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 Liver diseases rank among the most prevalent health issues globally, causing 

significant morbidity and mortality. Early detection of liver diseases allows 

for timely intervention, which can prevent the progression of such diseases 

to more severe stages such as cirrhosis or liver cancer. To this end, many 

machine learning models have been previously developed to early predict 

liver diseases among potential patients. However, each model has its 

accuracy and performance limitations. In this paper, we present a 

comprehensive comparison of three different machine learning models that 

can be employed to enhance the prediction and management of liver 

diseases. We utilize a big data set of 32,000 records to evaluate the 

performance of each model. First, we implement a preprocessing technique 

to rectify missing or corrupt data in liver disease datasets, ensuring data 

integrity. Afterwards, we compare the performance of three machine 

models: k-nearest neighbors (KNN), gaussian naive Bayes (Gaussian NB) 

and random forest (RF). We concluded that the RF algorithm demonstrates 

superior performance in our evaluation, excelling in both predictive accuracy 

and the ability to classify patients accurately regarding the presence of liver 

disease. Our results show that RF outperforms other models based on several 

performance metrics including accuracy: 97.3%, precision: 97%, recall: 

96%, and F1-score: 95%. 
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1. INTRODUCTION 

In abnormal liver function (also called liver disease), the liver's effectiveness is severely diminished 

if only 25% of it is still working while the other 75% is damaged [1], [2]. Predicting liver disease at an early 

stage allows for timely intervention, which can prevent the disease from progressing to more severe stages. 

Early treatment can halt or slow down the disease, improving patient outcomes. To this end, artificial 

intelligence approaches, particularly machine learning models, offer promising solutions to many 

classification and prediction problems, including liver disease [3]–[10]. 

Many approaches were introduced to predict and classify liver diseases using machine learning 

[11]–[19]. Choudhary et al. in [20] proposed a machine learning model for liver disease prediction. This 

study helps improve liver disease diagnosis by validating patient parameters and genome expression, 
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analyzing computer algorithms, and offering ways to increase efficiency. The authors employed Scikit-learn, 

Numpy, Pandas, and Seaborn libraries to create machine learning models that achieve accuracy of 70.5% 

using logistic regression and accuracy of 65% using the vector machine approaches. Besides, an intelligent 

approach has been introduced to predicted liver illness by Veeranki and Varshney in [21]. They introduced a 

novel bioinformatics model that has been applied to patient genetic data to discover safeguards against liver 

disease. The result showed that an accuracy of 69% is achieved using the random forest (RF) method while 

the k-nearest neighbors (KNN) method achieved accuracy of 67%, the support vector machine (SVM) 

method achieves 74%, and the multilayer perceptron (MLP) method achieves 68%. Priya et al. [22] utilized 

machine learning methods for liver disease prediction and conducted a performance analysis. In order to 

better forecast the outcomes of liver patients in India, the authors build a feature model and compares it to 

others. The authors utilized particle swarm optimization and min-max techniques for feature selection. After 

particle swarm optimization (PSO), the algorithm achieved the best performance compared to J48 algorithm, 

which achieves an accuracy of 95.04%. Similarly, Alam et al. [23] suggested a new model for medical data 

classification using feature ranking. This work introduces the use of ranker algorithms and RF classifiers for 

feature-ranking-based medical data categorization to make reliable disease predictions. The result shows that 

feature ranking and selection contribute to their model’s superior performance.  

Recently, Amin et al. [24] proposed the prediction of chronic liver disease patients using integrated 

projection-based statistical feature extraction with machine learning algorithms. This model classifies liver 

patients using data that has already been preprocessed and various machine-learning techniques. Predictions 

of liver disorders are made with an accuracy of 88.10%, precision of 85.33%, recall of 92.30%, F1 score of 

88.68%, and area under the curve (AUC) 88.20% that calculates the entire two-dimensional area underneath 

the receiver operating characteristic (ROC) curve. 

Despite all these efforts of classifying liver disease, still there is no known approach/method which 

produces the best prediction. Moreover, the majority of related work done so far uses a relatively small data 

set for model training and testing which eventually affects the overall model prediction accuracy. For 

instance, in [10], [22], [25]–[29] a data set with only around 583 disease cases are employed for model 

training and testing. 

In this paper, we compare three machine learning models-KNN, Gaussian naive Bayes  

(Gaussian NB), and RF-for classifying and predicting liver disease. We utilized a substantial dataset 

comprising 32,000 disease cases, representing a significant big data challenge and offering a comprehensive 

analysis. Additionally, we leveraged machine learning techniques for data preprocessing and feature 

extraction. Our comparison study concluded that the KNN model showcased impressive performance with 

95% accuracy, 94% precision, and 93% scores in both recall and F1-score, highlighting its reliability and 

high potential for liver disease prediction tasks. Furthermore, the Gaussian NB model, despite its lower 

overall accuracy of 55.7% and precision of 39%, demonstrated a remarkable recall rate of 96%, underscoring 

its potential in identifying the presence of disease. The standout, random forest, achieved an exceptional 

97.3% accuracy, with near-perfect precision and recall rates of 97% and 96%, respectively, along with a 95% 

F1-score and AUC, indicating its superior predictive capability and robustness. 
This paper is organized as follows: section 2 details the methods and stages we followed to achieve 

optimal performance while comparing the three different machine learning models. Section 3 presents the 

experimental results obtained using our implementation, along with a comparison of our findings with related 

experiments from the literature. The paper concludes in Section 4 with a summary of the key conclusions and 

provides suggestions for future research directions. 

 

 

2. METHOD 

In this section, we outline the methodology employed in this paper, encompassing three crucial 

stages: preprocessing, feature extraction, and liver disease prediction. The preprocessing stage involves 

cleaning and normalizing the data to ensure its accuracy and consistency. During the feature extraction stage, 

we identify and extract relevant features from the dataset to enhance the model's performance. Finally, in the 

liver disease prediction stage, we test each model with the prepared data to compare the three different 

machine learning approaches and determine the most effective one. We use generated statistics to evaluate 

performance metrics, including accuracy, precision, recall, and F1-score, to select the best predictive model. 

Figure 1 provides a summary of our adapted methodology in this paper. 

The first step involves addressing missing and corrupted data in the liver patient dataset. The data 

preprocessing is a critical step in machine learning, as the quality of the input data can significantly impact 

the model's performance [30]. In this paper, we use the latest preprocessing technique to handle missing, 

corrupted data, and employ methods like imputation or data cleaning to ensure the dataset is suitable for 

modeling as shown in Figure 1.  
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Figure 1. Our workflow for comparing the three different machine learning models using the same dataset. 

The workflow steps involve preprocessing, feature extraction, as well as model training and prediction. After 

applying the same workflow to the three machine-learning models, we utilized model outputs for comparing 

the three-model performance 

 

 

Linear transformation techniques such as normalization, standardization, and feature scaling are 

used to scale and shift data points. In this context, min-max scaling method is calculated by subtracted data 

elements from the smallest value and divided by the result of subtracting the largest data element from the 

smallest as (1): 

 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
 (1) 

 

Moreover, one-hot encoding turns categorical variables into binary vectors with a single binary value (1 or 0) 

to represent each category [31]. In the same context, the Z-Score scaling method used to scale number in a 

mean of 0 and a standard deviation of one [32]. This can be achieved by taking the mean and dividing the 

result by the standard deviation as (2). 

 

𝑥𝑠 𝑡𝑎𝑛 𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑥−𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑(𝑥)
 (2) 

 

Finally, sigmoid function maps any real-valued number to the range [0, 1]. This mathematical 

function is integral to the preprocessing steps in machine learning, helping to transform data into a suitable 

format for training models and improving the performance of algorithms. Understanding these functions and 

when to apply them is crucial for effective data preprocessing. Sigmoid function is commonly used in logistic 

regression to model binary classification problems in the preprocessing phase as (3): 

 

𝑓(𝑥) =
1

1+𝑒−𝑥   (3) 

 

The second step of our framework involves reducing irrelevant features in the dataset. Feature 

selection is important to improve the model's efficiency and accuracy. Irrelevant or redundant features can 

introduce noise and complexity, making it more challenging for the model to learn meaningful patterns. We 

use techniques such as feature importance, correlation analysis, or dimensionality reduction methods to select 

the most informative features for our model. Here, the principal component analysis (PCA) is used to reduce 

the dimensionality of a data set consisting of a large number of interrelated variables using covariance matrix 

as (4) [33]: 

 

𝑐𝑜𝑣𝑎,𝑏 =
∑(𝑎𝑖−�̄�)(𝑏𝑖−�̄�)

𝑀−1
  (4) 
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where 𝑐𝑜𝑣𝑎,𝑏  represents the covariance of features a and b. 𝑏𝑖 is the training sample from feature b. �̄� 

denotes the mean sample of feature a. �̄� is the mean sample of feature b and M represents the total amount of 

samples. 

Finally, in the third step of our method machine learning models are applied to big data on liver 

disease. The models are used to predict and classify patients as either having or not having liver disease, as 

shown in Figure 1. The models are trained using the preprocessed dataset and the selected relevant features. 

The specific models used: Gaussian NB, KNN, and the RF algorithm, would depend on the presented 

methodology. First, in the training phase, the KNN algorithm simply memorizes the dataset. Assuming we 

have a dataset with m data points 𝑥𝑖 in an n-dimensional feature space, each associated with a label 𝑦𝑖 , and 

we want to predict the label for a new data point 𝑥𝑛𝑒𝑤 . Then, the distance between two points xi and 𝑥𝑛𝑒𝑤  can 

be computed using Euclidean distance as (5) [34]: 

 

𝐷(𝑥𝑖 , 𝑥𝑛𝑒𝑤) = √∑ (𝑥𝑖−𝑗 , 𝑥𝑛𝑒𝑤)2𝑘
𝑗   (5) 

 

Equation (5) represents a method for updating a vector x  based on differences between its current 

value and a new value. It involves calculating the average of the squared differences between the current 

value 𝑥𝑖 and the new value 𝑥𝑛𝑒𝑤  for all values of j from 1 to n. The square root of this average is then used to 

update 𝑥𝑖, effectively moving it closer to 𝑥𝑛𝑒𝑤. This iterative update rule suggests that the vector 𝑥 is 

gradually transitioning towards the desired value 𝑥𝑛𝑒𝑤 . Algorithm 1 presents the KNN procedure which 

relies on the simple principle of determining the category of a specific query point based on the most frequent 

categories among the 'k' nearest points in the dataset. The first step in the algorithm involves calculating the 

distances between the query point and each point in the dataset, typically using Euclidean distance. Next, the 

data points are sorted based on their distance from the query point, and the first 'k' points are selected as the 

nearest neighbors. The most frequent category among these neighbors is then determined and considered as 

the prediction or classification for the query point. This method is effective in various classification scenarios 

but requires intensive computations, especially with larger datasets. 

 

Algorithm 1. The KNN algorithm 
Input: A set of data points 'D', a query point 'q', and an integer 'k' representing the 

number of neighbors and D can be represented as Dataset (𝐷[1 … 𝑚. 1 … 𝑚]). 
Output: The most common class among the 'k' nearest neighbors of 'q'. 

for 𝑖 ← 1 to m do visited [𝑖] ←false 
execute visited [i] ←false 

Calculate the distance between the query point 'q' and each point in the data set 'D'. 

Visited [𝑞] ← 𝑡𝑟𝑢𝑒 
Current ← 𝑞 

for 𝑖 ← 2to 𝑚 do 

Sort the points in 'D' based on their distance to 'q'. 

Select the first 'k' points from this sorted list. These points are the 'k' nearest 

neighbors of 'q'. 

Count the frequency of each class among the 'k' nearest neighbors. 

Determine the most common class among these neighbors. 

Return the most common class as the prediction for the class of 'q'. 

 

The KNN algorithm assigns the class label based on majority voting among the k nearest neighbors.  

 

�̂�𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝐼(𝑦𝑖 = 𝑐𝑖)
𝑘
𝑖  (6) 

 

where 𝑐𝑖 is the class of the i-th neighbor, �̃�𝑛𝑒𝑤 represents the predicted class label for the new data point, 

argmax denotes the argument that maximizes the expression within the parentheses.∑ 𝐼(𝑦𝑖 = 𝑐𝑖)
𝑘
𝑖 . To 

calculate the sum of indicator functions, where each indicator function is equal to 1 if the i-th nearest neighbor 

belongs to the class being evaluated (ci) and 0 otherwise. The gaussian distribution for continuous features is 

a probability density function that describes the likelihood of observing a specific value for a feature 𝑦 given 

its mean and standard deviation as (7) [35]: 

 

𝑝(𝑦|𝑥) =
1

√𝜋𝜎2𝑦𝑖
𝑒𝑥𝑝 (−

(𝑥𝑖−𝜇𝑦𝑖)2

2𝜎2𝑦𝑖
) (7) 

 

where 𝜇𝑦𝑖  is the mean of feature 𝑖 for class 𝑦 and 𝜋𝜎2𝑦𝑖  represents the standard deviation of feature i for 

class 𝑦. The normalization constant 
1

√𝜋𝜎2𝑦𝑖
 ensures the total area under the probability density curve 
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integrates to 1, and the bell-shaped curve is defined by the exponent. Algorithm 2 (Gaussian NB algorithm) is 

a popular classification method in machine learning, based on the principle of Bayes' theorem. This algorithm 

classifies data based on the probability of each category, assuming that each feature follows a normal 

(Gaussian) distribution. Initially, the algorithm calculates the prior probability of each category based on its 

presence in the training set. Then, it computes the mean and variance for each feature within each category. 

When classifying a new instance, the algorithm calculates the probability of each feature in this instance 

under each category using the Gaussian probability density function. The probability of the category is 

determined by multiplying these probabilities together and then multiplying by the category's prior 

probability. Finally, the instance is classified into the category that achieves the highest probability. This 

method is efficient but relies on the 'naive' assumption of independence among variables, which may not be 

accurate in all scenarios. 

 

Algorithm 2. The Gaussian naïve Bayes 
Input: Training set (features X and labels Y), Test instance (x) 

Output: Predicted label for the test instance 

1. Calculate Prior Probabilities: 

For each class 'c' in labels Y: 

Compute P(c) = Number of instances in class 'c' / Total number of instances 

2. Calculate Mean and Variance for each Feature: 

For each feature 'f' in the feature set X: 

For each class 'c' in labels Y: 

Calculate mean (f, c) = Mean of feature 'f' in class 'c' 

Calculate variance (f, c) = Variance of feature 'f' in class 'c' 

3. Classify the Test Instance: 

For each class 'c' in labels Y: 

Initialize likelihood = P(c) 

For each feature 'f' in the test instance x: 

Calculate the probability density of x[f] using Gaussian distribution with mean(f, c) 

and variance(f, c) 

4. Determine the Class with the Highest Likelihood: 

Predict the label as the class with the maximum likelihood 

5. Return the Predicted Label 

 

Finally, for each feature 𝑋𝐽, the importance score can be calculated based on RF algorithm as (8): 

 

Importance(𝑋𝐽) =
1

𝐾𝑖
∑ ∑ 𝑛𝑜𝑜𝑑𝑒𝑠𝑠𝑝𝑙𝑖𝑡𝑖𝑛𝑔 𝑋𝑗𝑝𝑠𝑝𝑙𝑖𝑡

𝑘
𝑡=1 (𝑡) × 𝛥𝑖(𝑡) (8) 

 

where 𝐾𝑖 is the total number of trees in the RF model, 𝑝𝑠𝑝𝑙𝑖𝑡(𝑡) is the proportion of samples reaching the 

nodes that split on 𝑋𝑗 in tree t and 𝛥𝑖(𝑡) is the decrease in impurity in tree t caused by the split on 𝑋𝑗. The RF 

algorithm, see Algorithm 3, is an ensemble learning method primarily used for classification and regression. 

It constructs multiple decision trees during training, leveraging the randomness introduced by two key 

techniques: bootstrap sampling and feature randomness. In bootstrap sampling, each tree is trained on a 

random sample of the data, allowing for diverse training sets for each tree. For each node of these trees, a 

random subset of features is considered for splitting, rather than evaluating all available features, which adds 

to the randomness and helps in reducing correlation between trees [36]. This combination of techniques 

enables RF to achieve high accuracy and robustness, as it effectively mitigates overfitting by averaging the 

predictions from multiple trees. For classification tasks, the algorithm outputs the mode of the classes 

predicted by individual trees, while for regression, it computes the average of their predictions. 

 

Algorithm 3. The random forest 
Input: A training set, number of trees 'N', and number of features to consider 'K'. 

Output: A collection of decision trees. 

1. Initialize an empty forest (a collection of trees). 

2. For each tree 't' from 1 to 'N': 

   a. Generate a random sample of the training set (with replacement), called a bootstrap 

sample. 

   b. Build a decision tree 'Tree_t' on this bootstrap sample. 

      - At each node of the tree, randomly select 'K' features without replacement. 

      - Choose the best split from these 'K' features to split the node. 

      - Grow the tree to the largest extent possible without pruning. 

   c. Add 'Tree_t' to the forest. 

3. For classification tasks, the RFst output is the mode of the classes predicted by 

individual trees. 

   For regression tasks, it is the average of the predictions. 

4. Return the forest. 
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3. RESULTS AND DISCUSSION  

This section presents an overview of the evaluation criteria and benchmarks used in our experiment, 

focusing on the evaluation metrics. It then delves into the data analysis, providing a detailed examination of 

the results. Finally, we compare our findings with previous research to highlight the improvements and 

contributions of our study. 

 

3.1.  Implementation details 

This subsection outlines the implementation specifics of our model comparison, which is crucial for 

assessing the feasibility, quality, and efficiency of our work. To achieve this objective, the proposed 

approach was implemented on a laptop equipped with an Intel® Core™ i7-9850H CPU running at 2.6 GHz, 

32 GB of RAM, and the Windows 11×64 operating system. Python was chosen for the application 

development due to its extensive libraries and capabilities. The classification and evaluation processes were 

carried out using the scikit-learn (sklearn) package, while data processing was handled with the Pandas 

library. For data visualization and further data manipulation, the Matplotlib and NumPy libraries were 

utilized. 

 

3.2.  Dataset 

The experiments were conducted using a liver disease patient dataset [37]. This dataset includes ten 

variables: age, gender, total bilirubin, direct bilirubin, alkaline phosphatase (Alkphos), alamine 

aminotransferase (Sgpt), aspartate aminotransferase (Sgot), total proteins, albumin, and the albumin and 

globulin ratio. It also contains a classification field labeled by experts, indicating either "1" for liver patient 

or "2" for non-liver patient. 

The liver disease patient dataset exemplifies big data, characterized by its volume, complexity, 

velocity, variety, veracity, and value. With 32,000 records, each containing ten attributes, the dataset's size 

necessitates advanced big data techniques for storage and analysis. Its complexity, encompassing factors such 

as age, gender, and various biochemical markers, requires sophisticated processing methods. Although the 

dataset is static, its utility in rapid analysis for developing effective machine learning models highlights its 

velocity.  

 

3.3.  Evaluation metrics 

To gauge the effectiveness of a particular classification algorithm, it is imperative to assess its 

performance. In the pursuit of evaluating the proposed paper, we have carefully explored performance 

evaluation metrics, encompassing parameters like accuracy, precision, recall, the F-1 score, and the AUC 

score. Nonetheless, in our study, we systematically elaborated on the following metrics to appraise the 

classification algorithm: 

a. Accuracy: the accuracy of a binary classification model can be expressed mathematically as (9): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (9) 

 

where TP is the number of liver disease observations correctly classified as liver disease at threshold. TN 

the number of normal liver observations correctly classified as the absence of liver disease at threshold. 

FP the number of normal liver observations incorrectly classified as liver disease at threshold. The key 

principles and laws that underlie these mathematical representations include FN is Number of normal 

liver observations incorrectly classified as the absence of liver disease at threshold. 

b. Precision: divides the total number of observations the model detects by the number of observations 

pertaining to liver disease. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10) 

 

c. Recall: it determines the number of liver disease cases identified by the model divided by the total number 

of tests set activities. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11) 

 

d. F1 score: is the weighted average of recall and precision rate is calculated. as (12): 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒 𝑐𝑎𝑙𝑙

𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒 𝑐𝑎𝑙𝑙
 (12) 
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3.4.  Result analysis 

In this paper, we compared three distinct machine learning models: Gaussian NB, KNN, and RF. 

We used both train-test split and cross-validation methods during this evaluation. The dataset was randomly 

split into an 80% training set and a 20% testing set, ensuring data balance through stratified random 

sampling. To further assess and contrast the classifiers' effectiveness, we employed the ROC curve, with the 

total area under the ROC curve AUC serving as a key performance metric. AUC values range from 0.5 to 1, 

reflecting the classifiers' discrimination and predictive capabilities. 

Our comparative analysis revealed significant variations in model performance. As shown in  

Table 1, the KNN model exhibited strong classification capabilities, achieving high precision, recall, and  

F1-scores across both classes, resulting in an overall accuracy of 95%. In contrast, the Gaussian NB model 

achieved a lower overall accuracy of 55%, despite having a high recall rate. The RF classifier stood out with 

near-perfect performance, achieving perfect precision, recall, and F1-scores across all classes and an 

outstanding overall accuracy of 97.3%. These findings highlight the critical importance of model selection, 

with the RF model emerging as the most robust and accurate for this classification task.  

 
 

Table 1. Performance metrics of comparing the three classification models KNN,  

Gaussian NB and random forest 
Model Accuracy Precision Recall F1-Score AUC 

KNN 95% 94% 93% 93% 93% 

Gaussian NB 55.7% 39% 96% 55% 68% 

Random Forest 97.3% 97% 96% 95% 95% 

 

 

Figure 2 presents the performance metrics of the three models, including precision, recall, F1-score, 

and support. The RF model, shown in Figure 2(a), achieves the highest accuracy at 97.3% and an F1-score of 

95%. The KNN model, depicted in Figure 2(b), follows with a precision of approximately 94%, recall of 

about 93%, and an F1-score of 93%. Although the Gaussian NB model, illustrated in Figure 2(c), has a lower 

accuracy of 55.7% and an F1-score of 55%, it excels in recall with a value of 96%, highlighting its strength 

in identifying positive instances. 

Figure 3 presents the confusion matrices for the three classification models. The KNN model in 

Figure 3(a) correctly identified 8,439 instances as true positives but also incorrectly labeled 333 instances as 

false positives and missed 430 true positives, classifying them as false negatives. The Gaussian NB model in 

Figure 3(b), however, exhibited a higher rate of false positives at 5,358, while correctly identifying 3,371 true 

positives. The balance between false positives and true positives is crucial as it affects model decisions 

depending on the application context. The RF model Figure 3(c) demonstrated exceptional performance, with 

only 7 false positives and 351 false negatives, resulting in a high count of 8,765 true positives. The choice of 

model depends on the specific task requirements and the acceptable trade-offs between false positives and 

false negatives, which vary across different domains and applications. The confusion matrix is essential for 

evaluating these trade-offs and making informed model selection decisions, as illustrated in Figure 3. While 

KNN and Gaussian NB have higher false positive rates, RF shows minimal false positives and negatives, 

resulting in a superior true positive count. 

Figure 4 displays the ROC curves for the KNN, Gaussian NB, and RF models. In this study, we 

evaluated these models based on their discriminative power, as depicted by their ROC curve values. The 

ROC curve illustrates a model's capacity to differentiate between positive and negative classes across various 

threshold settings. The area under the ROC curve AUC quantifies overall model performance, with values 

nearing 1.0 indicating high accuracy and values around 0.5 suggesting random classification.  

Our findings show that the RF model Figure 4(a) achieves the highest AUC value at 95%, 

demonstrating exceptional class differentiation ability. The KNN model Figure 4(b) follows with an AUC of 

93%, indicating high but slightly lower performance. The Gaussian NB model Figure 4(c) has an AUC of 

86%, reflecting a less robust classification ability. The ROC curves and their AUC values provide crucial 

insights into the models' effectiveness, helping to inform decisions about their appropriateness for specific 

applications or tasks. These values highlight RF's superior class distinction capability compared to KNN and 

Gaussian NB, offering valuable guidance for classification task selection. 

Figure 5 presents the correlation matrix for the KNN, Gaussian NB, and RF models, providing 

insights into the linear relationships between various liver function tests and demographic data. The matrix 

reveals that Age has a negligible correlation with other variables, indicating its limited linear impact on  

liver-related tests. Total and Direct Bilirubin features show a strong positive correlation (0.887), suggesting a 

direct relationship in liver function. Liver enzymes, such as Alkphos, Sgpt, and Sgot, exhibit moderate to 

high correlations, particularly between Sgpt and Sgot (0.783), reflecting their interconnected roles in liver 
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health. Total proteins and albumin (ALB) also display a strong correlation (0.776), underscoring their 

combined importance in liver function assessments. The A/G ratio shows a significant positive correlation 

with albumin (0.683), which aligns with its composition. Gender, represented as binary variables, shows a 

strong negative correlation between its categories (-0.928), as expected from binary data. This matrix is 

crucial for understanding the interdependencies among liver-related variables and can guide in-depth analysis 

and model development, particularly in identifying potentially redundant or highly predictive variables. The 

correlations among liver enzymes and proteins are notably strong, with gender exhibiting a significant 

negative correlation between its binary categories, offering critical insights for precise liver function analysis. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 2. A classification report of the three models (a) KNN, (b) Gaussian NB, and (c) RF. 

RF demonstrates the highest accuracy and F1-score, followed by KNN, while Gaussian NB lags behind in 

accuracy and F1-score but excels in recall 
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(a) (b) (c) 

 

Figure 3. Confusion matrix for (a) KNN, (b) Gaussian NB, and (c) RF. KNN and Gaussian NB has higher 

false positive rates, while RF exhibits minimal false positives and negatives, resulting in a higher true 

positive count 

 

 
Receiver operating characteristic (ROC)  

curve-KNN 

Receiver operating characteristic (ROC)  
curve-RF 

  
(a) (b) 

  

Receiver operating characteristic (ROC)  
curve-Gaussian NB 

 
(c) 

 

Figure 4. ROC curves for (a) RF, (b) KNN, and (c) Gaussian NB, showcasing their discriminative power. 

The AUC values indicate RF's superior ability to distinguish between classes compared to KNN and 

Gaussian NB. These curves provide valuable insights into model performance, aiding in informed  

decision-making for classification tasks 
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Figure 5. Correlation matrix between variables, highlighting relationships between liver function tests and 

demographic data. Strong correlations are evident among liver enzymes and proteins, with gender displaying 

a notable negative correlation between its binary categories. This matrix offers critical insights for precise 

liver function analysis 

 

 

3.5.  Comparison with previous works 

Table 2 provides a summary of previous research that employed different machine learning models 

to predict liver disease. Each model has a different level of accuracy, precision, recall, F1-score, and AUC. 

Singh et al. [10] implemented logistic regression (LR) with an accuracy of 74.36%. Priya et al. [22] used 

SVM, achieving an accuracy of 71.35%. Ghosh et al. [25] applied back propagation, reporting an accuracy of 

73.2% and precision of 65.7%. Bahramirad et al. [26] also used logistic regression, achieving an accuracy of 

73.39% and a precision of 57.69%. Thirunavukkarasu et al. [27] employed decision trees (DT), achieving a 

notable accuracy of 81%. Nahar et al. [28] used logistic regression, with an accuracy of 73.97%.  

Vijayarani and Dhayanand [29] utilized AdaBoost, achieving an accuracy of 70.25%. In another study, they 

used SVM and achieved a higher accuracy of 79.66% with 76.6% precision. In this study, the KNN model 

achieved a remarkable accuracy of 95%, with precision, recall, and F1-score values of 94%, 93%, and 93%, 

respectively, demonstrating its effectiveness in classification. The Gaussian NB model displayed lower 

performance, with an accuracy of 55.7%, precision of 39%, recall of 96%, and F1-score of 55%, indicating 

less effectiveness compared to other models. The random forest model emerged as the top performer, 

boasting an accuracy of 97.3% and well-balanced precision, recall, and F1-score values of 97%, 96%, and 

95%, respectively. By leveraging a large and complex dataset, this study not only maintained but also 

improved the prediction accuracy for liver diseases. This can contribute positively to enhancing the ability to 

predict liver diseases effectively, thus facilitating early diagnosis and timely intervention. 

 

 

Table 2. compares previous papers on liver disease prediction using machine learning models 
Paper Model Accuracy Precision Recall F1-Score AUC 

Singh et al. [10] LR 74.36% - - - - 
Priya et al. [22] SVM 71.35% - - - - 

Sontakke et al. [1] Back Propagation 73.2% 65.7% - - - 

Bahramirad et al. [26] Logistic 73.39% 57.69% - - - 
Thirunavukkarasu et al. [27] DT 81% - - - - 

Nahar et al. [28] LR 73.97% - - - - 

Vijayarani et al. [29] AdaBoost 70.25 % - - - - 
 SVM 79.66% 76.6% - - - 

Results of this study 

KNN 95% 94% 93% 93% 93% 

Gaussian NB 55.7% 39% 96% 55% 68% 

RF 97.3% 97% 96% 95% 95% 
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4. CONCLUSION 

This paper explores the prediction of liver diseases by comparing various machine learning models 

using a big data liver patient dataset, which contains over 32,000 patient records and includes 10 distinct 

variables. By employing advanced machine learning techniques, including data processing, classification, 

and prediction, our aim was to enhance the early detection and accurate assessment of liver diseases. We 

addressed the complexities inherent in big data through sophisticated preprocessing methods, ultimately 

contributing to improved healthcare outcomes in liver disease diagnosis. 

This study utilized and compared three distinct machine learning models: KNN, Gaussian NB, and 

RF. The models were rigorously evaluated based on key performance metrics, including accuracy, precision, 

recall, F1-score, and the AUC. The results indicated that the RF model consistently outperformed the others, 

demonstrating superior performance across all metrics. KNN was the second-best model, while Gaussian NB 

showed comparatively lower results. Despite the valuable contributions this paper makes to liver disease 

prediction, there is still room for improvement. Future work should focus on developing more refined models 

that can not only detect the presence of liver disease but also accurately classify the specific type, such as 

hepatitis A, B, C, or fatty liver disease. 

Furthermore, future research should aim to assess how close individuals are to developing liver 

diseases, focusing on their risk proximity and the progression timeline. This can be achieved by integrating 

more interpretable data and enhancing the effectiveness of machine learning models. In summary, our study 

highlights the crucial role of big data and machine learning techniques in the early diagnosis and prediction 

of liver diseases. The adoption of advanced and interpretable models will deepen our understanding of these 

conditions, leading to more effective healthcare interventions that could save lives and improve patient care 

quality. 
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