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 Many people suffer from bone fractures, which can result from minor 

accidents, forceful blows, or even diseases like osteoporosis or bone cancer. 

In the medical realm, accurately identifying bone fractures from X-ray 

images is paramount for effective diagnosis and treatment. To address this, a 

comparative study is conducted utilizing three distinct models: a traditional 

convolutional neural network (CNN), MobileNet-V2, and a newly 

developed parallel deep convolutional neural network (PDCNN). The 

primary aim is to evaluate and contrast these models in terms of precision, 

sensitivity, and specificity for diagnosing bone fractures. X-ray images of 

fractured and non-fractured bones are sourced from Kaggle and subjected to 

various image processing techniques to rectify anomalies. Techniques such 

as cropping, resizing, contrast enhancement, filtering, and augmentation are 

applied, culminating in canny edge detection. These processed images are 

then used to train and test models. The results showcased the superior 

performance of the newly developed PDCNN model, achieving an 

impressive accuracy of 92.89%, surpassing both the traditional CNN and 

pretrained MobileNet-V2 models. A series of ablation studies are conducted 

to fine-tune the hyperparameters of the PDCNN model, further validating its 

efficacy. Throughout the investigation, PDCNN consistently outperformed 

MobileNet-V2 and traditional CNN, underscoring its potential as an 

advanced tool for streamlining bone fracture identification. 
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1. INTRODUCTION 

A mineral made of calcium is called bone [1]. Human bone provides a mechanical structure for the 

human body [2]. It maintains calcium homeostasis and substantial storage of phosphate, magnesium, 

potassium, and bicarbonate. Human bone also helps in muscle activities [3]. One of the most interesting 

natural composite materials is human cortical bone, which acts as a structural foundation that can withstand 

injury and allows the human body to self-repair. The mechanical characteristics of bone enable it to 

withstand fracture under diverse physiological loading conditions [4]. A few of these conditions that lead to 

bone diseases are vitamin-D insufficiency, osteoporosis, Paget’s disease of the bones, and many more. The 

amount and quality of bone tissue in the human skeleton start to decline after reaching peak bone mass in the 
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third or fourth decade of life [5]. Among the most common injuries in today’s world are bone fractures. 

About 8.9 million people experience this disorder each year [6], and the consequences of leaving a fracture 

untreated may end in death or permanent damage by several types of bone fracture as shown in Figure 1. The 

doctors bear a great deal of responsibility for this, as they assess lots of X-ray images daily basis. The 

majority of the technology used for the initial diagnosis is X-rays, a modality that has been around for more 

than a century and is still widely used. Medical professionals find it difficult to assess X-ray images for many 

reasons, like the fact that X-rays may obscure certain unique characteristics of the bone or that it takes 

extensive training to accurately identify the various kinds of fractures. A precise classification of the fracture 

among standard types is crucial for both the future outlook and the effectiveness of the treatment [7]. 

 

 

 
 

Figure 1. Several types of fracture in bone 

 

 

Many advances in technology are making it easier to diagnose bone fractures in today's world. 

Automated image processing models, such as artificial intelligence (AI), deep learning (DL), and machine 

learning (ML), are quick and reliable for identification, localization, and classification [8]. Determining the 

precise location of a fracture and its degree of impact might be beneficial. The discipline of computer-aided 

diagnosis is an emerging field of research where computer technologies are used to offer prompt and precise 

diagnosis. It uses X-ray images and preprocesses them as needed to detect fractures in the bones [9]. They are 

getting better with each passing day as a result of learning from labeled data [10].  

Several works have been discussed, including the following, Luis and Ruano [11] suggested a 

computer-aided system for bone fracture detection. Although X-ray pictures are typically used to diagnose 

bone fractures, and suggested an approach that uses computers to help detect bone fractures. Achieved 89% 

classification accuracy by utilizing a variety of techniques for fracture recognition, bone line detection, and 

speckle reduction. It is limited to stress fractures, and this computer-aided approach is unable to classify 

complex fractures accurately.In 2015, Anu et al. [12] presented work using preprocessing techniques to 

reduce noise from the photos and transform the RGB X-ray images to grayscale using a median filter. They 

then detected the edge of the image by using the Sobel edge detector. They used the gray level co-occurrence 

Matrix (GLCM) to extract the feature. Finally, the data were divided into fractured and non-fractured 

categories using a variety of classifier types, including decision trees (DT), neural networks (NN), and meta-

classifiers. There are 40 photos in the collection, 20 of which have fractures and 20 of which do not. They 

achieved the best accuracy in the meta-classification algorithm, at 85 percent. Tripathi et al. [13] stated that 

the location of small or hairline femur fractures is the main topic of this paper. To determine whether or not 

there is a fracture, they employed SVM. 30 X-ray images compose the dataset. The logarithmic operator is 

employed to enhance photos, and median and average filtering are used to eliminate noise from images. 

Morphological operations and the sobel edge detection approach are employed for feature extraction. They 

obtained 84.7 percent accuracy in classifying the data using support vector machines (SVM) into fractured 

and non-fractured categories. Sinthura et al. [14] suggested a convolutional neural network (CNN) to detect 

bone fractures. They took an x-ray image as input, then preprocessed it using a median filter, and the 

preprocessed image was applied to the discrete wavelet transforms (DWT) stage, which is used to find the 

edge in each channel. Then the output is compared with the database with neural networks, which gives the 

output.  

Vasilakakis et al. [15] suggested fuzzy phrases (FP) for detection. This work aims to use the wavelet 

fuzzy phrases (WFP) approach to identify bone fractures using x-ray pictures. The accuracy of the classifying 

approach was 84%. Yadav and Sandeep [16] built a deep CNN model to actively classify fractured or healthy 

bones. After augmentation, the dataset had a size of 4000, where 2000 is a healthy bone and 2000 is 

cancerous, they used five-fold cross-validation and have the best accuracy of all, scoring 92.44 percent.  
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Rao et al. [17] proposed a method to detect bone fractures. Their dataset had 300 X-ray pictures, and they 

achieved 90% accuracy by using a back propagation neural network (BPNN) and SIFT feature extraction. In 

2020, Karimunnisa et al. [18] suggested a model using 900 X-ray pictures, of which 400 were normal and 

500 were fractured. Initially, input X-ray pictures are transformed into grayscale images. Their BPNN 

provides an improved classification rate of 91 percent. Pathare et al. [19] employ many processing 

approaches, including segmentation, edge detection, and feature extraction. Bekkanti et al. [20] suggested the 

Harris corner detection technique, which is a traditional computer vision technique related to feature 

detection and traditional image processing to detect bone fractures. There were two hundred non-fractured 

and three hundred fractured X-ray images in their collection. The input x-ray images are preprocessed using 

m3 filtering. segmented using canny edge detection, features extracted using Harris corner detection, and 

lastly categorized as fractured or not. They contrasted their efforts using SURF with BPNN and MLP-based 

BPNN. While SURF using BPNN yields an accuracy of 85 percent, MLP-based BPNN yields an accuracy of 

85 percent, and their suggested approach yields a 94 percent accuracy. In 2022, Samothai et al. [21] 

presented advanced CNN YOLO models in this work, where the widely used YOLO-X and YOLO-R models 

were implemented. With 76 percent confidentiality, YOLO-X can locate fractures with great accuracy. 

However, YOLO-R exhibits inaccurate fracture location detection. Kosrat and Hawezi [22] analyze various 

ML classifiers and assist surgeons in accurately diagnosing bone fractures. They employed a filtering 

technique to remove noise and preprocessing to convert the RGB images to grayscale. In this study, SVM is 

found to be the best. 

Certain issues persist in the current state of bone fracture detection, necessitating improvements in 

accuracy to enhance detection efficacy, as outlined in Table 1 and the aforementioned study. The 

augmentation of the dataset is imperative, requiring the inclusion of high-quality photos. This study utilizes a 

dataset comprising a substantial number of bone fracture images, implementing canny edge detection during 

preprocessing to optimize results. Despite the growing accessibility of machine-aided bone fracture detection, 

accuracy remains a concern, often leading to false positives. The identification of fractures in the absence of 

actual occurrences is a prevalent problem, attributed to the limited volume of data and inaccuracies in the 

labeling of training data. Addressing these challenges, this research focuses on refining training and testing 

data by introducing a newly customized parallel deep learning model with parameter customization. Notably, 

publicly available datasets frequently lack flawless preprocessing and accurate labeling, necessitating the 

incorporation of additional labeled data to augment inputs for the model. To ensure an adequate supply of 

high-quality data, edge detection algorithms are employed during data preprocessing. The contributions of 

this study can be summarized as follows: 

a. Correcting anomalies in the dataset through several image processing technique involves employing a 

range of image processing techniques, such as cropping, resizing, contrast enhancement, filtering, 

augmentation, and culminating in canny edge detection. 

b. The study introduces a novel and tailors parallel deep convolutional neural network (PDCNN) model, 

designed to surpass the existing literature by enhancing accuracy in bone fracture detection.  

c. A comparative evaluation is conducted among three CNN-based models—CNN, MobileNet-V2, and the 

newly proposed PDCNN. Four cases of ablation studies is carried out to validate the proposed PDCNN 

model. The objective is to identify the most effective model for bone fracture recognition through a 

thorough analysis of their performance. 

 

 

Table 1. Summarized literature review of bone fracture recognition using machine learning models 
Study Data Preprocessing Technique Model Accuracy Limitations/Remarks 

[11] 44 Canny edge detection SNAKE 89% Only detects stress fractures and is unable to classify complex 

fractures accurately. There are not many images in the dataset. 

[12] 40 Sobel edge detector Meta 
Classifier 

85% The dataset was not good. 

[13] 30 Sobel edge detector SVM 87.5% The dataset was not good. 

[14] NM discrete wavelet transforms 
(DWT) 

CNN 79% The dataset was not given. 

[15] 300 NM WFP 84% This was the early stage of fuzzy phrases; additional 

development is required before they can be reliably detected. 
[17] 300 M3 filter SIFT + 

BPNN 

90% HTBFD, ANN, and other algorithms are useful tools for 

improving fracture placement. 

[18] 900 Canny Edge Detection and 
Conservative Filtering 

BPNN 91% The dataset contains many types of bone shapes, which may 
become confusing. 

[19] 20 NM HTM 75% An X-ray of the skull, pelvis, and spinal column was not able 

to be obtained. 
[22] 270 Canny edge detection SVM NM It only compared the models. 

a. NM: Not mentioned 
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2. RESEARCH METHOD 

This study centers on the detection of bone fractures in X-ray images through the utilization of a 

CNN-based model. The development of the proposed system involves sequential steps, including data 

collection, image pre-processing, and fracture recognition using CNN models. The schematic representation 

of the working process is outlined in Figure 2. 

 

 

 
 

Figure 2. The workflow diagram of proposed study 

 

 

2.1.  Dataset description 

This study makes use of a public dataset of bone fracture and non-fractured x-ray images. To keep 

things simple, the publicly available dataset of binary-class bone fracture and non-fracture x-ray images was 

obtained using the Kaggle platform; for the sake of this paper, this data is referred to as the “bone fracture 

dataset” [23]. It is employed in the creation of an image classifier that identifies bone fractures in given x-ray 

pictures. There are 1899 photos identified in the testing class (fracture and non-fracture) and 8,884 images in 

the training class (fracture and non-fracture). The images were not the same size, and some of them included 

anomalous data in addition to being unclear. The sample image of fractured bone and fresh bone of x-ray 

image is given in Figure 3. Figure 3(a) represents the fractured bone, while Figure 3(b) depicts the non-

fractured bone. 

 

 

  
(a) (b) 

 

Figure 3. The sample image of (a) fractured bone, and (b) non-fractured bone 

 

 

2.2.  Data preprocessing 

In the realm of bone fracture identification, a crucial step in the research applications of computer 

vision and image processing involves image preprocessing. This process serves to enhance the quality of 

images, reduce noise levels, rectify distortion, and prepare the images for subsequent analysis [16]. The 

following are key strategies (see outcome of Figure 4(a) to 4(h)) employed in this study, along with 

explanations. 

 

2.1.1. Cropping 

In bone fracture identification, cropping is a prevalent image processing technique utilized to extract 

the region of interest (ROI) within an image [24]. This facilitates the isolation of relevant anatomical 

structures for more accurate analysis, disregarding unnecessary elements. The output of cropping from the 

raw picture of Figure 4(a), can be seen in Figure 4(b). 
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2.1.2. Resizing 

Resizing plays a vital role in standardizing the dimensions of images within a dataset. This ensures 

uniformity, facilitating efficient processing and analysis [25]. It also aids in accommodating variations in 

image resolutions commonly encountered in medical imaging. Resizing is employed to standardize the 

dimensions of images, ensuring uniformity across the dataset with 227×227 pixels and the output shown in 

Figure 4(c). 

 

2.1.3. Enhancing contrast 

Enhancing contrast is crucial to accentuate subtle details within the images [26]. This allows for 

better differentiation between healthy and fractured bone structures, enhancing the overall interpretability of 

the images. After enhancing the image quality, Figure 4(d) displays the image with improved visual clarity. 

 

2.1.4. Filtering 

Filtering is employed to emphasize relevant structural details while suppressing noise. By 

selectively enhancing certain image characteristics, filtering contributes to the improvement of image clarity 

and the extraction of essential information [18]. After filtering and enhancing the essential features, the 

image is displayed in Figure 4(e). 

 

2.1.5. Canny edge detection 

Canny edge detection (CED) is an advanced image processing technique used in computer vision to 

identify edges and boundaries within an image [27]. It was developed to address the challenges of edge 

detection by providing accurate and reliable results while minimizing false positives. In the context of bone 

fracture recognition using computer vision and image processing, canny edge detection plays a crucial role in 

highlighting prominent contours and edges within medical images. This technique enhances the visualization 

of structural details in bone images, making it particularly valuable for pinpointing fractures and irregularities 

in the bone structure which is displayed in Figure 4(f). 

 

2.1.6. Augmentation 

Augmentation is crucial for enhancing the robustness of bone fracture identification models. By 

exposing the model to diverse orientations, scales, and perspectives, it becomes more adept at accurately 

identifying fractures under a range of conditions, contributing to improved generalization and performance 

[28]. In this study, some primary image augmentation method is used such as rotation, flipping, zooming, and 

shearing and the outcomes of the filtered images and CED are displayed in Figure 4(g) and Figure 4(h), 

respectively.  

After undergoing extensive image processing, the raw image is subjected to contrast enhancement, 

as illustrated in Figure 4(a) to 4(h). The dataset comprises more than 10, 783 images categorized into 

fractured and non-fractured classes, exhibiting a near balance between the two. Following an 85:15 split for 

training and testing, the dataset consists of 8884 images in the training set and 1899 images in the test set. 

 

 

    
(a) (b) (c) (d) 

    

    
(e) (f) (g) (h) 

 

Figure 4. Several image processing applied into (a) raw image and getting (b) cropping image, (c) resize 

image, (d) enhance contrast, (e) filtering, (f) augmentation on filtered image, and (g) canny edge detection 

and (h) augmented CED image to increase the size of the dataset 
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2.3.  Model implementation 

Following the preprocessing phase, this study endeavors to construct a bone fracture recognition 

system by employing CNN based models. In pursuit of high accuracy, we explore a variety of models 

including the traditional CNN model, a CNN-based transfer learning model, MobileNet-V2, and our novel 

PDCNN model. CNN, MobileNet, and the newly proposed PDCNN exhibit remarkable efficacy in 

identifying bone fractures from X-ray images. The succinct description of each model is given below: 

 

2.3.1. Convolutional neural network 

Convolutional neural networks [29], or CNNs, are widely utilized in deep learning network models 

and computer vision algorithms. Because it can identify patterns in images, this kind of artificial neural 

network is utilized for image recognition and processing. Convolutional, pooling, and fully connected layers 

are some of the layers that make it up. The convolutional layer, which makes up the majority of CNN, is 

where characteristics like forms, edges, and patterns are extracted from the input image by applying filters. 

One or more fully connected layers are then applied to the output of the pooling layers to classify or predict 

the image.  

 

2.3.2. MobileNet-V2 

MobileNet-V2 is a lightweight convolutional neural network designed for mobile and embedded 

devices. It improves efficiency with depth wise separable convolutions and inverted residuals with linear 

bottlenecks [30]. It also incorporates expansion and squeeze-excitation modules for better feature learning. 

With its streamlined architecture, MobileNet-V2 achieves high accuracy while minimizing computational 

resources, making it ideal for mobile applications requiring fast and efficient image processing.  

 

2.3.3. Parallel deep convolutional neural network (PDCNN) 

A parallel architecture with two convolutional neural networks (PDCNNs) is presented to handle the 

recognition and classification of bone fractures in X-ray pictures. The suggested architecture entails the 

following sequence of events: X-ray images with bone fractures are fed into the PDCNNs [31] input layer. 

To reduce the computational complexity, these images are preprocessed. The input images have been 

normalized to a 277×227-pixel resolution for training, allowing for differences in pixel widths and heights. 

The subsequent procedure that helps to simplify complexity is to convert the input images to canny edge 

detection. The architecture of the PDCNN is then used to classify input X-ray pictures by combining, output, 

local, and global path. The SoftMax function is used in the output pathway to carry out the classification of 

bone fractures. Figure 5 shows the PDCNN’s structure.  

 

 

 
 

Figure 5. The diagram of proposed PDCNN model that contains four stages which are local path, global path, 

merging them, and output stages in order to identify the bone fracture from the inputed x-ray image 

 

 

The proposed PDCNN model for bone fracture identification integrates various layers to facilitate 

accurate recognition of fractures in X-ray images. Initially, 2D convolutional layers are employed to extract 

pertinent features from the input images. Subsequently, rectified linear unit (ReLU) layers introduce non-

linearity to the network, enhancing its ability to capture complex patterns. A 2D cross-channel normalization 

layer normalizes activations across channels, contributing to improved model performance. Following this, 

2D max pooling layers reduce the dimensionality of feature maps while retaining essential information [32]. 

Concatenation merges features learned from different pathways within the network, enriching the 
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representation of fracture-related features. Batch Normalization is applied to accelerate and stabilize the 

training process, leading to faster convergence and improved generalization. Fully connected layers process 

high-level features extracted by convolutional layers, enabling the network to generate predictions for 

fracture identification. Dropout regularization is utilized to mitigate overfitting by randomly dropping units 

during training. Finally, Softmax activation facilitates robust classification decisions by allowing the network 

to predict classes based on features extracted through various parallel paths. Table 2 presents the 

specifications of each layer in the proposed PDCNN model, including the layer type, properties, activation 

function, learnable property, and number of learnable parameters.  

 

 

Table 2. The specifications of proposed PDCNN model 
Layer 

no. 

Layer type Properties Activation Learnable 

property 

Number of 

learnings 

1 Image Input 227×227×3 images with ‘zero center’ 
normalization 

227 (S)×227 (S)×227 (S)×3 (C)×1 
(B) 

- 0 

2 2-D convolution 32 3×3 convolutions with stride [1×1] 

and padding ‘same’ 

227 (S)×227 (S)×32 (C) x×1 (B) Weight: 3×3×3 

Bias: 1×1×32 

896 

3 ReLU ReLU 227 (S)×227 (S)×32 (C)×1 (B) - 0 

4 Cross-channel 

normalization 

Cross-channel normalization with 5 

channels per element 

227 (S)×227 (S)×32 (C)×1 (B) - 0 

5 2-D Max Pooling 5×5 max pooling with stride [1×1] and 

padding ‘same’ 

227 (S)×227 (S)×32 (C)×1 (B) - 0 

6 2-D convolution 32 3×3 convolutions with stride [1×1] 
and padding ‘same’ 

227 (S)×227 (S)×32 (C)×1 (B) Weight: 3×3×32 
Bias: 1×1×32 

9248 

7 ReLU ReLU 227 (S)×227 (S)×32 (C)×1 (B) - 0 

8 Cross-channel 
Normalization 

Cross-channel normalization with 5 
channels per element 

227 (S)×227 (S)×32 (C)×1 (B) - 0 

9 2-D Max Pooling 5×5 max pooling with stride [1×1] and 

padding ‘same’ 

227 (S)×227 (S)×32 (C)×1 (B) - 0 

10 2-D convolution 32 3×3 convolutions with stride [1×1] 

and padding ‘same’ 

227 (S)×227 (S)×32 (C)×1 (B) Weight: 3×3×32 

Bias: 1×1×32 

9248 

11 ReLU ReLU 227 (S)×227 (S)×32 (C)×1 (B) - 0 

12 Cross-channel 

normalization 

Cross-channel normalization with 5 

channels per element 

227 (S)×227 (S)×32 (C)×1 (B) - 0 

13 2-D Max Pooling 5×5 max pooling with stride [1×1] and 
padding ‘same’ 

227 (S)×227 (S)×32 (C)×1 (B) - 0 

14 2-D convolution 32 3×3 convolutions with stride [1×1] 

and padding ‘same’ 

227 (S)×227 (S)×32 (C)×1 (B) Weight: 3×3×32 

Bias: 1×1×32 

896 

15 ReLU ReLU 227 (S)×227 (S)×32 (C)×1 (B) - 0 

16 Cross-channel 

normalization 

Cross-channel normalization with 5 

channels per element 

227 (S)×227 (S)×32 (C)×1 (B) - 0 

17 2-D Max Pooling 5×5 max pooling with stride [1×1] and 

padding ‘same’ 

227 (S)×227 (S)×32 (C)×1 (B) - 0 

18 2-D convolution 32 3×3 convolutions with stride [1×1] 
and padding ‘same’ 

227 (S)×227 (S)×32 (C)×1 (B) Weight: 3×3×32 
Bias: 1×1×32 

9248 

19 ReLU ReLU 227 (S)×227 (S)×32 (C)×1 (B) - 0 

20 Cross-channel 
normalization 

Cross-channel normalization with 5 
channels per element 

227 (S)×227 (S)×32 (C)×1 (B) - 0 

21 2-D Max Pooling 5×5 max pooling with stride [1×1] and 
padding ‘same’ 

227 (S)×22×(S)×32 (C)×1 (B) - 0 

22 2-D convolution 32 3×3 convolutions with stride [1×1] 

and padding ‘same’ 

227 (S)×227 (S)×32 (C)×1 (B) Weight: 3×3×32… 

Bias: 1×1×32 

9248 

23 ReLU ReLU 227 (S)×227 (S)×32 (C)×1 (B) - 0 

24 Cross-channel 

normalization 

Cross-channel normalization with 5 

channels per element 

227 (S)×227 (S)×32 (C)×1 (B) - 0 

25 2-D Max Pooling 5×5 max pooling with stride [1×1] and 

padding ‘same’ 

227 (S)×227 (S)×32 (C)×1 (B) - 0 

26 Concatenation Concatenation of 2 inputs along the 
dimensional value 

227 (S)×454 (S)×32 (C)×1 (B) - 0 

27 Batch 

Normalization 

Batch normalization 227 (S)×454 (S)×32 (C)×1 (B) Offset: 1×1×32 

Scale: 1×1×32 

64 

28 ReLU ReLU 227 (S)×454 (S)×32 (C)×1 (B) - 0 

29 Fully connected 10 fully connected layers 1 (S)×1 (S)×10 (C)×1 (B) Weights 

10×3297… 
Bias 10×1 

32978570 

30 ReLU ReLU 1 (S)×1 (S)×10 (C)×1 (B) - 0 

31 Dropout 50% dropout 1 (S)×1 (S)×10 (C)×1 (B) - 0 

32 Fully Connected 10 fully connected layers 1 (S)×1 (S)×10 (C)×1 (B) Weights 10×10 

Bias 10×1 

110 

33 Softmax Softmax 1 (S)×1 (S)×10 (C)×1 (B) - 0 
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2.4.  Performance evaluation 

After implementing the model, various performance metrics are calculated to assess its effectiveness 

in a binary classification task of identifying bone fractures in X-ray images. The first step involves generating 

a confusion matrix, then key metrics such as true-positive rate, false-negative rate, false-positive rate, and 

true-negative rate are derived. Following this, accuracy, precision, F1 score, and error are computed to 

determine the optimal model for bone fracture identification. Their equations “(1)-(8)”  are given below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
× 100% (1) 

 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
× 100% (2) 

 

𝐹𝑁𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
× 100% (3) 

 

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
× 100% (4) 

 

𝑇𝑁𝑅 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
× 100% (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
× 100% (6) 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
× 100% (7) 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.  𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100% (8) 

 

 

3. RESULTS AND DISCUSSION 

In this study, three deep learning models explore the detection of bone fractures from digital images. 

Rigorous image preprocessing is applied to train and validate the models using a testing dataset. To measure 

the performance of the developed models, several performance metrics are computed to find the optimal 

solution. The three models are trained with 8,884 images and validated with 1,899 images. During the 

implementation phase, some cases of ablation study are carried out to determine the best-suited parameters 

for the proposed model. The models are implemented using 100 epochs and a batch size of 64. However, in 

the case of the traditional CNN and the pretrained MobileNet-V2 model, performance is not satisfactory, and 

issues arise during the implementation phase. Consequently, a newly developed proposed PDCNN model 

performs very well. Four ablation case studies are considered to validate the proposed model for bone 

fracture identification. The performance of these studies is detailed below: 

 

3.1.  Performance of CNN and MobileNet-V2 

In terms of performance, both the traditional CNN and MobileNet-V2 models exhibit fluctuating 

results, indicating underfitting issues. The confusion matrices of the CNN and MobileNet-V2 models are 

presented in Table 3 and performance metrices shwon in Table 4. From Table 4, CNN provide 74.51% 

accuracy while MobileNet-V2 gained 81.20% accuracy. Examination of Figure 6(a) and 6(b) and Figure 7(a) 

and 7(b) reveals accuracy (Figure 6(a) and Figure 7(a) and loss curves (Figure 6(b) and Figure 7(b) that 

further emphasize the underfitting problems experienced by both models CNN and MovileNet-V2, 

respectviely. Underfitting occurs when a model is unable to capture the underlying patterns in the data, 

resulting in poor performance and low accuracy. In the case of the traditional CNN and MobileNet-V2 

models, this underfitting phenomenon is evident in their inability to adequately learn from the training data, 

leading to inconsistent and suboptimal results.  

 

 

Table 3. Confusion matrix for applied three models 
Model TP FN FP TN 

CNN 769 370 114 646 
MobileNet-V2 853 266 105 689 

PDCNN 941 84 51 823 
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Table 4. Performance metrices for CNN and MobileNet-V2 model 
Model Accuracy TPR FNR FPR TNR Precision F1 Score Error rate 

CNN 74.51 67.52 32.48 15.00 85.00 87.09 76.06 25.49 

MobileNet-V2 81.20 76.23 23.77 13.22 86.78 89.04 82.14 19.54 

 

 

  
(a) (b) 

 

Figure 6. The (a) accuracy graph and (b) loss graph for traditional CNN model 

 

 

  
(a) (b) 

 

Figure 7. The (a) accuracy graph and (b) loss graph for MobileNet-V2 model 

 

 

3.2.  Performance of proposed PDCCN model with ablation study 

In the preceding section, both models failed to deliver satisfactory results. Now, it's imperative to 

validate the proposed model to demonstrate that the newly developed PDCNN model serves as the optimal 

solution for bone fracture detection. In the validation process, four detailed case studies are conducted by 

altering hyperparameters such as kernel size, loss function, pooling layer, and optimizer. The results of the 

ablation study are presented in Table 5. This comprehensive analysis aims to ascertain the effectiveness of 

the proposed model in detecting bone fractures and to identify the optimal configuration for achieving the 

highest performance. 

From the ablation studies in Table 5, various convolutional layer kernel sizes have been 

investigated. Four kernel sizes (2, 3, 4, and 5) are compiled and evaluated. Notably, a kernel size of 3 

achieved the maximum accuracy, reaching 88.61%, with a relatively low per-epoch training time of  

127 seconds. As a result, a kernel size of 3 is selected for implementation in the PDCNN model. To optimize 

performance, different loss functions are evaluated, including binary cross-entropy, categorical cross-entropy, 

and mean squared error. The model attained its highest test accuracy of 89.65% when utilizing the categorical 

cross-entropy loss function. Consequently, this loss function is chosen for integration into the final 

model.Further experimentation involved comparing max-pooling and average pooling layers. It is found that 

the model achieved its peak performance with the max-pooling layer, resulting in an accuracy of 90.47%. 

Moreover, the optimization process included testing four distinct optimizers—SGD, Adam, RMSprop, and 
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Adamax—each with a learning rate of 0.001 and a batch size of 64. Remarkably, the highest test accuracy of 

92.89% is achieved by adam optimizer, surpassing all previous tuning efforts.  

After meticulous parameter tuning and selection, the final model showcased satisfactory 

performance. Subsequently, fine-tuning parameters are considered to refine the PDCNN model, and the 

performance metrics are presented in Table 6. Figure 8 illustrates the accuracy and loss curves for the 

PDCNN model, demonstrating a lack of overfitting or underfitting during training, see Figure 8(a) and Figure 

8(b). Both the training and validation curves smoothly converge, with minimal disparity between them. 

Furthermore, the loss curves steadily decrease from the initial to the final epoch, maintaining a small gap 

throughout. This stability in the convergence of accuracy and loss curves underscores the robustness and 

effectiveness of the developed PDCNN model in bone fracture detection.  

 

 

Table 5. Performance results of four case of abalation studies 
Ablation Study Configuration Parameter Epoch×Time Test Accuracy Finding 

Changing kernel size 1 2 100×127 s 87.34% Improved 

2 3 100×127 s 88.61% Improved 

3 4 100×152 s 86.51% Droped 

4 5 100×163 s 82.47% Droped 
Changing the loss function 1 Binary cross-entropy loss 100×124 s 87.19% Droped 

2 Categorical cross-entropy 100×124 s 89.65% Improved 
3 Mean squared error 100×124 s 84.27% Droped 

Changing pooling layer 1 Max 100×124 s 90.47% Improved 

2 Average 100×124 s 88.14% Droped 
Changing optimizer 1 SGD 100×124 s 88.31% Drop 

2 Adam 100×124 s 92.89% Highest 

3 RMSprop 100×124 s 91.56% Droped 
4 Adamax 100×124 s 90.47% Droped 

 

 
Table 6. Performance metrices for proposed PDCNN model 

Model Accuracy TPR FNR FPR TNR Precision F1 Score Error rate 

PDCNN 92.89 91.80 8.20 5.84 94.16 94.86 93.31 7.11 

 

 

  

(a) (b) 

 

Figure 8. The (a) accuracy graph and (b) loss graph for proposed PDCNN model 

 

 

3.3.  Comperative analysis and discussions 

In comparison with previous studies presented in Table 7, our study surpasses the performance 

achieved by earlier works in bone fracture recognition. Notably, our proposed PDCNN model outperforms all 

previously reported methods. This remarkable achievement underscores the effectiveness and advancement 

of our approach in accurately detecting bone fractures.To maintain methodological coherence, we 

incorporated the canny edge detection image preprocessing technique alongside augmented images. 

Additionally, we conducted rigorous validation of the proposed model through ablation studies. These efforts 

collectively contributed to significant improvements in accuracy ranging from 1.89% to 17.89%. Such 

substantial enhancements highlight the success of our study in pushing the boundaries of bone fracture 

detection capabilities. 
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Table 7. Comparision table of earlier work on bone fracture recognition 
Studies Dataset Preprocessing Technique Augmentation Ablation Study Model Accuracy Performance Gain 

[9] 44 Canny edge detection × × SNAKE 89% 3.89% 

[10] 40 Sobel edge detector × × Meta Classifier 85% 7.89% 

[11] 30 Sobel edge detector × × SVM 87.5% 5.39% 
[12] NM discrete wavelet transforms × × CNN 79% 13.89% 

[13] 300 NM × × WFP 84% 8.89% 

[15] 300 M3 filter × × SIFT + BPNN 90% 2.89% 
[16] 900 Canny edge detection and 

Conservative Filtering 

× × BPNN 91% 1.89% 

[17] 20 NM × × HTM 75% 17.89% 
[20] 270 Canny edge detection × × SVM NM N/A 

This Study 10,783 Canny edge detection ✓ ✓ PDCNN 92.89% N/A 

a. NM: Not mentioned 
b. N/A: Not application 

 

 

4. CONCLUSION 

This research marks a significant advancement in the field of medical image analysis by evaluating 

the effectiveness of various CNN architectures in detecting bone fractures. Our study highlights the crucial 

role of customized neural network designs specifically tailored to meet the complex requirements of medical 

imaging tasks. Among the models tested, the PDCNN stood out, demonstrating superior performance 

compared to MobileNetV2 and traditional CNNs. Through rigorous validation, including four ablation 

studies, PDCNN consistently achieved higher accuracy, precision, and F1-Score. This model’s innovative 

architectural enhancements were pivotal in addressing the intricate details of bone fracture detection, 

resulting in its exceptional ability to clearly differentiate between fractured and non-fractured bones. Pre-

processing techniques such as segmentation, edge detection, and feature extraction further enhanced the 

model’s diagnostic capabilities. The success of PDCNN suggests that it can significantly improve the 

accuracy and reliability of bone fracture diagnoses, which is a notable milestone in medical research. This 

model’s simplicity combined with its high accuracy promises substantial advancements in current diagnostic 

practices, potentially transforming the way bone fractures are identified from X-ray images. The practical 

implementation of PDCNN could streamline the diagnostic process, reducing reliance on manual 

identification and thereby saving time and resources in clinical settings. Moreover, the underperformance of 

traditional CNN and MobileNetV2 models, which exhibited underfitting issues, indicates that further 

research and refinement are necessary to optimize neural network architectures for medical applications. Our 

findings underscore the importance of developing and employing customized neural networks to enhance 

diagnostic accuracy. This research highlights the potential for these advancements to improve healthcare 

outcomes by enabling more precise and efficient diagnosis of bone fractures. Overall, this study not only 

contributes to a deeper understanding of CNN applications in medical imaging but also paves the way for 

future innovations that could revolutionize medical diagnostics. 
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