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 This paper presents series-series (SS) compensation topologies that include 

both primary side duty cycle control (PSDCC) and secondary side duty cycle 

control (SSDCC) methods. The main challenge for noncontact charging 

(NCC) for electric vehicles (EVs) batteries, the power transfer capability and 

efficiency in primary side proved to be unproductive. The investigation 

considers the primary side control duty cycle control (transmitter and 

receiver) and the secondary side duty cycle control (transmitter and receiver) 

in terms of compensation capacitor voltage, coil voltage, load side voltage, 

current, and power. By adjusting the duty cycle within the range of 0.1 to 

0.5, it is possible to control power without significantly decreasing the 

system's efficiency, by using the SSDCC method. The evaluated parameters, 

including 1.5 kW output power, 85 kHz resonance frequency, and 120 mm 

ground clearance, are suitable for three-wheeler auto rickshaws. These 

findings are verified through MATLAB/Simulink software and compared 

with experimental results. 
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1. INTRODUCTION 

As compared to the internal combustion engine (IC Engine), the electric vehicle (EV) has more 

efficiency, lower operating and maintenance costs, less emission, and more comfort. The growth of EVs in 

the present promote could minimize the energy in transportation zone’s dependence on fissile fuel. Though, a 

lot of challenges are taken from charging, traveling range, cost, and storage [1]. In that, the charging is the 

main consideration factor, to charge the battery for faster charging without any effect. In this regard, there is 

contact charging (CC) and noncontact charging (NCC). In CC, a lot of issues arise, those are increasing in the 

conductor size, safety concerns, and fast charging point of view the non NCC is the best method. NCC is the 

separation among the supply and charging as well as loads without any human requirements. In addition, 

NCC supports the medium and more power levels needed for excessive quick chargers, which significantly 

minimizes the charging time of the battery [2]–[8].  

The basic method for controlling the output power in a NCC system involves the primary 

component of the load side voltage, current, and power to charge the battery for a faster range. Traditional 

duty-cycle control (TDC) is the constant control frequency method employed on the primary side cascaded 

converter [9]–[12] and secondary side bidirectional switches. In [13], the investigation of the control methods 
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to study the zero voltage (ZVS) presentation of converters. In a NCC scheme to raise power capacity and 

minimize the charging of battery time, basically more power and frequency operations are forever needed to 

maintain the ZVS operation. Moreover, in the TDC method used in the primary side inverter, the td among 

the opposite switching illustrations of the converter phase-leg distorted the converter voltage and power. In 

[14], [15] investigation of converter considering the traditional phase shift pulse width modulation (PWM) 

method and evaluating its performance on the converter. The performance of the dead-time achieve is 

familiar in converter [16]. Performance of dead-time achieves in NCC appliances was addressed [17].  

Kavimandan et al. [18] proposed a combination of frequency and conventional phase-shift method 

to moderate the voltage polarity reversal owing to the 𝑡𝑑. In view of the position cited beyond, an 

investigation of constant frequency duty cycle control methods on primary side and secondary side parameter 

variation such as parameter stress, output voltage, output current, and output power are neglecting in the text. 

Accordingly, in this paper focuses a specified mathematically performance of the duty cycle control on 

noncontact charging systems for the primary and secondary side PWM methods. The theoretical 

characterization of the converter and rectifier input waveforms for both side control techniques in view of the 

dead-time achieve is offered. At calculation, the performance of the td effect on the stresses on the parameter, 

output power and voltage as well as current at a particular duty cycle is conferred. A MATLAB model of the 

noncontact charging scheme is increased in MATLAB/Simulink to estimate and evaluate the achieves of the 

duty cycle control on both sides.  

 

 

2. INTRODUCTION TO PRIMARY SIDE DUTY CYCLE CONTROL METHOD  

Figure 1(a) employed the basic cascaded converter at fixed direct current (DC) voltage. Figure 1(b) 

represents the dead-time effect among the opposite switches to avoid the short circuit and switching losses. 

For the dead-time period, the switches are in zero position, and hence two metal–oxide–semiconductor field-

effect transistors (MOSFETs) have enough time to clip among the turn on and off positions. Though, during 

the dead-time interval, if the current changes direction, the conduction of the switch modify the pole voltages 

of the converter, and accordingly, a mark arises at the converter [19]. Consequently, it is very significant to 

address the issue in the NCC system. The notch equation is defined as in (1). 

 

 

 
(a) 

 

 
(b) 

 

Figure 1. Basic H-bridge converter (a) basic circuit (b) pulses of the converter with td 
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|𝜃𝑣 − 𝜑| ≥
𝜓𝑡𝑑

2
 (1) 

 

where 𝜑 is the fundamental component of converter current and voltage, 𝜃𝑣 angle among the converter 

fundamental component and output as well as 𝜓𝑡𝑑 is the td angle given in (2). Where 𝑡𝑑 is the dead-time in 

seconds and 𝑓 is the switching frequency in Hz. 

 

𝜓𝑡𝑑 = 2𝜋 × 𝑓 × 𝑡𝑑 (2) 

 

 

3. INTRODUCTION TO SECONDARY SIDE DUTY CYCLE CONTROL 

Figure 2(a) shows the basic uncontrolled rectifier in front of the bidirectional switches, which is 

double the frequency presented and it is controlled to the output power very smoothly also it maintains the 

zero voltage (ZVS) switching at the inverter side [20]–[22]. As per the fundamental harmonic approximation 

(FHA) [23] in (3). 

 

𝑃𝑜𝑢𝑡 =  𝑃𝑖𝑛 = Re(𝑉𝐴𝐵𝐼1
∗) =

1

𝑤0𝑀
𝑉𝐴𝐵𝑉𝐶𝐷  (3) 

 

where 𝑉𝐴𝐵 is the inverter output voltage, 𝑉𝐶𝐷 is the rectifier input voltage, 𝑤0 is the resonance frequency, 𝑀 

is the mutual inductance and 𝐼1 is the transmitter current can be written as in (4)  

 

I1 =  
VCD

jw0M
=  

VCD

jw0M
∠00 (4) 

 

From the waveform shown in Figure 2(b), the inverter voltage 𝑉𝐴𝐵 and rectifier input terminal 

voltage 𝑉𝐶𝐷 written in (5) and (6). 

 

𝑉𝐴𝐵 = ∑
4

(2𝑘+1)𝜋

∞
𝑘=1  𝑉𝐴𝐵𝑠𝑖𝑛((2𝑘 + 1)𝑤0𝑡) (5) 

 

𝑉𝐶𝐷 = ∑
4

−(2𝑘+1)𝜋

∞
𝑘=1  𝑉𝐶𝐷𝑠𝑖𝑛 (

2𝑘+1

2
(𝜋 − 𝛼)) 𝑐𝑜𝑠((2𝑘 + 1))𝑤0𝑡 (6) 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Secondary side bidirectional converter (a) switching circuit and (b) output voltage and switching 

pulses of the rectifier input circuit 
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Substituting 𝑉𝐴𝐵 and 𝑉𝐶𝐷 in 𝑃𝑜𝑢𝑡  can also be written as in (7). 

 

𝑃0 =
𝑉𝐴𝐵×𝑉𝐶𝐷×8

𝜋2𝑤0𝑀
∑

𝑠𝑖𝑛((
2𝑘+1

2
))𝜋(1−𝐷)

(2𝑘+1)
∞
𝑘=1   (7) 

 

where 𝐷 is the duty cycle, the output depends on the bidirectional switches of the duty cycle. By changing 

the duty cycle 𝐷 the output voltage can be controlled without any disturbance on the primary side parameters 

and secondary side parameters. However, it does not require the secondary side additional DC-DC converter, 

the result is that the size and cost are reduced and the output is very smooth to achieve the zero-voltage 

switching at the transmitter side. 

 

 

4. MATHEMATICALLY ANALYSIS OF A NCC METHOD 

Figure 3(a) represents the basic schematic circuit of the series-series (SS) compensated NCC system 

[24], [25], and Figure 3(b) represents the FHA of the NCC system. Where 𝐿1 and 𝐿2 are the transmitter side 

and receiver side coil self-inductances, respectively; 𝐶1 and 𝐶2 are the secondary side and transmitter side 

capacitors, and 𝑅1 and 𝑅2 are the transmitter side coil and receiver side coil internal resistances. The AC 

equivalent resistance 𝑅𝑎𝑐 =
8

𝜋2 𝑅𝐿. By applying Kirchhoff's voltage law (KVL) in Figure 3(b), get the 

transmitter current and receiver currents is given as in (10) and (11). 

 

 

 
(a) 

 

 
(b) 

 

Figure 3. Schematic diagram of a NCC system (a) SS compensation and (b) first harmonic approximation of 

NCC system 

 

 

𝑉𝐴𝐵 = (𝑅1 + 𝑗𝑤𝐿1 +
1

𝑗𝑤𝐶1
) 𝑙1 − 𝑗𝑤𝑀𝑙2 (8) 

 

𝑗𝑤𝑀𝑙1 = (𝑅2 + 𝑗𝑤𝐿2 +
1

𝑗𝑤𝐶2
) 𝑙2 + 𝑅𝑎𝑐𝑙2 (9) 

 

𝐼1 =
𝑍2𝑉𝐴𝐵

𝑍1𝑍2+(𝑤𝑀)2 (10) 

 

𝐼2 =
𝑗𝑤𝑀𝑉𝐴𝐵

𝑍1𝑍2+(𝑤𝑀)2 (11) 
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Where, transmitter and receiver side impedances expressed as in (12) and (13). 

 

𝑍1 = 𝑅1 + 𝑗𝑤𝐿1 +
1

𝑗𝑤𝐶1
 (12) 

 

𝑍2 = 𝑅2 + 𝑅𝑎𝑐 + 𝑗𝑤𝐿2 +
1

𝑗𝑤𝐶2
 (13) 

 

The frequency of the method is represented as in (14). 

 

𝑤𝑟
2 =

1

𝐿1𝐶1
=

1

𝐿2𝐶2
 (14) 

 

The response of the battery is represented as in (15) and (16). 

 

𝑃𝐼𝑁𝐷𝐶
= 𝑉𝑑𝑐𝐼𝑑𝑐   (15) 

 

𝑃𝑂𝑈𝑇𝐷𝐶
= 𝐼2

2𝑅𝐿  (16) 

 

 

5. SIMULATION RESULTS AND DISCUSSION  

5.1.  Primary side duty cycle control method 

Table 1 shows the coil structure and compensating capacitor modelled in MATLAB. The variation 

of the duty cycle at 0.5 along with a change in primary side parameters converter voltage, compensating 

capacitor voltage, and coil voltages are shown in Figure 4. Figure 4(a) shows the general waveform of the 

converter output voltage with the 𝑡𝑑 achieves. Figures 4(b) and 4(c) shows the voltage across compensating 

capacitor and coil voltages. When the d is 0.5, the converter voltage (𝑉𝐴𝐵) and coil voltage 𝑉𝑡 are more 

affected than the secondary side control methods, that discusses the secondary side duty cycle control method 

which is proposed in this paper for a better performance. 
 

 

Table 1. Noncontact charging coils and parameters values 
Components Numbers 

Transmitter capacitor/nF 10.79 

Receiver capacitor/nF 7.4 

Winding diameter 200 mm 

L1 325 μH 

L2 474.22 μH 

d (air gap) 120 mm 

M 62.8 μH 

N1 32 

N2 32 

Coil Circular 

Frequency/kHz 85 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 4. At duty cycle 0.5 (a) output voltage of the inverter (𝑉𝐴𝐵), (b) transmitter side capacitor voltage (𝑉𝑐𝑡) 

and (c) transmitter coil voltage (𝑉𝑡) 
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The variation of the duty cycle at 0.5 along with a change in load side parameters rectifier input 

voltage, compensating capacitor voltage, coil voltages, and battery performance are shown in Figure 5. 

Figures 5(a) to 5(c) of the secondary side parameter voltages are less stressed as compared to the secondary 

side duty cycle control method. However, the battery performance which is very poor in the primary side 

control methods in Figures 5(d) to 5(g). 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

 

 
(g) 

 

Figure 5. 𝑑= 0.5 (a) receiver coil voltage (𝑉𝑟), (b) receiver side capacitor voltage (𝑉𝑐𝑟), (c) input voltage of the 

rectifier (𝑉𝐶𝐷), (d) rectifier output current, (e) load voltage (𝑉0), (f) load current (𝐼0), and (g) load power 

 

 

5.2.  Secondary side duty cycle control method 

The variation of the duty cycle at 0.5 along with a change in primary side parameters inverter 

voltage, compensating capacitor voltage, and coil voltages are shown in Figure 6. Figure 6(a) shows the 

general waveform of the inverter output voltage without any td effect. Figures 6(b) and 6(c) shows the 

voltage across compensating capacitor and coil voltages. When the duty cycle is 0.5, the inverter voltage 

(𝑉𝐴𝐵) and coil voltage 𝑉𝑡 are much smoother as compared to the primary side duty cycle control methods, that 

discusses the primary side duty cycle control method in this paper. 

The deviation of the 𝑑 at 0.5 along with a change in load side parameters rectifier input voltage, 

compensating capacitor voltage, coil voltages, and battery performance are shown in Figure 7. Figures 7(a), 

7(b), and 7(c) of the secondary side parameter voltages are a little more stressed as compared to the primary 

side duty cycle control method. However, the battery performance is very effective, and smoother waveforms 

in the secondary side duty cycle control methods in Figures 7(d) to 7(g).  

 

5.3.  Comparison between primary side and secondary side duty cycle control methods 

Figure 8 observed power of the secondary side duty cycle control (SSDCC) S-S compensation 

system duty cycle from 0.1 to 0.5 is more as compared to the primary side duty cycle control (PSDCC) 

method. It observed that it is sufficient to manage the power by changing the duty cycle within a limit 

(0.1≤0.5) as well and the efficiency of the system does not decrease significantly. In the process of the duty 

cycle increase 0.1 to 0.5, the system output power increases 0.02568 W to 245.1 W in the primary side 
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control method as well as 41.4 W to 778.2 W in the secondary side duty cycle control method. Similarly, the 

power transfer efficiency is higher in the SSDCC method. 

 

 

 
(a) 

 

  
(b) (c) 

 

Figure 6. At 𝑑= 0.5 (a) output voltage of the inverter (𝑉𝐴𝐵), (b) transmitter side capacitor voltage (𝑉𝑐𝑡) and (c) 

transmitter coil voltage (𝑉𝑡) 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

 

 
(g) 

 

Figure 7. At duty cycle 0.5 (a) receiver coil voltage (𝑉𝑟), (b) receiver side capacitor voltage (𝑉𝑐𝑟), (c) input 

voltage of the rectifier (𝑉𝐶𝐷), (d) rectifier output current, (e) load voltage (𝑉0), (f) load current (𝐼0), and 

(g) load power (𝑃0) 
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Figure 8. Comparison between primary side and secondary side duty cycle control methods 

 

 

6. EXPERIMENTAL RESULTS AND DISCUSSION 

A laboratory prototype of the NCC system with the SS method and the advised control scheme has 

been built to confirm the mathematical performance employed in Figure 9(a) (in appendix). Figure 9(b) (in 

appendix) shows the inverter gate pulses for switches S1S2 and S3S4. Figure 9(c) (in appendix) shows the 

transmitter current waveform flowing through inverter switches. Figure 9(d) (in appendix) shows the inverter 

output terminal voltage experimental results of the waveforms. 

 

 

7. CONCLUSION  

In giving the best output for the smooth functioning of EVs comparatively with that of existing 

vehicles, the SSDCC method (transmitter and receiver) for a NCC system with S-S (series-series) topology 

has been experimentally proven at the laboratory level as the best. The validity of evaluated parameters is 

checked through MATLAB/Simulink and compared with experimental results productively. The Comparison 

of voltage and current stresses on coils, compensating capacitors, and switches has been proven with the help 

of simulation studies. Thus, it is observed that the output power of the EVs battery in the PSDCC control 

method which is 0.1 to 0.5 proved to be very weak and less productive when compared to the SSDCC 

method. All this process and procedure has been discussed in detail in the figures and experimental diagrams 

for the clear understanding of this proposed phenomenon. 

 

 

APPENDIX 
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(b) 

 

 

Figure 9. The hardware results of the waveforms (a) experimental proto type, (b) gate pulses, (c) transmitter 

current, and (d) inverter voltage 
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