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 Installing rooftop solar photovoltaic (PV) with an on-grid system benefits 

consumers because it can reduce imports of electrical energy from the grid. 

This study aims to model the estimation of energy imports generated from 

on-grid rooftop solar PV systems. This estimation model was carried out in 

20 provincial capitals in Indonesia. The parameters used are weather 

conditions, orientation angle, and energy generated from the on-grid rooftop 

solar PV system. The value of imported energy is divided into three 
combinations based on the azimuth angle direction, which describes the type 

and shape of the roof of the building (one-direction, two-directions, and 

three-directions). Modeling was done using machine learning with neural 

network (NN), linear regression, and support vector machine. A comparison 
of the machine learning algorithm results is NN produces the smallest root 

mean square error (RMSE) value of the three. Model enhancement uses a 

grid search cross-validation (GSCV) to become the GSCV-NN model. The 

RMSE results were enhanced from 53.184 to 44.389 in the one-direction 
combination, 145.562 to 141.286 in the two-direction combination, and 

81.442 to 76.313 in the three-direction combination. The imported energy 

estimation model on the on-grid rooftop solar PV system with GSCV-NN 

produces a more optimal and accurate model. 
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1. INTRODUCTION  

The increasing adoption of on-grid rooftop solar photovoltaic (PV) technology requires 

understanding energy imports in planning renewable energy infrastructure that can meet future growth and 

sustainability demands. Solar PV production produced from residential areas and commercial buildings can 

meet peak load needs to minimize imports from the grid [1]. Solar PV installed with various types of roofs 

can reduce electricity imports by between 4 and 7% and limit peak electricity export to 125% [2]. The 

application of rooftop solar PV combined with combined heat and power generation can reduce imports of 

electrical energy and increase the use of electric vehicles [3]. Various system modes, such as batteries as 

energy storage from solar PV when energy production is at its peak, can reduce electrical power imports and 

export excess to the distribution grid [4], [5]. Studies conducted [6] show that Turkey heavily depends on 

energy imports, with increased rooftop solar PV installations lowering power imports and saving 90,298 kWh 

from a system that supplies 13.2% of annual electrical energy consumption in buildings. 

https://creativecommons.org/licenses/by-sa/4.0/
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Estimating imported energy in on-grid rooftop solar PV systems is highly dependent on solar 

irradiation, weather conditions, geographical location, tilt and azimuth angles, and building type. The size of 

energy delivery from buildings connected to rooftop solar PV with the grid is an essential consideration in 

determining renewable energy generation capacity [7]. Solar PV penetration in cities can reduce pollution 

and carbon emissions used as an energy source for vehicles and reduce dependence on the grid from 0.809 to 

[8]. On-grid rooftop solar PV also has advantages in energy storage if storage is switched to the grid with 

hourly net measurements with an increase of 3 to 5 percentage points [9]. Solar PV in buildings can be 

integrated with control and monitoring systems through internet of things (IoT) for energy supply and 

consumption. It is to monitor internal needs and external conditions of energy supply and demand needs from 

the grid [10].  

Therefore, a deep understanding of energy import estimation models in on-grid rooftop solar PV 

systems is essential for more efficient and environmentally friendly sustainable energy planning. Deep 

learning solar PV installation estimation modeling that optimizes the training process using a non-dominant 

sorting genetic algorithm (NSGA) and customized dataset with functional data analysis (FDA) produces 

estimates with errors of 6% and 18% in synthesis data and 6% and 12% in actual data [11]. The multi 

strategy gradient-based algorithm (MAGBO) to solve the problem of multimodal and non-linear 

characteristics combined with a modified gradient search rule (MGSR) and novel refresh operator (NRO) 

results in high precision and reliability [12]. The opposite-based exponential distribution optimizer (OBEDO) 

algorithm uses the estimation of PV systems affecting current and energy. The algorithm performs better than 

others to identify solar PV parameters to improve performance [13]. ISSAEDO combines a sparrow search 

algorithm and exponential distribution optimization (EDO) to produce effectiveness and speed in estimating 

PV models such as single-diode and double-diode models [14]. Rat swarm optimizer algorithm to solve 

complex mathematical model problems and non-linear problems. The algorithm compared to particle swarm 

optimization, ant lion optimizer, salp swarm algorithm, Harris Hawks optimization (HHO), and grasshopper 

optimization has resulted in fast and accurate PV cell estimation [15]. 

However, it is still difficult to find research that discusses estimating imported energy on-grid 

rooftop solar PV. Previous studies, such as those on different weather condition parameters, can affect the 

estimation results of solar PV systems with multi-criteria decisions combined with empirical formulas [16]. 

The estimation method to determine the potential area of rooftop solar PV can be installed using object-based 

image classification and digital surface models with geographical limitations [17]. Integrated 3D modeling 

for assessing solar potential on building roofs using light detection and ranging (LiDAR) can be used to 

estimate rooftop solar PV installations [18]. Turin combined the geographic information system (GIS) system 

with energy generation and consumption estimation models to produce energy power profiles [19]. The 

Werner deconvolution method, which improves the detection of geological structures from magnetic field 

data, has successfully determined the estimation of the depth position of geological objects [20]. In the city of 

Sardinia, the algorithm of calculating the shadow of the roof of the building and solar radiation in real time 

has resulted in a potential rooftop solar PV of 22 TWh [21]. Analyze the accuracy of the PV model to obtain 

optimal performance results of the maximum power point by reconstructing the characteristic curves on 

different PV panels [22]. 

Exploring machine learning algorithms more profoundly and the attributes' power can improve the 

accuracy of imported energy estimation models. The modeling energy consumption and differences between 

AH.264/AVC and VP8 encoders using linear regression in machine learning [23]. Applying machine 

learning with cross-group learning can make good prediction models between single-atom copper-based 

alloys with different alloying elements [24]. Support vector machine (SVM) and naïve Bayes algorithms for 

image processing, then continued using PVWatt, PVGIS, and ArcGIS, have generated solar PV potential of 

21.1, 24.9, and 22.9 GWh/year [25]. Models of neural networks (NN), back propagation neural networks 

(BPNN), and convolution neural networks (CNN) are used to estimate solar radiation in areas with limited 

data. Limited meteorological and radiation data are then simulated with energy and diesel consumption so 

that this method can solve problems in areas with low radiation data [26]. Estimated PV production per hour 

using feedforward neural network (FFNN) using numerical weather data such as ambient temperature, relative 

humidity, and wind speed. The model resulted in an root mean square error (RMSE) of 6.4%, resulting in 

savings and increased self-consumed energy [27]. By comparing three random forest (RF) algorithms, gradient 

boost regression tree (GBRT) and AdaBoost were used for annual roof radiation estimation. The results of this 

random forest method provide a more accurate and faster estimation with an absolute mean error (MAE) of 

22.83 kWh/m²/year [28]. Estimating energy potential generated from solar PV using high-definition map 

images and deep learning (DL) resulted in a power potential of 442.4 MW in rural China [29]. 

The grid search cross-validation (GSCV) process can significantly reduce the ability to produce 

models that perform better and improve the accuracy of imported energy estimation models. Some previous 

research, such as the application in determining the performance limits of RC seismic columns using machine 

learning methods, then optimized with grid search and cross-validation to determine hyperparameters, has 
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resulted in excellent accuracy [30]. The application of predicting and identifying children and adolescents at 

risk of readmission to the hospital using GSCV method can significantly reduce the ability to produce models 

that perform better and improve the accuracy of imported energy estimation models. Some previous research, 

such as the application in determining the performance limits of RC seismic columns using machine learning 

methods, then optimized with grid search and cross-validation to determine hyperparameters, has resulted in 

excellent accuracy chine learning classification and regression tree (CART), RF, gradient boosting machine 

(GBM), dan extreme gradient boosting (XGBoost). 75% training data and 25% testing and applying cross-

validation with five folds, then looking for hyperparameters using grid search techniques. The XGBoost 

algorithm has produced more accurate results than others [31]. In the health sector, to analyze gastroscopy 

images using the EfficientDet method, a grid search is used to optimize image resolution, and cross-

validation with k=5 produces precise results [32] in the temperature test bench experiment to study the 

phenomenon of nucleate boiling using several machine learning methods and grid optimization search cross-

validation in the training process. The support vector machine algorithm produces the best performance with 

R2 performance greater than 0.95 [33]. To predict the percentage of biodiesel yield using the CatBoost 

regressor method optimized using a search cross-validation grid to produce an effective and optimal biodiesel 

prediction model [34]. 

This study is critical because the energy imported estimation model on rooftop solar PV systems can 

help plan energy consumption efficiently by accurately estimating the amount of energy imported from the 

grid. In addition, limited studies discussing estimating energy imported are used as an indicator in planning 

and installing rooftop solar PV. The existence of an energy imported estimation model in the on-grid rooftop 

solar PV system can accelerate the implementation of rooftop solar PV technology that can reduce carbon 

emissions in urban areas. The purpose of this study is to model energy imported estimation using machine 

learning (ML) algorithms, namely neural network (NN), linear regression (LR), and support vector machine 

(SVM). The dataset was obtained from the simulation results on the rooftop solar PV on-grid system, and 

energy data that can meet the needs of electrical loads was obtained. The energy import generated from the 

system is divided based on the azimuth angular direction that describes the model and shape of the building's 

roof (one direction, two directions, and three directions). A comparison of the machine learning algorithm 

results shows NN produces the smallest RMSE value of the three. Then, model improvements are carried out 

using GSCV to obtain more accurate model results. By combining the GSCV process with NN (GSCV-NN), 

the model's results can enhance the RMSE results even more accurately. 

Although energy import estimation modeling compares simple algorithms such as NN, LR, and 

SVM, adding the GSCV process can improve the highly accurate estimation model on the GSCV-NN 

combined. This study provides new insights into modeling energy imported estimates. Accurate modeling 

results can provide an overview of a compelling rooftop solar PV on-grid installation plan based on the 

amount of energy imported from the grid. Furthermore, the implementation between the simulation results of 

the energy import estimation model and the application of actual conditions is studied holistically. 

 

 

2. MATERIAL AND METHOD  

Comprehensively conduct a review of various things to complete this research. Initially, it will 

explain the collection of data used in this process. Before data processing, a pre-processing stage will be 

carried out to prepare the data to be modelled. Various machine learning models will be tried and compared, 

and optimizations will add accuracy to enhance their performance. The evaluation must be applied to 

measure model performance and thoroughly analyze the architecture. It discusses the resulting model for 

solving problems and evaluates the regression model to estimate energy imported in the on-grid rooftop solar 

PV system. Data accuracy is a measure of the estimation model relied on in data-based research. 

In general, through three stages: data selection, evaluation, and comparison of the resulting 

regression model. The most accurate models are optimized to enhance performance in predicting test data. 

Figure 1 shows the modeling framework in this study, starting from data collection, pre-processing, modeling 

process, and model evaluation. The results will be discussed in the discussion. The stages of completing this 

study will be explained in more detail as follows.  

 

2.1. Step 1: Data collection 

Data is obtained from open sources and processed on PVsyst for an on-grid solar PV system 

analysis. This dataset has attributes: latitude (°), longitude (°), air pressure (kPa), temperature (°C), relative 

humidity (%), wind speed (m/s), precipitation (mm/day), total insulation (W/m²), tilt angle (°), azimuth angle 

(°), production energy in Kilowatt hour per year (kWh/year), array energy (kWh/year), and has labels: energy 

imports (kWh/year). Meteorological parameters are obtained from NASA Prediction of Worldwide Energy 

Resources. The dataset is obtained from each of the 20 provincial capitals in Indonesia, as shown in Figure 2. 
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This angle describes that the type and shape of the roof of a building can consist of one or more sides. 

The angular direction follows the eight cardinal directions: north (N), northeast (NE), east (E), southeast (SE), 

south (S), southwest (SW), west (W), and northwest (NW) as shown in Figure 3. The dataset is divided into 

three clusters based on the number of azimuth angles and the number of inverters: one-direction, two-directions, 

and three-directions. The number of dataset samples in the provincial capital is divided into three combinations, 

as shown in Table 1. Details of the location of each provincial capital is shown in Table 2. 

 

 

 
 

Figure 1. Modeling framework 

 

 

 
 

Figure 2. Provincial capital 

 

 

 
 

Figure 3. On-grid solar PV system 
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Table 1. Dataset samples 
Combination Amount of data 

One-direction 2400 

Two-directions 2800 

Three-directions 5300 

 

 

Table 2. Location of provincial capital position 
No Provincial capital Latitude Longitude  No Provincial capital Latitude Longitude 

1 Banda Aceh 5.552846° 95.319291°  11 Banjarbaru -2.636591° 115.114494° 

2 Medan 3.589665° 98.673826°  12 Samarinda -0.501780° 117.139309° 

3 Padang -0.924759° 100.363256°  13 Pontianak -0.022690° 109.344749° 

4 Palembang -2.988830° 104.756857°  14 Makassar -5.134296° 119.412428° 

5 Jakarta -6.175394° 106.827183°  15 Manado 1.490058° 124.840871° 

6 Bandung -6.934469° 107.604954°  16 Kupang -10.163221° 123.601776° 

7 Semarang -6.990399° 110.422910°  17 Ambon -3.695943° 128.178785° 

8 Yogyakarta -7.977838° 110.367226°  18 Sorong -0.863410° 131.254480° 

9 Surabaya -7.245972° 112.737827°  19 Jayapura -2.538754° 140.703739° 

10 Denpasar -8.652497° 115.219117°  20 Merauke -7.792519° 140.018355° 

 

 

Figure 3 shows the system is an on-grid system without batteries. The system is built using PVsyst 

and optimally simulated to achieve operational viability. Energy imports are carried out through import-

export meters (exim meters). The amount of energy sent from the rooftop solar PV on-grid system and 

received from the grid is recorded through this measuring instrument. The load is designed for household 

consumers and has been constant over the years. Load operates for seven days a week and 24 hours a day. 

Table 3 shows the appliance of consumed load. The number of PV modules used is 24, with a capacity of  

250 Wp. Module voltage 26 V with polycrystalline type. Open circuit voltage (𝑉𝑜𝑐) 37.84 V and short circuit 

current (𝐼𝑠𝑐) 8.710 A. series and string splicing number of modules adjusted to azimuth direction. The 

capacity of the inverter used is adjusted in the azimuth direction. In each direction, one inverter is installed, 

and all inverters have a frequency of 50 Hz monophase with a grid voltage of 230 V. 

 

 

Table 3. Load consumption 
Nb Appliance Power Unit Daily use (hours) Daily energy (Wh) 

10 Lamps (LED or Fluo) 10 W/lamp 12 1200 

2 TV/PC/Mobile 100 W/app 7 1400 

7 Domestic appliances 150 W/app 24 25200 

2 Fridge/Deep-freeze 0.4 kW/day 24 802 

1 Dish and cloth washer 300 W aver. 2 600 

3 Air conditioner 250 W/app 10 7500 

1 Heater 500 W/app 5 2500 

1 Stand-by consumers 100 W 24 2400 

Total daily energy 41602 Wh/day 

Monthly energy 1248.0 kWh/mth 

 

 

2.2. Step 2: Data pre-processing 

Effective decisions can result from accurate estimates in data analysis. Utilizing historical data is 

one of the data-driven modeling methods. Effective modeling requires the ability to use the proper 

computational and statistical techniques. For data-driven modeling and accurate estimates to be produced, it 

is necessary to know the steps of the process. The data cleaning identifies and handles missing or incomplete 

data. It can be done by filling in or deleting missing values with an average value. In the data normalization, 

the process of changing dataset values so that they have uniform values. The dataset value is changed to have 

a minimum value of 0 and a maximum of 1. The process is performed using (1). 
 

𝑋𝑛𝑜𝑟𝑚 =
X − min (𝑥)

max(𝑥)−min (𝑥)
 (1) 

 

𝑋𝑛𝑜𝑟𝑚 is the normalized value, 𝑚𝑖𝑛(𝑥) 𝑚𝑎𝑥(𝑥) is the absolute minimum and maximum value, and 𝑋 is the 

original value. In data standardization, the process of changing the values of a dataset so that it has a mean 

value of zero and a standard deviation of one by using (2). 
 

𝑋𝑠𝑡𝑑 =
𝑋−𝜇

𝜎
 (2) 
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𝑋𝑠𝑡𝑑 is the standardized value, 𝜇 is the average of all dataset values, 𝜎 is the deviation of all dataset values, 

and 𝑋 is the original value. 

 

2.3. Step 3: Neural network 

Modeling using supervised ML to estimate is essential [35]. Model learning from the training 

dataset and apply the known patterns to perform estimates tested with dataset testing. The learning algorithm 

in this study uses a NN and is compared with LR and SVM algorithms. The neural network is shown in 

Figure 4 and (3)-(4). 

 

𝑡𝑗 = 𝑓0(∑ 𝑤𝑖,𝑗 ∗  𝑥𝑖
𝑀
𝑖=1 ) (3) 

 

𝑦∗ = 𝑓1(∑ 𝑐𝑗 ∗ 𝑡𝑗
𝑛
𝑗=1 ) (4) 

 

NN consists of a network of layered weights with interconnected mathematical operators (neurons). Where 𝑥𝑖 is 

the number of inputs, 𝑊𝑖, 𝑗 is the weight of the input variable, 𝑡𝑗 is the neuron that has an activation function, 𝑦 

is the output, 𝑐𝑗 is the weight of 𝑦, and 𝑓0 and 𝑓1 are activation functions with sigmoid functions as in (5). 

 

𝑓(𝑥) =
1

1+𝑒−𝑥  (5) 

 

NN describes the human brain, which consists of many cells called neurons that form branched 

networks. Connected neurons send signals to each other to process information and are connected to the next 

neuron. Essentially, neurons connect three layers in an artificial neural network as follows [36]. 

a. Input layer connects the information received on this layer: latitude, longitude, air pressure, temperature, 

relative humidity, wind speed, precipitation, total insulation, tilt angle, azimuth angle, production energy, 

array energy, and energy imports. It is then processed, analyzed based on the nodes of this layer, and 

moved to the next layer. 

b. Hidden layer: Hidden layers get input from other layers or hidden layers. Hidden layers in an artificial 

neural network can number more than one. The output from the previous layer is processed, analyzed, and 

continued to the next layer. 

c. Output layer: All previous processes will end on this node, and then the transmission process will occur. 

The output value will be "1" or "0" according to the activation function. 

 

 

 
 

Figure 4. Neural networks 

 

 

2.4. Step 4: Grid search cross-validation 

Grid search cross-validation (GSCV) is a technique used to enhance model performance by finding 

the optimal combination of parameters. Sharing training and testing data is a step that must be determined in 

advance. This study divided the data based on 80% training and 20% testing data [37]. In the training 

process, data is divided into 10-fold, 9-fold data as training, and 1-fold data as validation of as many as ten 

crosses. The average validation value is the best hyperparameter search for testing for artificial neural 
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network parameters, as illustrated in Figure 5. This cross-validation process is carried out randomly on the 

search grid with vulnerable numbers of 2–100.  

 

2.5. Step 5: Model evaluation 

To evaluate model performance in regression modeling using RMSE. It can indicate the model's 

accuracy with the actual values in the dataset. The better the accuracy prediction performance, the smaller the 

RMSE value. The RMSE is shown in (6), 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦1−ŷ1)2𝑛

𝑖=1

𝑛
 (6) 

 

where 𝑛 is the number of sample data in the dataset, 𝑦𝑖 is the actual value of the 𝑖 data, and ŷ𝑖 is the value that 

the model predicts for the 𝑖 data. This study compared the RMSE results of the NN, LR, and SVM models 

before and after the addition of GSCV in a combination of one-direction, two-directions, and three-directions.  

 

 

 
 

Figure 5. 10-fold cross-validation diagram 

 

 

3. RESULTS AND DISCUSSION  

This study aims to make an estimated model of imported energy from on-grid rooftop solar PV 

systems. An essential part of this research is the model generated from training data with validation that is 

separated independently without involving testing data. This method can enhance the accuracy of better 

estimation models. The results show the correlation between attribute variables in the dataset using the 

correlation matrix, as shown in Figure 6, as the attribute parameter of the estimation model. 

The correlation matrix measures the strength and direction of the relationship between two variables 

corresponding to values ranging from -1 to 1. If the correlation value is close to 1, it indicates a perfect positive 

correlation that tends to move in the same direction. A correlation value relative to -1 indicates a perfect 

negative correlation. The variable tends to move in the opposite direction. However, if the correlation value is 

close to 0, it means the absence of correlation or weak correlation between variables. In Figure 6, the most 

potent positive correlations to imported energy are latitude (0.328), relative humidity (0.484), precipitations 

(0.484), and tilt angle (0.474). The negatively correlated are longitude (-0.429), temperature (-0.290), wind 

speed (-0.498), total insolation (-0.240), production energy (-0.877), and array energy (-0.555). 
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The discussion of imported energy on the on-grid rooftop solar PV system here goes further to using 

electrical energy that has reached consumers. The production of solar PV energy should be able to supply all 

the needs of consumer loads. However, with the fluctuating nature of solar PV due to the influence of 

external weather conditions, energy needs to be supplied from the grid. Imported energy on an on-grid 

rooftop solar PV system shows how much electrical energy is delivered from the grid system. The smaller 

energy provided by the grid shows a significant effect of renewable energy on reducing carbon emissions 

because the grid system still uses many primary materials from fossils. This study shows the estimated 

amount of imported energy in 20 provincial capitals in Indonesia. The potential for on-grid rooftop solar PV 

development in Indonesia is in big cities with many buildings and residential density. Energy imported in 

each town differs, even with the exact PV capacity, due to other conditions, such as tilt and azimuth angles. 

This study was divided into three datasets based on the number of azimuth angle directions and inverters. 

Each azimuth angle direction can find the smallest amount of imported energy, and the location of the 

provincial capitals is shown in Table 4. 

 

 

 
 

Figure 6. Correlation matrix of attribute on-grid rooftop solar PV 

 

 

Table 4. The provincial capital has the lowest energy import 
Combination Angle direction Provincial capital Energy import 

One-direction    

− one inverter north Denpasar 5338 kWh/year 

− two inverters north Denpasar 5339 kWh/year 

− three inverters north Denpasar 5441 kWh/year 

Two-directions north, northeast Denpasar 5393 kWh/year 

Three-directions north, northeast, northwest Denpasar 5509 kWh/year 

 

 

Explore more profound machine learning algorithms to enhance the accuracy and accuracy of 

imported energy estimation models. Approaches such as NN, LR, and SVM algorithms can identify complex 

patterns in historical data and enhance the model's ability to estimate fluctuations in imported rooftop solar 

PV energy. NN results are enhanced for better accuracy with GSCV. The technology can also better adapt to 

environmental conditions that affect the performance of solar PV systems. More precise and adaptive 

estimation models can be produced to make smarter decisions by harnessing the power of machine learning. 

Figure 7 is the one-direction azimuth angle of the energy import estimation model, Figure 8 shows the two-

directions azimuth angle of the energy import estimation model, and Figure 9 is the three-directions azimuth 

angle of the energy import estimation model. The figure explains the comparison between NN, LR, and 

SVM, showing that NN gets more accurate results. The NN results were enhanced to get more accurate 
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results by adding GSCV so that it became the GSCV-NN result. All estimation model results are illustrated 

by comparing NN, LR, SVM, and GSCV-NN. This result applies to all images in the estimation model in 

one-direction azimuth angle, two-directions azimuth angle, and three-directions azimuth angle. The value of 

the hidden layer of each node and the threshold in the combination of directions are shown in Table 5. 

 

 

 
 

 
 

 
 

Figure 7. One-direction azimuth angle of the energy import estimation model 
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Figure 8. Two-directions azimuth angle of the energy import estimation model 

 

 

The GSCV process can significantly increase the ability to produce models that perform better and 

enhance the accuracy of imported energy estimation models. GSCV can systematically find the optimal 

parameter in the estimation model by conducting a broader and more complex parameter search. GSCV can 

also reduce the risk of overfitting to model new data properly. Table 6 shows the results of enhancing the 

accuracy of the energy import estimation model with the addition of the GSCV process. In a one-direction 
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combination, the RMSE GSCV-NN is 44.398, GSCV-LR is 177.923, and GSCV-SVM is 439.044. In a two-

directional combination, the RMSE GSCV-NN is 141.286, GSCV-LR is 94.729, and GSCV-SVM is 

446.176. In a three-directional combination, the RMSE GSCV-NN is 76.313, GSCV-LR is 85.367, and 

GSCV-SVM is 523.598. 

 

 

 
 

 
 

 
 

Figure 9. Three-directions azimuth angle of the energy import estimation model 
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Table 5. Neural network node values 
Model Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Threshold 

One-direction 1.522 -1.273 -0.363 0.428 -1.588 0.361 1.059 -1.250 -0.133 

Two-directions 0.271 0.502 1.324 -1037 -1.484 0.644 -0.446 -0.227 -0.263 

Three-directions 0.047 0.600 -0342 -0.830 1.694 -0.484 0.491 -0993 -0.777 

 

 

Table 6. ML Evaluation of model based on RMSE measurement 
Direction combination Model ML RMSE GSCV addition RMSE Enhanced 

One-direction NN 53.184 NN 44.389 8.795 

LR 311.367 LR 177.923 133.444 

SVM 748.875 SVM 439.044 309.831 

Two-directions NN 145.562 NN 141.286 4.276 

LR 160.196 LR 94.729 65.467 

SVM 749.846 SVM 446.176 303.670 

Three-directions NN 81.442 NN 76.313 5.129 

LR 90.678 LR 85.367 5.311 

SVM 767.108 SVM 523.598 243.510 

 

 

4. CONCLUSION  

The on-grid rooftop solar photovoltaic estimation model impacts the development of the 

implementation of solar photovoltaic installation on the roof of the building with various azimuth angle 

directions. Estimation models using machine learning need enhancement to become more accurate. A 

comparison of modeling results between NN, LR, and SVM resulted in the best estimation model using NN. 

The enhancement model uses GSCV, which has proven to enhance results more accurately. The result of the 

difference between NN–GSCV-NN in the combination of one direction is 8.795, two directions 4.276, and 

three directions 5.129. The results of this study can impact the development of on-grid rooftop solar 

photovoltaic because it can provide estimated value to users in 20 provincial capitals in Indonesia. This 

estimation model needs further development for more optimal and accurate results with enhanced feature 

engineering. 
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