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 Oral squamous cell carcinoma (OSCC) is emerging as a significant global 

health concern, underscoring the need for prompt detection and treatment. 

Our study introduces an innovative diagnostic method for OSCC, leveraging 

the capabilities of artificial intelligence (AI) and histopathological images 

(HIs). Our primary objective is to expedite the identification process for 

medical professionals. To achieve this, we employ transfer learning and 

incorporate renowned models such as VGG16, VGG19, MobileNet_v1, 

MobileNet_v2, DenseNet, and InceptionV3. A key feature of our approach 

is the meticulous optimization of the VGG19 architecture, paired with 

advanced image preprocessing techniques such as contrast limited adaptive 

histogram equalization (CLAHE) and median blur. We conducted an 

ablation study with optimized hyperparameters, culminating in an 

impressive 95.32% accuracy. This groundbreaking research ensures accurate 

and timely diagnoses, leading to improved patient outcomes, and represents 

a significant advancement in the application of AI for oral cancer 

diagnostics. Utilizing a substantial dataset of 5,192 meticulously categorized 

images into OSCC and normal categories, our work pioneers the field of 

OSCC detection. By providing medical professionals with a robust tool to 

enhance their diagnostic capabilities, our method has the potential to 

revolutionize the sector and usher in a new era of more effective and 

efficient oral cancer treatment. 
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1. INTRODUCTION 

Oral cancer is a prevalent form of cancer with a widespread presence throughout the world. In 

recent decades, both the incidence and fatality rates have seen concerning increases [1]. Oral cancer remains 

a grim prognosis, with low survival rates despite advancements in surgical and radiotherapeutic techniques 

[2]. In most cases, the disease starts with dysplasia, which is followed by carcinoma in situ, where cells 

proliferate uncontrollably but remain localized, offering a chance of recovery [3]. In the final stage, cancer is 

invasive and may spread to other organs. There is a crucial need for early detection of abnormal oral tissue 

growth, as this facilitates more efficient treatment planning and increases the likelihood of a successful 

outcome [4]. With 354,864 new cases and 177,384 deaths in 2018, oral cancer posed a significant global 

health challenge [5]. It is estimated that 90% of all cases of oral cavity cancer are squamous cell carcinomas 
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(SCCs) [6]. A rapid, non-invasive, efficient, and user-friendly deep learning system is developed here for the 

identification of oral squamous cell carcinomas (OSCCs) using histopathological images. 

Betel quid consumption contributes to the late detection of oral lesions, with over two-thirds 

detected in advanced stages, resulting in lower survival rates. The cost of managing lesions, especially those 

in advanced stages, is substantial [6]. Premalignant oral lesions such as leukoplakia, erythroplakia, lichen 

planus, and submucous fibrosis are common in high-risk groups. A clear distinction between these lesions 

and their malignant counterparts is critical [7]. 

A subset of machine learning entitled deep learning has become the dominant force in the data 

analytics and artificial intelligence domains. This sophisticated method, which is similar to neural networks 

found in the human brain, has the amazing capacity to learn and extract complex patterns and representations 

from large datasets on its own. At the leading edge of modern technological progress, deep learning is 

especially proficient at image identification, natural language processing, and self-directed decision-making. 

Its transformational potential extends across a wide range of industries, including robotics, healthcare, 

banking, and autonomous driving [8]. 

In this research, AI-based technology is being used to revolutionize early diagnosis of OSCC. The 

focus is specifically on utilizing histopathological images (HIs) to provide healthcare practitioners with a rapid 

and dependable diagnostic tool. By employing transfer learning models like VGG16, VGG19, MobileNet_v1, 

MobileNet_v2, DenseNet, and InceptionV3 [9]–[18], [19], alongside a fine-tuned model OCNet-23, our 

research aims to enhance the accuracy of OSCC identification from histopathological images. By leveraging 

AI-driven image analysis, we can not only expedite diagnosis but also provide early intervention, improving 

patient outcomes significantly. In addition, we explore advanced image preprocessing techniques, such as 

speckle noise removal, morphological operation, and contrast limited adaptive histogram equalization 

(CLAHE), to enhance image quality, which is a crucial component of reliable analysis. 

Our ultimate goals are to improve healthcare standards and prevent deaths. We anticipate that this 

research will bridge the gap between technological innovation and healthcare delivery, significantly 

advancing the field of oral cancer diagnostics. The key contributions of this study are summarized below: 

− The quality of oral cancer histopathological images is systematically improved by using a variety of 

image preparation methods, such as median filter, CLAHE, and image resizing. 

− A rigorous evaluation procedure is used to determine the best transfer learning model among several 

different methods of transfer learning that have been applied to the dataset. To improve the model's 

performance and resilience, additional development processes are applied. 

− To improve resilience, a carefully designed Fine-tuned transfer learning model named OCNet-23 is built 

through a hyperparameter ablation study. 

− After development of OCNet-23, it is put through a rigorous testing process with key performance 

metrics. In these tests, the accuracy and reliability of the model have been determined. 

 

 

2. METHOD  

The advancement of deep learning techniques has garnered substantial attention due to their 

potential to enhance the precision and efficacy of medical image analysis. Among these applications, the 

classification of oral cancer for diagnostic purposes stands out as particularly crucial, with the promise of 

significantly improving the accuracy of oral health assessments. This paper introduces a state-of-the-art deep 

learning method for categorizing histopathological images of oral cancer [20]–[24], utilizing the OCNet-23 

model. The project aims not only to improve diagnostic accuracy for oral cancer but also to alleviate the 

workload on healthcare professionals. In the realm of oral oncology, this innovative approach has the 

potential to revolutionize diagnostic processes and ultimately elevate patient care. Figure 1 depicts our 

comprehensive study workflow, encompassing data preprocessing, the development of the OCNet-23 model, 

and subsequent statistical analysis. 

The complete study procedure is summarized as follows: 

− Dataset: The study utilizes 5,192 histopathological images of oral cancer, classified into two categories: 

“normal” and “OSCC” (oral squamous cell carcinoma). 

− Image enhancement: various preprocessing techniques, including median filtering, contrast limited 

adaptive histogram equalization, and image resizing, are applied to improve the quality of the 

histopathological images. 

− Assessment of transfer learning models: several transfer learning models are initially tested on the dataset. 

An evaluation process identifies the optimal model, which is then further developed to enhance its 

performance and robustness. 
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− Customized OCNet-23 Model: A variety transfer learning model, OCNet-23, is meticulously designed 

based on traditional transfer learning architecture. This model's performance exceeds that of the base 

model and other comparable models, as evidenced by a comprehensive ablation study. 

− Evaluation: The refined OCNet-23 model is extensively tested using various evaluation metrics, including 

mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root 

mean square error (RMSE). The results confirm the model's robustness and precision in classifying oral 

cancer cases. 

 

 

 
 

Figure 1. Workflow of the entire classification 

 

 

2.1.  Dataset description  

A total of 5, 192 histopathological images has been carefully collected from Kaggle, a credible 

source of data. Two categories have been meticulously distinguished “OSCC” which stands for cases of oral 

squamous cell carcinoma and “normal” which refers to non-cancerous conditions. The class of OSCC 

contains 2494 images and normal contains 2698 images.  

 

2.2.  Image preprocessing techniques 

In this section, several image processing techniques, such as median filtering, morphological 

opening, CLAHE, and image resizing, were utilized. These methods aimed to enhance image quality by 

removing noise, increasing contrast, and refining details. The improved clarity of histopathological images 

facilitated precise feature extraction, which is essential for accurate and efficient image analysis [25]. 

 

2.2.1. Image resizing 

The preprocessing stage starts with image resizing [26], a fundamental step in image processing that 

adjusts image dimensions while maintaining the aspect ratio. In this study, oral cancer histopathological 

images were resized to 224×224 pixels to match the input specifications of the analysis pipeline. This step 

ensures uniformity in data preparation, which is essential for achieving reliable and consistent results in 

subsequent analyses. 

 

2.2.2. Median filter 

This technique efficiently removed noise while preserving crucial image details, leading to enhanced 

clarity. The preservation of these details ensured that critical features remained intact for further processing. 

By applying this method, we enhanced the accuracy and reliability of our diagnostic analysis [27]. 

 

𝑔 (𝑝, 𝑞) = 𝑓 (𝑝, 𝑞)  ∗  𝑢 (𝑝, 𝑞) + 𝜂 (𝑝, 𝑞) 

 

2.2.3. CLAHE 

In histopathological image processing, CLAHE is a potent image enhancement method. It works by 

first dividing the image into smaller sections, then separately equalizing each region's histogram [28]. In 
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doing so, CLAHE successfully improves the image's visibility of important elements, leading to more precise 

medical diagnosis. The CLAHE formula is:  

 

𝐼𝐶 (𝑝, 𝑞) = 𝐷 (𝐼 (𝑝, 𝑞)) =
(𝐿 − 1)

𝑃𝑄
∑ 𝑛𝑗

𝑘

𝑗

 

 

The overall preprocessing approach is demonstrated in Figure 2. 

 

 

 
 

Figure 2. Image pre-processing techniques 

 

 

2.3.  Proposed OCNet-23 

OCNet-23 was painstakingly constructed using hyper-parameter ablation research, with the VGG19 

model serving as its core architecture. The selection of VGG19 highlights a dedication to accuracy because it 

has been shown to be more accurate than other transfer learning models. After that, thorough ablation 

research was carried out to further enhance the model's resilience using fine-tuning approaches, guaranteeing 

the best performance in tasks involving the categorization of oral cancer [29]–[32]. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Results of transfer learning models 

Table 1 presents the results of six different transfer learning models for a given task. Six metrics—

test accuracy, validation accuracy, train accuracy, train loss, test loss, and validation loss—are shown in the 

table for each model. The table displays six models of transfer learning [33]–[39]: InceptionV3, 

MobileNetV1, MobileNetV2, VGG16, VGG19, DenseNet201, and MobileNetV2. The table shows that, out 

of the six models, VGG-19 performs the best, with the highest train accuracy (96.84%), test accuracy 

(90.75%), and Val accuracy (92.24%). However, VGG-16 performs the worst out of the six models, as 

evidenced by its lowest train accuracy of 95.84%, test accuracy of 84.75%, and Val accuracy of 82.24%. 

 

 

Table 1. Results of six transfer learning model 
Model Train accuracy Test accuracy Val accuracy Train loss Test loss Val loss 

MobileNetV1 97.80 88.22 81.85 0.17 0.28 0.18 
MobileNetV2 97.00 85.71 83.78 0.31 0.32 0.32 

VGG16 95.84 84.75 82.24 0.21 0.16 0.29 

VGG19 96.84 90.75 92.24 0.21 0.14 0.20 
DenseNet201 96.59 88.42 85.71 0.31 0.32 0.32 

InceptionV3 95.32 86.49 84.17 0.32 0.36 0.37 

 

 

3.2.  Result of ablation study 

This crucial section involves a careful examination of the results obtained from our extensive 

ablation research, which finely tunes the stable and optimal OCNet-23 model based on the renowned VGG19 

architecture. Critical hyperparameters such as batch size, flatten layer, optimizer, learning rate, and activation 

function were examined and fine-tuned. These parameters collectively accounted for a large portion of the 

model's remarkable performance and durability. 

 

3.2.1. Case study 1: changing batch size 

The findings of a case study on how batch size affects a machine learning model's test accuracy are 

displayed in Table 2. Three setups with varying batch sizes, epochs, training times, and test accuracies are 

shown in the table. Configuration number two, where the batch size is 32 and the model is trained for  
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43 epochs with a training duration of 4 seconds, yields the highest accuracy of 92.74%. According to the 

table, selecting the ideal batch size is essential to getting the best accuracy. 

 

 

Table 2. Changing batch size 
Configuration no Batch size Epochs × training time Test accuracy Finding 

1 64 82×5 s 91.73% Accuracy decreased 

2 32 43×4 s 92.74% Highest accuracy 
3 16 97×5 s 90.75% Accuracy increase 

 

 

3.2.2. Case study 2: changing flatten layer 

Table 3 shows that the best accuracy is obtained when the flattened layer is used. Moreover, pooling 

techniques such as global max pooling do not provide higher performance. Consequently, the layer can be 

flattened to produce 96.13% accuracy.  

 

 

Table 3. Changing flatten layer 
Configuration no Flatten layer types Epochs × training time Test accuracy Finding 

1 Flatten 97×5 s 92.79% Highest accuracy 
2 Global Max Pooling 60×4 s 90.65% Accuracy decreased 

 

 

3.2.3. Case study 3: changing optimizer 

The effects of using various optimizers on the VGG-16 model's test accuracy are shown in Table 4. 

In configuration no. 1, when the model is trained for 97 epochs with a training time of 5 seconds, the Adam 

optimizer hit the highest accuracy of 92.82%. Here, accuracy drops were the outcome of the Adam 

optimizer's superior performance over the other optimizers, including Nadam. 

 

 

Table 4. Changing optimizer 
Configuration no Optimizers Epochs × training time Test accuracy Finding 

1 Adam 97×5 s 92.82% Highest accuracy 

2 Nadam 44×5 s 90.99% Previous accuracy 

 

 

3.2.4. Case study 4: changing learning rate 

Table 5 presents the outcomes of varying learning rates in terms of improving the accuracy of the 

model. setup no. 1 yields the maximum accuracy of 94.88%. In this setup, the model is trained for 55 seconds 

across 97 epochs at a learning rate of 0.001. The best accuracy in this instance was obtained with a learning 

rate of 0.001, but lower or higher learning rates led to decreases in accuracy. 

 

 

Table 5. Changing learning rate 
Configuration no Learning rate Epochs × training time Test accuracy Finding 

1 0.001 94×55 s 94.88% Highest accuracy 

2 0.008 97×5 s 91.88% Accuracy decreased 
3 0.0001 68×57 s 92.28% Accuracy decreased 

 

 

3.2.5. Case study 5: changing activation function 

The effects of using various optimizers on the VGG-16 model's test accuracy are shown in Table 6. In 

configuration no. 2, when the model is trained for 97 epochs with a training time of 5 s, the SoftMax activation 

function attained the maximum accuracy of 95.32%. Here, accuracy losses were the outcome of the SoftMax's 

superior performance over the other activation function, which included PReLU and Leaky ReLU. 

 

 

Table 6. Changing activation function 
Configuration no Activation function Epochs × training time Test accuracy Finding 

1 PReLU 9×5s 99.88% Previous accuracy 
2 SoftMax 97×5s 95.32% Highest accuracy 

3 Leaky ReLU 88×5s 90.65% Accuracy decreased 
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3.3.  Performance comparison between transfer learning models with proposed model 

This section presents a thorough comparison study that compares the proposed model to the most 

advanced transfer learning models. The results show how well the suggested model performed—better than 

any other model taken into consideration in the study—in classifying B-All into discrete categories. This 

strong proof of concept places the proposed model at the top of the list for precise and effective classification 

tasks, underscoring its effectiveness in the field of transfer learning. 

The detailed findings shown in Table 7 clearly demonstrate the superiority of the proposed model. 

These results, which surpass the performance of all other models considered, highlight the extraordinary 

effectiveness and expertise ingrained in the design of the recommended model. Our model's strong 

performance demonstrates its sophisticated nature and makes it a unique option for applications that need 

more precision and efficiency than those of its competitors. 

 

 

Table 7. A through comparison of the performance of the suggested model with transfer learning models 
Model Train accuracy Test accuracy Val accuracy Train loss Test loss Val loss 

MobileNetV1 97.80 88.22 81.85 0.17 0.28 0.18 

MobileNetV2 97.00 85.71 83.78 0.31 0.32 0.32 

VGG16 95.84 84.75 82.24 0.21 0.16 0.29 
VGG19 96.84 90.75 92.24 0.21 0.14 0.20 

DenseNet201 96.59 88.42 85.71 0.31 0.32 0.32 

InceptionV3 95.32 86.49 84.17 0.32 0.36 0.37 
OCNet-23 98.84 95.32 95.23 0.15 0.16 0.03 

 

 

4. CONCLUSION  

The study presents OCNet-23, a cutting-edge CAD system based on VGG19, aimed at accurately 

identifying and classifying microscopic images of oral cancer. Extensive evaluations and rigorous testing 

demonstrate its reliability and optimal performance. Future validation with larger datasets and real-time data 

is planned. OCNet-23 shows promise as a tool for early detection and diagnosis, potentially improving 

patient care by reducing unnecessary treatments and enhancing classification accuracy. 
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