subject System # Subject System 

1 20 Java GitHub projects 21 Aspectj 41 Hadoop 
2 JasperReports 22 Drjava 42 Hive 

3 Velocity Engine 23 Javacc 43 Hsqldb 

4 Spring Framework 24 Maven 44 Karaf 
5 Struts 25 Xmojo 45 Lucene 

6 3 Students’ projects 26 131 releases of 13 open- 

source systems 

46 Manifold-cf 

7 VideoStore 27 Android Opt Telephony 47 Nutch 

8 LANSimulation 28 Android Support 48 Mastodon 

9 JExcelAPI 29 Apache Lucene 49 Pig 
10 Freeplane 30 Multilabel constructed 

dataset 

50 Qpid 

11 Redash 31 Dataset of 281 Java Project 51 Labeled instances of six code smells collected from 74 
software 

systems 
12 Xalan 32 Metabase 52 Training dataset involves API calls, Permissions, system calls 

13 Poi 33 Joplin 53 Code snippets extracted from eight open-source C# projects 

14 LaTeXDraw 34 Freeplane 54 Python dataset built using four open-source Python libraries: 
Numpy, Django, Matplotlib-, and Scipy 

15 aTunes 35 AbdExtractor 55 Grafana 

16 MediaPesata 36 Grinder 56 Superset 
17 LaTazza 37 Art of Illusion 57 Prometheus 

18 Corpus of 106 Python 

projects 

38 JExcelAPI 58 RocketChat 

19 30 Open-source Java 

projects 

39 Ant-ivy 59 Ant-design 

20 MediaPesata 40 Cassandra 60 Carbon-app 

 

 

Qualitas corpus was used in four studies [120], [138], [140], and [145]. These studies applied 

machine learning techniques to detect code smells and used 74 open-source projects to train the model. 

Figure 6 shows the subject systems used by more than two detection techniques to validate the code smell 

detection technique. As illustrated in Figure 6, programming mistake detector (PMD), Madeyski Lewowski 

code quest (MLCQ) dataset, tomcat, areca, weka and struts were used in two primary studies.  

 

 

 
 

Figure 6. Subject systems used by more than two detection techniques 
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RQ6: What code smells were detected by various techniques in the included studies? 

Based on our investigations of the 116 primary studies, we found that the god class, feature envy, 

long method, and data class are the most detected smells. This is maybe due to the simple structure of these 

smells. Shotgun surgery and lazy class are the least detected code smells where they only detected by 10 

primary studies. Other types of smells were detected by the detection techniques such as complex method, 

complex conditional, and multifaceted abstraction in [141]. Figure 7 shows the top code smells detected by 

the different primary studies. 

 

 
 

Figure 7. Number of frequent code smells detected by different techniques 

 

 

RQ7: What evaluation criteria were utilized by code smell detection techniques in the reviewed studies? 

To evaluate the performance and the accuracy of the detection techniques, different evaluation 

methods were employed in the surveyed literature. We found that precision and recall are the most used 

metrics to evaluate the accuracy of the detection approach where they were used in 69 and 68 studies, 

respectively. F measure is the third most used evaluation criteria. Figure 8 shows the evaluation criteria used 

to evaluate the code smell detection techniques. 11 studies did not reveal the evaluation criteria used to 

evaluate the detection technique. 

 

 

 
 

Figure 8. Evaluation criteria used by detection techniques 
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6. CONCLUSION AND FUTURE WORK 

Software code smells are signs of deeper problems in the code. Several studies were presented in the 

literature to detect these smells from software systems. This paper presented a review of software code smell 

detection techniques. A final list of 116 primary studies from reputable databases and publishing venues were 

included in the analysis. We compared software code smell detection techniques in terms of publishing 

venues over years, supported programming language, detection technique category, subject systems used to 

validate the technique, detected code smells, and evaluation criteria. 

The results show that the majority of the primary studies are published in conference proceedings. 

Metrics based techniques are the most used techniques to detect code smells. Recent techniques used 

machine learning to detect code smells. We noticed that most of the detection techniques supported Java 

programming language. Moreover, the top used subject systems to validate detection techniques are Apache 

Xerces, GanttProject, and ArgoUML. We found 60 subject systems were used in one primary study. This 

makes the validation process difficult since there is no standard benchmark to validate the detected smells. 

Different techniques have different results. To evaluate the proposed detection techniques precision and 

recall are used by the majority of the detection techniques.  

Future work in code smell detection should focus on diversifying subject systems for validation, 

extending analyses to multiple programming languages, and collaborating to establish standardized 

benchmarks. Exploring the integration of machine learning alongside traditional metrics-based techniques 

could enhance detection accuracy. Comparative studies should be conducted to understand variations among 

detection techniques, while the exploration of alternative evaluation metrics beyond precision and recall is 

crucial. A longitudinal analysis of trends and changes in code smell detection techniques over time can 

provide valuable insights. Additionally, efforts should be directed towards developing tools for real-world 

integration, fostering community collaboration for shared datasets and methodologies, and conducting case 

studies in industrial settings to assess practical impact and feasibility. 
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APPENDIX 

 

 
Subject System Description 

Apache Xerces "Apache Xerces is a widely-used open-source XML parser library by the Apache Software Foundation. 

It supports parsing, validating, and manipulating XML documents in Java and C++, adhering to W3C 

standards. Xerces provides both DOM and SAX APIs, robust error handling, and efficient performance 
for XML processing in diverse software engineering applications." 

GanttProject "GanttProject is an open-source project management tool designed to create and manage Gantt charts. It 

helps users plan, schedule, and track tasks, milestones, and resources in projects. GanttProject features 
include task dependencies, resource allocation, Gantt chart generation, and export options for sharing 

project plans. It is widely used for project scheduling and management in various industries." 

ArgoUML "ArgoUML is an open-source UML modeling tool used for visualizing and designing software systems 
using the Unified Modeling Language (UML). It provides a user-friendly interface for creating diagrams 

such as class diagrams, use case diagrams, sequence diagrams, and more. ArgoUML supports code 

generation from UML diagrams and facilitates collaboration through version control systems. It is 
widely utilized in software engineering for modeling and documenting software architectures and 

designs." 

Apache Ant "A Java library and build tool specifically designed for Java applications. It is used in studies due to its 
extensive use in real-world applications and the richness of its code smells. It has been used in 15 

different detection techniques." 

JFreeChart "A powerful Java chart library specialized in generating professional-quality charts. It is included in 
studies because of its well-documented codebase and the variety of code smells it exhibits. It has been 

used in 13 different detection techniques." 

Log4j "Log4j is a popular Java logging framework that helps developers record application runtime 
information, errors, and debugging details. It offers flexible configuration options through properties or 

XML files, supports multiple logging levels, various output destinations (like console or files), and 

customizable log message formatting. Log4j is valued for its simplicity, performance, and widespread 
adoption in Java applications for effective logging and debugging." 

Azureus "Azureus, now known as Vuze, is a popular BitTorrent client written in Java. It allows users to 

download and share files using the BitTorrent protocol, which enables efficient peer-to-peer file transfer. 
Azureus/Vuze provides features such as torrent management, bandwidth prioritization, RSS subscription 

support for automatic downloads, and a user-friendly interface for monitoring download progress and 

managing downloaded files. Its complex codebase and frequent updates make it a valuable subject for 
code smell research. It has been widely used for its comprehensive set of features and cross-platform 

compatibility." 

Eclipse "An integrated development environment (IDE) used in studies for its extensive plugin architecture and 
large codebase. It has been used in 7 different detection techniques." 

JUnit "JUnit is a vital Java testing framework that automates unit testing with intuitive annotations and robust 

assertion methods, ensuring code reliability and quality across development stages. It provides tools for 
developers to write and run repeatable tests to ensure the correctness of their Java code. JUnit supports 

annotations like @Test for identifying test methods, various assertion methods for verifying expected 

outcomes, and setup/teardown methods (@Before, @After) for test setup and cleanup tasks. It integrates 
seamlessly with build tools like Maven and Gradle, making it a fundamental tool for test-driven 

development (TDD)." 

JHotDraw "JHotDraw is an open-sourc Java library used for creating graphical editors and diagramming 
applications. It provides a framework with reusable components and design patterns specifically tailored 

for building interactive graphical user interfaces (GUIs). JHotDraw simplifies the development of 

custom drawing editors by offering ready-made tools for handling graphical elements, user interactions, 
and undo-redo functionality. It is widely utilized in software engineering for developing visual modeling 

tools, diagram editors, and other applications requiring sophisticated graphical interfaces in Java-based 
environments." 

PMD "PMD is a source code analyzer for Java, widely used in software development to identify potential code 

issues, such as bugs, performance bottlenecks, unused variables, and complex code structures. It helps 

improve code quality by highlighting areas for refactoring and optimization, promoting best practices 

and maintainability in Java projects." 

Tomcat "Tomcat is an open-source web server and servlet container developed by the Apache Software 
Foundation. It provides a robust environment for running Java Servlets and JavaServer Pages (JSP) 

applications on various platforms. Tomcat implements the Java Servlet and JavaServer Pages 

specifications, providing a lightweight and efficient container for deploying web applications. It is 
widely used in production environments due to its reliability, scalability, and extensive community 

support." 

Weka "Weka is a prominent open-source software suite used for machine learning and data mining tasks. 
Written in Java, it provides a rich collection of algorithms for classification, regression, clustering, 

association rule mining, and feature selection. Weka includes a user-friendly graphical interface for easy 

experimentation with machine learning techniques, making it accessible to both beginners and experts. It 
supports data preprocessing, model evaluation, and visualization, making it a versatile tool for 

developing and deploying machine learning solutions in various software engineering applications." 

Struts "Apache Struts is an open-source Java web application framework that follows the MVC pattern. It 
simplifies development with components like Action classes, Form beans, and tag libraries for UI 

creation. Struts include built-in validation and integrates well with JSP, Servlets, and other Java 

frameworks, making it popular for scalable and maintainable web applications." 
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