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ABSTRACT

We compute the numerical solution of Bratu’s boundary value problem (BVP).
To achieve this, we apply a new and useful approach to solve Bratu’s bound-
ary value problem by using Green’s function and a new integral operator, along
with a modified version of the Adomian decomposition method. This process
produces solutions that call for the boundary conditions to be applied explicitly.
Statistical results demonstrating the robustness and efficiency of the proposed
scheme are included. An exact and approximate solution comparison is made
with known results. The quantitative outcomes showcase our novel approach’s
high numerical precision and consistency across a range of parameter configu-
rations.
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1. INTRODUCTION
Ordinary differential equations that are nonlinear are the result of mathematical modeling of various

physical systems. To analyze mathematical modeling that yields solutions that match physical reality (that is,
the real world of physics) an efficient method is needed. As a result, we need to be able to solve strongly
nonlinear ordinary differential equations. The Chandrasekhar model of universe expansion, fuel ignition in
thermal combustion theory, and Bratu’s problem, which was used to model a combustion problem in a numer-
ical slab, are examples of specific models. It encourages a thermal reaction in a stiff material that depends on
the equilibrium between heat produced chemically and heat transferred through conduction [1]–[4].

We examine the elliptic nonlinear partial differential equation with homogeneous Dirichlet boundary
conditions at the boundary known as the classical Bratu problem [1]. The Bratu’s model has been computa-
tionally handled by a number of methods, including the Laplace transform decomposition numerical algorithm
[5], [6], differential transform method [7], weighted residual method [8], shooting method [9], finite difference
method, finite element approximation, and Adomian decomposition method (ADM) [10], [11].

DTM [12] provide an effective numerical technique for approximating geometric boundary value
problems. The hardest component of the Bratu’s equation is the nonlinear term, ey . Therefore, by applying the
strategy covered in [12], Sinc geometric can readily solve Braut’s equation. The variation iteration method is
used by Anakira et al. [13] to examine and modify an approximate analytical solution for solving the fuzzy
Bratu’s equation. A numerical approach based on Chebyshev wavelet approximations for the one-dimensional
Bratu’s problem is presented in [14]. In [15], Bratu’s boundary value problem is solved using a new integral
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operator by utilizing the adomian decomposition method and the restarted adomian decomposition method with
new techniques. A hybrid Adomian decomposition approach and an additional integral transform called the
Kashuri Fundo transform were used to solve Bratu’s equation [16]. The primary goal of the numerical solution
of the Bratu’s boundary value problem on a Banach space setting is to incorporate a Green’s function into a
novel two-step iteration scheme, as demonstrated in [17]. A numerical solution for the two-dimensional Bratu’s
problem is obtained in [18] through the development of a new iterative finite difference algorithm. Conversely,
they calculate two-branched numerical solutions for the nonlinear Bratu’s problem in [19]. Bratu’s problem
has a closed-form solution that was created in [20]. Using artificial neural network architecture and a soft
computing technique that makes use of the symbiotic organism search algorithm, an efficient meta-heuristic,
better solutions for Bratu’s differential equation are obtained in [21].

This paper shows that nonlinear second-order boundary value problems can be effectively solved
numerically through manipulation of the Adomian decomposition method.

d2y

dx2
= λ(x)eµy, y(0) = y(1) = 0 (1)

in which λ(x) > 0 may be an exponential, rational, or polynomial function, and µ > 0 is a constant. Owing to
the wide range of possibilities, we shall take λ(x) to represent any analytic function of x with a power series
expansion. Diffusion theory and celestial machines routinely use (1), for instance in mechanical problems
where dissipation is absent.

2. BRATU’S BOUNDARY VALUE PROBLEM
This section presents a numerical algorithm to solve a general boundary value problem using the

Adomian decomposition technique.

d2y

dx2
= λ(x)F (y), y(0) = α, y(1) = β. (2)

where F (y), the nonlinear function, can be developed in a series of the form F (y) =
∑∞

n=0 any
n since

it is assumed to be analytic. Equation (1) presents the same problem for us to discuss as a special case, if
F (y) = eµy . The basic concept is to use Green’s function to determine the integral representation of (2), and
then modify Adomian decomposition to produce the nonlinear integral equation of the following form.

y(x) =

∫ 1

0

λ(x)G(x, ξ)F (y(ξ))dξ + (1− x)α+ xβ. (3)

The well known Green’s function for (2) is given by,

G(x, ξ) =

{
ξ(1− x), 0 ≤ ξ ≤ x
x(1− ξ), x ≤ ξ ≤ 1.

ADM [22], [23] assumes a series solution for (2) of the form,

y(x) =

∞∑
n=0

yi(x) (4)

The above infinite series converges if
∑∞

n=0(1 + ϵ)n|yn| < ∞, for some small number ϵ.Physical issues
typically satisfy this requirement. Assume that the nonlinear function F (y) has the Taylor expansion around
y0 as follows to demonstrate Adomian’s scheme.

F (y) = F (y0) + F ′(y0)(y − y0) +
1

2!
F ′′(y0)(y − y0)

2 + ... (5)

Substituting the difference y − y0 = y1 + y2 + ... from (4) into (5), to obtain,

F (y) = F (y0) + F ′(y0)(y1 + y2 + ...) +
1

2!
F ′′(y0)(y1 + y2 + ...)2 + ...
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After simplifying the above equation, we get,

F (y) = F (y0)+F ′(y0)(y1+ y2+ ...)+
1

2!
F ′′(y0)(y

2
1 +2y1y2+2y1y3+ y22 +2y2y3+ y23 + ...) (6)

Now, reordering and rearranging of the terms in the above equation, we arrive at Adomian’s polynomials as
[24]: A0 = F (y0), A1 = y1F

′(y0), A2 = y2F
′(y0) +

1
2!y

2
1F

′′(y0) and so on for more terms. Substituting
these An’s together with the series in (3), we arrive at,

y0(x) + y1(x) + y2(x) + ... =

∫ 1

0

λ(x)G(x, ξ)(A0 +A1 +A2 + ...)dξ + (1− x)α+ xβ.

If the series is convergent, then we determine each term of the series solution in (3) recursively as,

y0(x) = (1− x)α+ xβ

y1(x) =

∫ 1

0

λ(x)G(x, ξ)A0(y0)dξ

...

yn(x) =

∫ 1

0

λ(x)G(x, ξ)An−1(y0, y1, ..., yn−1)dξ

The above algorithm determines the yis and hence determines the approximate solution ya(x) = y0(x) +

y1(x) + ... + yn = limM→∞
∑M

n=0 yn(x), where M is the number of terms that we found. It is possible to
find an exact solution in closed form in some circumstances. Moreover, the solutions of decomposition series
usually converge quickly. The convergence of the decomposition series has been studied by a number of writers
[25], [26]. The discussion that was previously presented can be clearly summarized by looking at the numerical
results below.

3. RESULTS AND DISCUSSION
Here, we report our numerical findings for Bratu’s problem. To demonstrate the robustness of the

schemes, we will investigate various parameter regimes for the eigenvalue λ. The calculations show how
simple it is to assemble the method, run it, and select parameters. The numerical results demonstrate the
convergence and accuracy of our approach.

Examine Bratu’s boundary value problem.

y′′(x) = −λey(x), y(0) = y(1) = 0. (7)

Bratu’s equation appeared first in the theory of combustion, after that, the equation appeared in many mathe-
matical models concerned with physical applications. Specifically, it contains the solid fuel ignition model for
the thermal reaction process in a combustible, nondeformable material of constant density during the ignition
period [2], and the Chandrashekhar model for the expansion of the universe [3]. As stated in [2], (7) has an
exact solution provided by (8),

y(x) = −2 log
[cosh(0.5(x− 0.5)θ)

cosh(0.25θ)

]
(8)

provided that θ is a solution of θ =
√
2λ cosh(θ/4). To find the critical value of λ, differentiating both sides

we obtain 1 = 1
4

√
2λ sinh(θ/4), in which the critical value of λ is λc = 8

sinh2(θ/4)
. It follows that when

λ > λc, λ = λc and 0 < λ < λc, where λc = 3.5138 is the critical value, Bratu’s problem has zero solution,
a unique solution, and two bifurcated solutions, respectively. For the ADM solution, (7) can be written in an
integral equation form as,

y(x) = λ
∫ 1

0
G(x, ξ)ey(ξ)dξ
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where G(x, ξ) is the Green’s function. The nonlinear function ey may be expanded as an infinite sum of
Adomian polynomials, as ey =

∑∞
i=0 Ai = A0 + A1 + A2 + ..., where A0 = 1, A1 = y1e

y0 , A2 =
y2 +

1
2!y

2
1 , A3 = y3 + y1y2 +

1
3!y

3
1 , A4 = y4 + y1y3 +

1
2!y

2
2 +

1
2y

2
1y2 +

1
4!y

4
1 . According to the analysis in the

previous section, we start with y0(x) = 0, the ADM solution of Bratu’s equation can be written as:

yk+1(x) = λ(1− x)
∫ x

0
ξAk(ξ)dξ + λx

∫ 1

x
(1− ξ)Ak(ξ)dξ, k = 0, 1, 2...

Using Mathematica, the first five iterations in y are calculated, their sum is denoted by ya(x), we list the first
two terms:

y1(x) =
λx2

2 (1− x) + λx( 12 − x+ x2

2 )

y2(x) = λ(1− x)(λx
3

6 − λx4

8 ) + λx( λ
24 − λx2

4 + λx3

3 − λx4

8 ).

The approximation using five terms in equation is carried out for Bratu’s model with λ = 1 at x = 0.1, 0.2, ...,
0.9. Table 1 exhibits the results of the approximate solution, and the exact solution as given in the closed form
(8). The mathematical formulation of electrospinning process is linked also to the famous Bratu’s equation as
given by (9),

d2y

dx2
= λ(x)ey, y(0) = y(1) = 0 (9)

where y = −6 lnu and u represents the jet’s axial velocity. After solving the mass, linear momentum, and
electric charge balance equations, Wan et al. [27] calculated the value,

λ = 18E2

ρ2r4 (I − r2KE).

The parameters I,K,E, ρ, and r represent the jet’s current, conductivity, voltage, density, and radius, respec-
tively [28]. Three different selections of the parameters E,K, ρ, I, r were chosen such that they made the value
of λ is equal to 1, sometimes less than 1, and sometimes greater than 1, and Figures 1 and 2 summarise our
results. Numerical experiments indicate that different eigenvalues behave similarly [29]. It is interesting to
point out that the solution is bounded for all values of its domain.

Table 1. ADM approximation for y′′ = λey for λ = 1
x Exact solution ADM Error
0.1 0.049846 0.049817 2.92373E-05
0.2 0.089189 0.089133 5.64677E-05
0.3 0.117609 0.117530 7.90006E-05
0.4 0.134790 0.134696 9.39895E-05
0.5 0.140539 0.140440 9.92575E-05
0.6 0.134790 0.134696 9.39895E-05
0.7 0.117609 0.117530 7.90006E-05
0.8 0.089189 0.089133 5.64677E-05
0.9 0.049846 0.049817 2.92373E-05
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Figure 1. The ADM solution when λ = 1.0 (left) and (right) when λ = 3.51 for y′′ = λey
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Figure 2. The ADM solution when λ = 1.25 (left) and (right) when λ = 0.75 for y′′ = λey

4. CONCLUSION
In order to obtain approximate analytical solutions for Bratu-type equations, this paper successfully

applies the ADM. Without linearization or restrictive presumptions, the method was used directly. ADM is
convenient and effective, as demonstrated by comparisons to the precise solution. For a wide range of linear
and nonlinear differential equations, ADM is useful in providing both analytical and numerical solutions. For
physical problems, ADM provides fast-convergent, realistic series solutions. The outcomes presented in this
paper show that, with very little computational effort, our method can be used to obtain precise numerical
solutions of nonlinear boundary value problems. In a reexamination, the Bratu’s problem can be solved by
substituting the fractional derivative of order α for the second derivative, where 1 < α ≤ 2. In the event that
the derivative in (1) is marginally less than 2, this will allow the eigenvalue behavior to be determined.
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