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 Android, the most widely used mobile operating system, is also the most 

vulnerable to malware due to its high popularity. This has significantly 

focused on Android malware detection in mobile security. While extensive 

research has been conducted using various methods, new malware’s 

emergence underscores this field’s dynamic nature and the need for 

continuous research. The motivation that drives malware developers to 

create Android malware constantly is the potential to access Android 

devices, thereby gaining access to sensitive user information. This study, 

which is a complex and in-depth exploration, aims to detect Android 

malware using a meta-classifier that combines the single-classifier light 

gradient boosting machine, support vector machine, and random forest. The 

process involves converting disassembled malware codes into grey images 

for global and local feature extraction. The classification accuracy is 97% at 

best on a malware dataset of 3,963 samples. The main contribution of this 

paper is to produce an Android APK malware detector model that works by 

combining multiple machine learning algorithms trained using the dataset 

resulting from local and global feature extraction algorithms. 

Keywords: 

APK Android visualization 

Global feature extraction 

Local feature extraction 

Malware 

Meta classifier 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Imas Sukaesih Sitanggang 

Department of Computer Science, Faculty of Mathematics and Natural Science, IPB University 

Wing 20 Level 5 Meranti Road, Dramaga District, Bogor 16680, Indonesia 

Email: imas.sitanggang@apps.ipb.ac.id 

 

 

1. INTRODUCTION 

Android is the most widely used mobile operating system today. Based on information from 

StatCounter Global Stats, until June 2024, Android became the mobile operating system with the largest 

market share in the world, which amounted to 72.15%, beating iOS at 27.19%. The open-source Android 

operating system and free license make it more popular. The high popularity of Android is proportional to the 

increased risk of virus and malware attacks. Furthermore, the technology for framework-based application 

development is advancing rapidly, offering a convenient way to create Android-based applications. Those 

who wish to take advantage of this convenience often reverse-engineer completed applications and add 

program logic to create new applications quickly. However, this convenience also presents a risk, as some 

individuals may upload malicious scripts that can exploit the data on Android handsets. Nowadays, users 

frequently download apps from any location, leading to issues. Installing apps and permitting them to do 

anything they ask without understanding their purpose is what leads to security issues on smartphones, such 

as script intrusion. It can perform a security-violating operation, such as starting a covert data transfer, 

allowing attackers to obtain private information from devices. At some point, attackers will take control of 

the smartphone. 

https://creativecommons.org/licenses/by-sa/4.0/
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Software that seeks to obstruct regular computerized system operations by obtaining private 

information gaining illegal access to computer systems, and mostly harassing users is known as malware, 

short for malicious software [1]. The exponential growth of malware forces computer security researchers to 

develop new methods for protecting networks and systems. Malware identification is essential because of its 

exponential growth and ability to inflict extensive damage on a wide surface area [2]. Researchers have 

created methods for detecting malware as a result of the growth of malware [3]. There are three malware 

detection approaches: static, dynamic, and hybrid. Static analysis examines the alleged code without 

launching the program [4]. For feature extraction, the source code must be disassembled by analyzing 

permission usage [5], mining the code structures [6], analyzing the used components [7], and monitoring the 

application programming interface (API) invoked [7], [8]. It is a gateway within the Android architecture to 

access sensitive services [9]. Unlike static analysis, dynamic analysis examines the application's attributes 

and scrutinizes the events that transpire during its execution [4], [10], [11].  

Harmful apps must be stripped of their intricate features and hidden structures to identify malware 

using new, effective detection techniques [12]. The advancement of the internet and technology will make 

the potential threat of Android APK malware even more significant, making it necessary to develop a 

machine learning-based malware detection system. The diverse anatomical structure of Android APK files 

makes the combination of local and global feature extraction techniques an opportunity to help produce 

accurate and fast models. Malware classification using machine learning (ML) is one of the technologies that 

artificial intelligence (AI) has made available for use in malware research. Data mining was first proposed in 

2001 to identify malware on Windows operating systems [13]. The research employed RIPPER, naïve Bayes, 

and multi-classifier system as a machine learning method. The multi-naïve Bayes approach yields the best 

accuracy of 97.76% in testing. 

In place of static and dynamic approaches, researchers have studied malware using visualization-

based techniques. Large-scale malware detection can be achieved more effectively by visual analysis, which 

uses the structure of malware images rather than static or dynamic approaches. Computer malware 

classification method by visualizing binary malware in grayscale images [14]. This approach differs from 

malware experts' widespread static and dynamic detection approaches. These techniques are being introduced 

to provide a better alternative to the drawbacks of the static and dynamic techniques. Using the k-nearest 

neighbor (KNN) technique, 9458 samples were employed in his research, yielding an accuracy rate of 98%.  

The executable file in malware was converted into a grayscale image for feature extraction using 

wavelet transform and Gabor filter [15]. The machine learning algorithm used is support vector machine 

(SVM), which has an accuracy of 95%. A lightweight malware detection method that makes it possible to 

detect malware from smartphones [7]. In their research, each feature is taken from the components of the 

𝐴𝑛𝑑𝑟𝑜𝑖𝑑𝑀𝑎𝑛𝑖𝑓𝑒𝑠𝑡. 𝑥𝑚𝑙 file and the 𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 𝑑𝑒𝑥 file is collected into a space vector for an SVM approach 

with 94% accuracy. Android network flows and API calls were tested for malware detection with Android 

permissions and intent features [16]. In addition to providing accuracy results of 95.3% for static analysis and 

83.3% for dynamic analysis on malware detection on the Android system, the study also offered the publicly 

accessible CICAndMal2017 dataset while performing dynamic analysis on actual smartphones. Regarding 

malware detection using APK image visualization, the random forest (RF) algorithm provides the best 

performance with an accuracy of 92.81% [17]. A malware detection framework based on a stack of ensemble 

learning algorithms called MFDroid [18]. The study uses seven feature extraction algorithms based on 

Permission, API Calls, and Opcode datasets and then produces an F1 Score of 96% using a meta-classifier. 

A machine-learning approach based on feature extraction and grayscale picture categorization is 

used to identify Android APK malware [19]. This study turns most APK files—including multiDex, 

resources, certificates, and manifest files—into grayscale pictures to detect malware. Subsequently, local 

malware picture features are extracted using local feature extraction techniques. The accuracy of the model 

yields outcomes that are 96.86%. Conventional and ensemble machine learning algorithms are compared to 

determine the accuracy of the matrices comparison [20]. The Drebin dataset, which had 215 statically 

evaluated features, was employed in his research. The input data shows the attribute's availability in the 

dataset and is accessible in 0 and 1 formats. According to the investigation, the ensemble method performs 

better at predicting malware than conventional machine learning methods. Random forest yielded 99.1% 

accuracy, whereas light gradient boosting machine (LGBM) produced 99.5%. 

Numerous research works on Android malware detection APKs have been published in academic 

journals. Earlier studies employed different APK components as datasets and then analyzed them statically or 

dynamically using machine-learning techniques. The primary motivation of this study is to know the impact of 

combining different machine-learning techniques on the outcomes of local and global extraction in the 

visualization of Android APKs. This study detects malware in Android APK files using a meta-classifier 

technique combining local and global dataset features, integrating the random forest, SVM, and LGBM 

methods. The remaining sections of the paper are structured as follows. The methodology used is explained in 

section 2. The analysis results and discussions are presented in section 3, and the conclusion in section 4. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 1834-1849 

1836 

2. THE PROPOSED METHOD 

The main objectives of this study are to assess and analyze raw data APK as local and global features 

to improve the detection accuracy and performance of meta-classifiers. The study was conducted in three 

primary phases, each meticulously designed and executed: data preprocessing, machine learning, and model 

evaluation. Two methods for extracting features are available during the preprocessing stage: local and global. 

The learning process employs a single-classifier or meta-classifier at the machine-learning step. In order to 

construct a meta-classifier model, the single-classifier model's detection results will serve as a data source. 

Figure 1 is a big picture of creating a system to identify whether Android APK files are malware or benign. 

Model performance measurements are measured based on four primary criteria: accuracy, F1 score, recall, 

and precision. The time comparison procedure (measured in seconds) and the amount of random-access 

memory (RAM) used during the testing process are two additional complementing criteria in addition to the 

four primary measurement criteria for the model performance analysis. 

 

 

 
 

Figure 1. Steps of creating malware detection system 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Identification of Android APK malware through local and global feature … (Yoga Herawan) 

1837 

3. METHOD 

3.1.  Research scenario 

A series of experiments need to be carried out to achieve the main objectives of this research. In 

addition, it can help obtain a model with the most optimal performance. Table 1 describes the experimental 

settings that were conducted in this research. 

 

 

Table 1. Experimental settings 
Scenario Explanation 

First experiment Default experiment utilizing as-is datasets 

Second experiment The First experiment using the balanced dataset 

Third experiment Second experiment with grid search hyperparameter configuration applied to the base-classifier algorithm 
Fourth experiment Second experiment with random search hyperparameter configuration applied to the base-classifier 

algorithm 

 

 

3.2.  Data preprocessing 

This research uses open datasets that can be freely downloaded [16]. The dataset is downloaded 

using the following link: http://205.174.165.80/CICDataset/CICInvesAndMal2019/Dataset/APKs/ and 

http://205.174.165.80/CICDataset/MalDroid-2020/Dataset/APKs/. The 15.9 GB dataset used in this research 

includes 3,963 APKs classified as benign and malicious in ZIP Format. This analysis only handled the 

following categories of malware: adware, ransomware, SMS malware, and scareware. The collected data is 

then preprocessed to produce the . 𝑑𝑒𝑥 file type. Since all Java executable code is stored in files with the 

extension “. 𝑑𝑒𝑥,” the DEX file shares many characteristics with an Android application [21]. Figure 2 shows 

the procedure for creating grayscale images from zip data sources.  

 

 

 
 

Figure 2. Procedure for creating grayscale images from zip data sources 

 

 

The dataset distribution is split into training, testing, and validation, with the percentages being 72%, 

20%, and 8%, respectively. The base-classifier model is constructed using the training dataset. The testing 

dataset, which accounts for 20% of the distribution, is crucial in training the meta-classifier model. The  

base-classifier model determines this model's accuracy. The validation dataset is then used to evaluate the 

meta-classifier model and assess its accuracy. 

 

3.3.  APK visualization 

The header section, ids sections, 𝑐𝑙𝑎𝑠𝑠_𝑑𝑒𝑓𝑠 sections, and data sections are among the sections that 

make up a DEX file. The header section contains top-level data, such as the subsequent sections' file size, 

signature, offset, and size. The system must gather the file size to determine the image's width before 

converting the data into images, using the references in Table 2. The data section is a crucial part of 

𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 𝑑𝑒𝑥 contains class data and execution code, representing the application's behavior, whether it is 

classified as malware or benign application [22]. The desired information is kept in the 𝑑𝑒𝑥_ℎ𝑒𝑎𝑑𝑒𝑟 of the 

𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 𝑑𝑒𝑥 file may be retrieved by parsing the 𝑑𝑒𝑥_ℎ𝑒𝑎𝑑𝑒𝑟 to obtain the 𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒 and 𝑑𝑎𝑡𝑎_𝑜𝑓𝑓𝑠𝑒𝑡. 
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Table 2. Image width recommendation [14] 
File size range Image’s Width 

< 10 kB 32 
10 kB – 30 kB 64 

30 kB – 60 kB 128 

60 kB – 100 kB 256 
100 kB – 200 kB 384 

200 kB – 500 kB 512 

500 kB – 1000 kB 768 
>1000 kB 1024 

 

 

The data size and offsets must be determined before section data can be extracted from the 

𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 𝑑𝑒𝑥 file, are located at specific offsets. This information is obtained from the 𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 𝑑𝑒𝑥 file 

header. The header size of the 𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 𝑑𝑒𝑥 file is 112 bytes, and the data section's size and the data section's 

offset value are respectively located at offsets 104 and 108, as many as 4 bytes. Figure 3 provides a visual 

guide for digitally visualizing a raw APK file. 

 

 

 
 

Figure 1. Procedures for turning an APK file into a digital picture 

 

 

3.4.  Extraction feature 

Feature extraction is applied to the . 𝑑𝑒𝑥 file converted into a digital image to get the required 

information. This research uses two feature extraction methods: local and global. Local features characterize 

a narrow portion of the image, whereas global features describe the entire picture [23]. Meanwhile, the local 

feature method represents an image based only on a few prominent areas, which are constantly unaffected by 

viewpoint or changes in illusion [24]. 

 

3.4.1. Global feature extraction 

The global features provide an overall description of the image to represent the complete object 

universally [25]. The GIST algorithm was used in this research to extract the global features of an APK 

visualization. A deficient dimensional representation of a given image called the spatial envelope is the 

foundation for the GIST image descriptor created by Torralba and Oliva [26]. The primary spatial structure 

of a scene can be represented using a series of perceptual dimensions, namely naturalness, openness, 

roughness, expansion, and ruggedness. The efficient estimation of these dimensions was demonstrated using 

coarsely localized and spectral information. This led to the creation of a multidimensional space for scenes. 

However, it is essential to note that while the GIST characteristics offered numerous benefits, there were also 

certain drawbacks, such as information loss in sparse grid computing [27]. The amplitudes of the output of K 

Gabor filters at various scales (S) and orientations (O) are combined to form the global descriptor, a 

significant aspect in the context of malware images. Each facial picture in the filter output is reduced to a size 

N × N block, yielding a vector with S × O × N × N dimensions to reduce the feature vector's size [28].  

Figure 4 illustrates the operation of GIST on malware images. 
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Figure 4. GIST feature extraction in malware image 

 

 

3.4.2. Local feature extraction 

The KAZE algorithm was used in this research to carry out local feature extraction. The image is 

described as batches of an object by the local features. These features are based on identifying numerous 

unique focal points within the picture, each described with a suitable and reliable descriptor [25]. In 2012, the 

non-linear scale-space KAZE algorithm was presented. The descriptor in KAZE is based on the local 

difference binary (LDB) descriptor, whereas the detector is based on the determinant of a Hessian matrix 

[29]. While lowering noise in the image, non-linear diffusion filtering preserves the borders of the regions at 

various sizes [30]. The KAZE algorithm uses the parameters in Table 3 to determine the descriptor values 

and crucial points. 

 

 

Table 3. KAZE parameters used in the research 
Parameter Explanation Values 

Extended To allow extended descriptor extraction (128-byte) False 

Upright To allow the use of perpendicular (non-rotation-invariant) descriptors. False 
Threshold The receiving point threshold for the detector response 0.001 

nOctaves Maximum octave evolution of the image 4 

nOctaveLayers Default number of sublevels per scale level 4 
Diffusivity Types of diffusivities. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or 

DIFF_CHARBONNIER 

DIFF_PM_G2 

 

 

An image's visual information can be found in the retrieved local features. A quantization approach 

such as k-means compresses the feature space to clusters for a compact picture representation. “Visual 

words” refer to the cluster centers [31]. The KAZE detection process produces a vector that contains a variety 

of data. However, the classifier algorithm only accepts n data and n-feature vectors as input. This means that 

the output from KAZE is not directly compatible with the classifier algorithm. The urgency of this problem 

necessitates a solution, which is to apply the bag of visual words (BOVW) to create a single feature vector 

from the many descriptors of local features [32]. 

Figure 5 explains the KAZE feature extraction process. BOVW employs a clustering algorithm to 

classify the vectors produced by the descriptor into the most suitable n-clusters. The algorithm predicts the 

classes of each descriptor data, and an essential step in the process is the formation of a histogram. This 

histogram is used to calculate the frequency of the class results indicated by the clustering algorithm. The 

final result is a normalized feature vector (local features) after applying BOVW, which can be used as a 

feature dataset for the classifier. The K-means clustering algorithm, a widely used method in unsupervised 

learning, is the algorithm of choice in this research.  

 

3.5.  Visualization-based machine learning model 

In building a model, the base-classifier algorithm acts as the initial classifier. Next, the meta-

classifier technique, a crucial step in the process, is used to construct the final predictions by utilizing the 

prediction results from the base-classifier method. Combining several classification models is then used as a 

new feature [33]. The results of the base classifier are combined and used to train the meta-classifier tasked 

with providing final prediction results [34]. SVM, RF, and LGBM were among the supervised learning 

algorithms employed in this research as base-classifiers. Moreover, the logistic regression technique, which 

serves as a meta-classifier, is employed in this study model. 
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Figure 5. The KAZE features extraction process 

 

 

3.5.1. Base-classifier 

The dataset is processed using supervised learning techniques during the training and testing stages 

of creating the base-classifier model, which will produce each prediction model. The initial step in building 

the model is to run the training dataset for every algorithm to create a base-classifier model, a foundational 

model that will be used to make predictions. The third and fourth experiments tested hyperparameter tuning 

on the base-classifier model. The selection of appropriate hyperparameters can improve the accuracy and 

performance of the algorithm used [35]. Hyperparameter tuning determines the ideal value for the classifier 

hyperparameters to enhance the model's performance. Hyperparameters lower the total number of iterations, 

which can help to improve the mode's efficiency [36]. 

 

3.5.2. Meta-classifier 

The performance of each base classifier produces varying levels of accuracy. Classifiers are 

integrated into one to increase the accuracy of the single classifier and improve its predicted performance 

[18]. Meta-classifiers combine decisions from several combination methods [37]. Logistic regression 

technique is utilized in the construction of the meta-classifier model. The meta-classifier of the logistic 

regression algorithm and a combination of base-classifiers have achieved the highest accuracy [38]. Figure 6 

explains how the meta-classifier was implemented in this research to increase the accuracy of the base-

classifier model. 

 

 

 
 

Figure 6. Flow diagram for the meta-classifier framework 
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4. RESULTS AND DISCUSSION 

This section summarizes and discusses the main findings of the work. With a Ryzen 7 5800X CPU 

and 64 GB of RAM, IPB's computing server environment is used to run an experiment. This technical 

foundation, combined with the Python programming language and the main library packages for data science 

and mathematical computation, including Joblib, Matplotlib, NumPy, Scikit_learn, Mlxtend, LightGBM, 

OpenCV-python, and Imbalanced-learn, allowed us to pre-process and visualize the raw Android APK, 

extracting local and global features. The machine-learning process led us to create the base-classifier and the 

meta-classifier models. 

 

4.1.  Image transformation 

A hexadecimal reading on the trojan APK known as 𝑆𝑀𝑆_𝑁𝑎𝑛𝑑𝑟𝑜𝑏𝑜𝑥 revealed that the 𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒 

is 0061E100 bytes (reverse endian). The decimal representation of this value is 6414592. On the other hand, 

𝑑𝑎𝑡𝑎_𝑜𝑓𝑓𝑠𝑒𝑡 is 1359400 in decimal notation or 0014BE28 in hexadecimal. Data were taken from 6414592's 

offset 1359400 and processed by the system to create an 8-bit grayscale picture. The process of creating 8-bit 

grayscale images is as follows: a pixel is black if the data value per byte is 0×0000000 (0), white if the value 

is 0×11111111 (255), and grey if the value is between 0 and 255. Figure 7 shows the outcome of image 

transformation of adware family for 𝑎𝑑𝑤𝑎𝑟𝑒_𝑦𝑜𝑢𝑚𝑖 in Figure 7(a) and 𝑎𝑑𝑤𝑎𝑟𝑒_𝑠ℎ𝑢𝑎𝑛𝑒𝑡 in Figure 7(b). 

Figure 8 shows the outcome of image transformation of SMS family for 𝑆𝑀𝑆_𝑓𝑎𝑘𝑒𝑛𝑜𝑡𝑖𝑓𝑦 in Figure 8(a) and 

𝑆𝑀𝑆_𝑓𝑎𝑘𝑒𝑖𝑛𝑠𝑡 in Figure 8(b). 

 

 

  
(a) (b) 

 

Figure 7. Image transformation results for malware (a) 𝑎𝑑𝑤𝑎𝑟𝑒_𝑦𝑜𝑢𝑚𝑖 and (b) 𝑎𝑑𝑤𝑎𝑟𝑒_𝑠ℎ𝑢𝑎𝑛𝑒𝑡 

 

 

  
(a) (b) 

 

Figure 8. Image transformation results for malware (a) 𝑆𝑀𝑆_𝐹𝑎𝑘𝑒𝑛𝑜𝑡𝑖𝑓𝑦 and (b) 𝑆𝑀𝑆_𝐹𝑎𝑘𝑒𝐼𝑛𝑠𝑡 
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4.2.  Global feature extraction 

The GIST feature extraction technique extracts global features from a single grayscale image. This 

research processes up to 8 orientations using a four-scale Gabor filter, divides each feature map into 16 regions 

using a 4 × 4 grid, and then takes the average of each region's feature values. Concatenating the 16 averaged 

values of all 32 feature maps yields 4 × 8 × 4 × 4 = 512 GIST descriptors after determining each region's 

average feature values. Decimal numbers are kept in text files for every feature, as shown in Figure 9. 

 

 

 
 

Figure 9. Grayscale image features processed against the GIST algorithm 

 

 

4.3.  Local feature extraction 

The KAZE algorithm is instrumental in identifying the crucial points of the processed grayscale 

image. While not directly usable as feature selection outputs for an image, these identified critical spots 

produce the feature extraction value. This value is generated by constructing a codebook using the descriptor 

value to describe the identified critical point. The features created result from the bag of visual words 

(BOVW) construction procedure using the size ten dictionary (number of classes*5) chosen for this research.  

Creating a codebook is a comprehensive process involving analyzing the grayscale image to identify 

any potential descriptors. As we find each characterizer, the number of records for that descriptor increases in 

the codebook. The culmination of this process is a histogram value that succinctly describes the unique 

characteristics of the grayscale image. Figure 10 visually represents the KAZE feature extraction, a process 

we execute using the powerful Python Dataframe package. 

 

 

 
 

Figure 10. Grayscale image features processed against the KAZE algorithm 

 

 

4.4.  Hyperparameter tuning 

Random search (RS) and grid search (GS) are hyperparameter search methodologies used in this 

research. The fourth experiment employed the random search technique, whereas the third used the grid 

search technique. In both cases, the model was trained on the training set, a crucial step that determines the 

model's performance, using optimal hyperparameters for each model. Optimal parameters identified using 

Grid Search and Random Search are presented in Table 4. 

 

4.5.  Machine-learning model 

Four experimental schemes have been carried out using features from grayscale image datasets. This 

research is generally divided into three sections applied to four experimental schemes. The first section used 

local feature extraction (KAZE) results to train models for all experiments. Global feature extraction (GIST) 

results were used in the second section to train the model for all experiments. The third section combines the 
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classification results of three machine-learning algorithms, including building models using local, global, or a 

combination of features. The last section is called the META model. The results of the model performance 

comparison between KAZE and GIST algorithm features are shown in Table 4, demonstrating our 

confidence in our research process and results. 

 

 

Table 4. The best parameters using grid search (GS) and random search (RS) techniques 
Metode Features extraction Parameter LGBM RF SVM 

GS GIST Boosting_type GOSS - - 
Learning_rate 0.2 - - 

Max_depth 5 - - 

Random_state 41 - - 
Deterministic True - - 

Force_col_wise True - - 

Max_depth - 6 - 
Max_features - None - 

Max_lead_nodes - 9 - 

N_estimators - 25 - 
C - - 100 

Gamma - - 0.1 

kernel - - Linear 
KAZE Boosting_type GBDT - - 

Learning_rate 0.1 - - 
Max_depth -10 - - 

Random_state 40 - - 

Deterministic True - - 
Force_col_wise True - - 

Max_depth - 6 - 

Max_features - None - 
Max_lead_nodes - 9 - 

N_estimators - 50 - 

C - - 100 
Gamma - - 0.0001 

kernel - - RBF 

RS GIST Boosting_type GBDT - - 
Learning_rate 0.1 - - 

Max_depth -5 - - 

Random_state 42 - - 
Deterministic True - - 

Force_col_wise True - - 

Max_depth - 9 - 
Max_features - SQRT - 

Max_lead_nodes - 9 - 

N_estimators - 150 - 
C - - 100 

Gamma - - 0.1 

kernel - - Linear 
KAZE Boosting_type GBDT - - 

Learning_rate 0.05 - - 

Max_depth -5 - - 
Random_state 41 - - 

Deterministic True - - 

Force_col_wise True - - 

Max_depth - 9 - 

Max_features - None - 

Max_lead_nodes - 9 - 
N_estimators - 100 - 

C - - 100 

Gamma - - 0.0001 
kernel - - RBF 

 

 

4.5.1. Model performance based on local feature extraction 

This section uses a dataset from local feature extraction (KAZE) for building models. Based on data 

from Table 5, the best model performance based on KAZE feature data was obtained in the first experiment 

for the LGBM classifier. The LGBM model demonstrated exceptional performance with accuracy, F1 score, 

recall, and precision values of 95%. Figure 11 compares the execution time of the base classifier algorithm 

on KAZE feature data. Based on this data, the LGBM model requires the fastest execution time compared to 

other base-classifier algorithms. In addition, LGBM performed stablely in all experiments. 
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A comparison of RAM resource usage needed by each base-classifier technique for processing 

KAZE feature data is shown in Figure 12. RF demands the most RAM when processing local feature data 

from KAZE feature extraction. The support vector machine model uses the least amount of RAM compared 

to other models. 

 

 

Table 5. Model performance comparison using KAZE and GIST feature extraction 
 Measurement Aspect FE KAZE FE GIST 

SVM RF LGBM SVM RF LGBM 

1 Accuracy (%) 89 94 95 71 94 96 
Recall (%) 89 94 95 71 94 96 

Precision 88 94 95 50 94 96 

F1 Score (%) 88 94 95 58 94 96 

Time (second) 0.008 0.006 0.002 0.066 0.006 0.002 
RAM Usage (MB) 201.7 218.5 204.9 250.1 246.1 310.8 

2 Accuracy (%) 88 94 93 82 93 93 

Recall (%) 88 94 93 82 93 93 
Precision 88 94 94 82 94 94 

F1 Score (%) 88 94 93 82 93 93 

Time (second) 0.017 0.007 0.002 0.246 0.007 0.002 

RAM Usage (MB) 208.2 228.4 214.7 257.6 266.8 317.9 
3 Accuracy (%) 93 91 93 92 90 93 

Recall (%) 93 91 93 92 90 93 

Precision 93 91 94 92 90 94 

F1 Score (%) 93 91 93 92 90 93 

Time (second) 0.053 0.005 0.002 0.062 0.003 0.002 
RAM Usage (MB) 187.5 210.9 200.7 241.6 251.4 304.4 

4 Accuracy (%) 94 90 92 91 88 93 

Recall (%) 94 90 92 91 88 93 
Precision 94 90 92 91 89 93 

F1 Score (%) 94 90 92 91 88 93 

Time (second) 0.054 0.009 0.002 0.065 0.014 0.002 

RAM Usage (MB) 187.6 211.3 201.2 241.7 251.2 303.7 

 

 

 
 

Figure 11. Comparison of execution time (s) for KAZE feature data 

 

 

 
 

Figure 12. RAM resource comparison using KAZE feature data 
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4.5.2. Model performance based on global feature extraction 

This section employs a global feature extraction (GIST) dataset for model building. The analysis, as 

shown in Table 5, was thorough, with the LGBM model demonstrating the best performance in the first trial 

across all main performance categories, including Accuracy, F1 Score, Recall, and Precision, achieving a 

96% accuracy. Figure 13 provides a comprehensive comparison of the execution time of the base classifier 

algorithm in processing GIST feature data, further reinforcing the thoroughness of the analysis. The LGBM 

model's efficiency is highlighted, as it requires the fastest execution time compared to other base-classifier 

algorithms. In contrast, while effective, SVM requires the most extensive execution time for processing data 

from global feature extraction. 

Figure 14 compares the RAM resource consumption by each base-classifier algorithm in processing 

global feature extraction data. The LGBM model requires the largest RAM resource allocation compared to 

other base-classifier models when processing GIST features. The highest peak RAM consumption was 

observed during the LGBM model's global data processing in the second experiment, which involved an 

imbalanced dataset handling technique. This significant increase in RAM consumption due to the data 

treatment technique underscores the influence of data on resource usage. Despite this, the performance of all 

base-classifier models remained stable throughout the experiments, indicating that the treatment of 

algorithms and data does not significantly influence RAM resource consumption. 

 

 

 
 

Figure 13. Comparison of execution time (s) for GIST feature data 

 

 

 
 

Figure 14. GIST feature data comparison of RAM resources 

 

 

4.5.3. Meta classifier performance 

The META model, which operates on either local or global data features or a combination of both, 

has performance calculation values explained in Table 6. In the fourth experiment, the LGBM model 

showcased its versatility by obtaining a score of 97% in all aspects of the main performance categories, 

namely accuracy, F1 score, recall, and precision. This adaptability is a crucial feature of the LGBM model, 

especially in processing combined feature data, combining local and global feature extraction results. 

The execution times of the META algorithm on KAZE, GIST, and combined feature data are 

contrasted in Figure 15. This data indicates that in comparison to global and mixed feature extraction, local 

extraction (KAZE) contributes to the fastest META model execution time. A comparison of RAM resource 

consumption required by the META algorithm to process KAZE, GIST, and combined feature data is shown 

in Figure 16. The most minor RAM resources are required when the META model processes data from local 

feature extraction (KAZE). More considerable RAM resources are needed for the META model to process 

global feature data calculated by the GIST algorithm and combined features. 
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Table 6. Comparison of the performance of the META model on FE KAZE, GIST, and combination of both 
Experiment Measurement aspect META 

KAZE GIST COMBINATION 

1 Accuracy (%) 93 95 96 

Recall (%) 93 95 96 

Precision 93 95 96 
F1 Score (%) 93 95 96 

Time (second) 0.545 0.611 0.606 

RAM Usage (MB) 176.4 284.2 287.9 
2 Accuracy (%) 93 94 95 

Recall (%) 93 94 95 

Precision 94 94 95 
F1 Score (%) 93 94 95 

Time (second) 0.569 0.667 0.692 

RAM Usage (MB) 188.1 303.9 301.9 
3 Accuracy (%) 93 94 96 

Recall (%) 93 94 96 

Precision 94 94 96 
F1 Score (%) 93 94 96 

Time (second) 0.542 0.676 0.661 

RAM Usage (MB) 171.5 288.1 294.5 
4 Accuracy (%) 95 94 97 

Recall (%) 95 94 97 

Precision 95 94 97 
F1 Score (%) 95 94 97 

Time (second) 0.545 0.614 0.598 

RAM Usage (MB) 171.4 286.7 292.5 

 

 

 
 

Figure 15. Comparison of META algorithms' execution time (s) 

 

 

 
 

Figure 16. RAM resource comparison between META algorithms 

 

 

4.6.  Discussion 

The Android APK, a crucial component in deploying and installing applications, is an archive file 

housing various data and resource files. These files contain critical information that can threaten the Android 

operating system. The diverse structures of APK files are a crucial focus in malware analysis. Understanding 

the significance of the Android APK structure is vital in comprehending the potential threats to the Android 

system. Current Android malware analysis approaches are categorized into static, dynamic, and hybrid, each 

with unique benefits and challenges. As a subset of artificial intelligence, various machine learning models 

can be employed to add intelligence to the implemented model. However, the literature is replete with 

machine learning-based solutions for Android malware detection. 
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The framework approach used in this research combines machine learning to extract local and global 

features on the APK that has been visualized. The process is that the 𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 𝑑𝑒𝑥 file in the Android APK is 

extracted for image transformation. The choice of . 𝑑𝑒𝑥 file is because the file contains program logic 

information, whereas most malware is not created from scratch but only changes the program logic slightly. 

This background underlies this research: by extracting local and global features in APK files, machine 

learning algorithms can efficiently and reliably recognize other malware variants. Apart from applying a 

single machine-learning model, this research combines several models to increase model accuracy. 

The system design is meticulously divided into the preprocessing stage, machine learning model 

creation, and model evaluation. The first stage, data preprocessing, is a comprehensive process that converts a 

collection of APKs stored in a zip file into a pure APK file. This pure APK file is then used to extract the 

𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 𝑑𝑒𝑥, which is transformed into a digital image. The APK file, now a digital image, is extracted for its 

local and global features. The feature extraction results are divided into training, testing, and validation data to 

create machine learning models. The second stage involves creating a machine-learning model. In this research, 

a combination of several base-classifier algorithms is used, with parameters optimized using hyperparameter 

tuning techniques. The final result is a meta-classifier model that can be evaluated and its accuracy measured. 

The third stage is the model evaluation process, which thoroughly assesses the resulting machine learning 

model, including comparing accuracy, F1 score, RAM usage, and algorithm processing time.  

Table 5 compares the performance of the base-classifier model on local and global features. The 

base classifier algorithms used are SVM, RF, and LGBM. The result is that the LGBM algorithm has the 

highest accuracy in local feature processing at 95% and global feature processing with an accuracy value of 

96%. LGBM has the highest accuracy value in the first experiment, the default experiment, without any 

hyperparameter optimization or handling of an imbalanced dataset. Table 5 compares the performance of the 

meta-classifier model on local and global feature datasets. The meta-classifier algorithm used is logistic 

regression, which combines the prediction results from the base-classifier algorithm. The result is that the 

combination of local and global feature extraction significantly improves the performance of the meta-

classifier model by 2% to 3%. This study obtained the highest meta-classifier accuracy in the fourth 

experiment, 97%. The fourth experiment used optimized parameters and a combined local and global dataset. 

Based on the detailed explanation above, the objectives of this research have been successfully 

achieved. The combination of local and global features has significantly increased the model's accuracy, a 

key milestone in this study. Furthermore, the combination of several base-classifiers has been proven to 

enhance the accuracy of the base-classifier model, marking another successful outcome of this research. 

 

 

5. CONCLUSION 

A visualization-based model that recognizes an Android APK as benign or malware has been 

implemented. The model works by converting the 𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 𝑑𝑒𝑥 component into a grayscale image. Local and 

global feature extraction is implemented on the grayscale image, combined with the machine-learning 

algorithms: support vector machine, random forest, and LightGBM. Experimental results show that the 

proposed model has the best accuracy in the fourth experiment (META combination), which is 97% and 

requires 0.598 seconds of computation time. The main contribution of this paper is to produce an Android 

APK malware detector model that works by combining a combination of machine learning algorithms trained 

using the dataset resulting from the combination of local and global feature extraction algorithms. The study's 

conclusion is highly instructive and valuable for researchers in the various fields of machine learning. Several 

tasks, including malware identification and supervised classification based on dataset visualization, can be 

directly tackled using the developed technique. 
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