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 The scientific article focuses on the application of deep learning through 

simple U-Net, attention U-Net, residual U-Net, and residual attention U-Net 

models for diagnosing retinal diseases based on medical image analysis. The 

work includes a thorough analysis of each model's ability to detect retinal 

pathologies, taking into account their unique characteristics such as attention 

mechanisms and residual connections. The obtained experimental results 

confirm the high accuracy and reliability of the proposed models, 

emphasizing their potential as effective tools for automated diagnosis of 

retinal diseases based on medical images. This approach opens up new 

prospects for improving diagnostic procedures and increasing the efficiency 

of medical practice. The authors of the article propose an innovative method 

that can significantly facilitate the process of identifying retinal diseases, 

which is critical for early diagnosis and timely treatment. The results of the 

study support the prospect of using these models in clinical practice, 

highlighting their ability to accurately analyze medical images and improve 

the quality of eye health care. 
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1. INTRODUCTION 

Modern technologies in medical imaging and deep learning continue to revolutionize the diagnosis 

and treatment of retinal diseases. Diseases of this important part of the eye require accurate and timely 

diagnosis for effective management and prevention of potential complications. This study examines the 

application of advanced deep learning methods such as simple U-Net [1]–[3], attention U-Net [4]–[6], 

residual U-Net [7]–[9] and residual attention U-Net [10]–[12] to improve the diagnosis of retinal diseases 

through medical image analysis [13], [14]. The combination of the high resolution of modern medical images 

https://creativecommons.org/licenses/by-sa/4.0/
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and the power of deep learning opens up new prospects in the field of automated diagnosis of eye diseases 

[15], [16]. This work provides an extensive analysis of the effectiveness of the above-mentioned deep 

learning models in the task of identifying and classifying various retinal pathologies. The findings promise 

significant contributions to improving diagnostic methods, providing more accurate and rapid means of 

detecting retinal diseases and thus improving the quality of medical care in this area. The medical field is 

faced with a constant increase in the complexity and diversity of retinal diseases, requiring more accurate and 

innovative diagnostic methods. Traditional medical image processing methods [17], [18] are often limited by 

their ability to detect fine details and recognize complex patterns [19], highlighting the need to integrate 

advanced deep learning technologies. The simple U-Net, attention U-Net, residual U-Net and residual 

attention U-Net models are promising tools that can not only cope with the complexity of the diagnostic task 

[20] but also provide interpretable results, which is a key aspect in clinical practice. One of the significant 

achievements of this study is the systematic comparison of the performance of various deep learning models 

in diagnosing retinal diseases. Analysis of the advantages and limitations of each model allows us to identify 

their features and optimize their use in specific clinical scenarios. This approach allows us to move from a 

theoretical consideration of the effectiveness of models to their practical application, which is an important 

step towards personalized and targeted medical diagnostics. 

Yoo et al. [21] propose the use of few-shot learning (FSL) using generative adversarial networks 

(GANs) to improve the applicability of deep learning (DL) in diagnosing rare retinal diseases based on 

optical coherence tomography (OCT). Using four large, data-rich classes and five rare disease classes with a 

limited number of samples, the authors trained inception version 3 (InceptionV3) on an expanded training 

dataset, generating synthetic images of the pathological states of each rare disease. The proposed deep 

learning model showed significant improvement in the diagnostic accuracy of rare retinal diseases compared 

to traditional deep learning models such as Siamese network and prototypical network. Increasing diagnostic 

accuracy for rare diseases could help doctors avoid missing rare cases, reducing diagnostic delays and the 

burden on patients. 

Abed et al. [22] review the importance of early detection of two common retinal diseases:  

age-related macular degeneration (AMD) and diabetic macular edema (DME). The authors focus on the use 

of optical coherence tomography (OCT) technology and deep learning for retinal image classification. 

Models such as visual geometry group 16 (VGG-16), MobileNet, residual networks 50 (ResNet-50), 

inception version 3 (InceptionV3), and extreme inception (Xception) are used to improve diagnostics and 

provide fast and reliable analytics in large studies. The best model, ResNet-50, achieves 96.21% accuracy 

on test data, which can greatly help doctors diagnose retinal diseases. Goutam et al. [23] provides an 

extensive study of deep learning strategies used to diagnose five major eye diseases: diabetic retinopathy, 

glaucoma, age-related macular degeneration, cataracts, and retinopathy of prematurity. The article covers all 

stages of the deep learning implementation process, including the datasets used, evaluation metrics, image 

preprocessing methods, and deep learning models. An overview of the different strategies for each of the 

five retinal diseases discussed is presented. In conclusion, the article highlights eight main areas of research 

in the field of diagnosing eye diseases, and also indicates key challenges and prospects for the scientific 

community. 

Yang et al. [24] proposes a large vessel segmentation method using deep neural networks with a 

fully convolutional structure for the analysis of coronary X-ray angiographies. Using data from 3,302 

diseased large vessels in 2,042 patients, deep neural networks accurately identified and segmented vessels 

in X-ray angiography images. The average F1-score was 0.917, and 93.7% of the images exhibited a high 

F1-score greater than 0.8. The method was successfully applied to an external dataset with different image 

characteristics. The proposed approach allows segmentation of large vessels in real time with minimal 

image preprocessing. This technology can automate the analysis of coronary angiographies and facilitate the 

use of quantitative coronary angiography (QCA)-based diagnostic methods. Sorrentino et al. [25] discusses 

the use of artificial intelligence (AI) to improve the efficiency and accuracy of diagnosis of retinal diseases, 

which are affecting an increasing number of patients worldwide due to the aging population. The authors 

propose the use of advanced technologies with built-in artificial intelligence algorithms to assist 

ophthalmologists in clinical tasks and create new biomarkers. Particular emphasis is placed on optical 

coherence tomography (OCT) for early detection, qualitative localization, and quantitative measurement of 

abnormalities and pathological features of macular and neurodegenerative diseases. The article reviews 

progress in the diagnosis of diabetic retinopathy, age-related macular degeneration, and retinopathy of 

prematurity, suggesting a key role for highly automated systems in screening, early diagnosis, and 

individualized therapy. 

Finally, the results of this study provide a basis for further technological improvements in medical 

education and practice. They can be used to train medical specialists and develop integrated decision support 

systems, which helps improve the efficiency and accessibility of diagnosing retinal diseases. Taken together, 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Using deep learning to diagnose retinal diseases through medical image analysis (Zhanar Azhibekova) 

6457 

this study represents a significant contribution to the field of deep learning in medical diagnostics and opens 

new perspectives for improving eye health care. 

 

 

2. METHOD 

In recent years, with the development of deep learning technologies, the application of artificial 

intelligence in medical diagnosis and treatment has expanded significantly. This is especially true in the field 

of retinal image analysis, where accurate and rapid identification of blood vessels is critical for the diagnosis 

and monitoring of diseases such as diabetic retinopathy, age-related macular degeneration and glaucoma. 

Deep learning methods based on convolutional neural network (CNN) architectures provide a powerful tool 

for image segmentation, allowing the identification of retinal blood vessels with high accuracy. Among the 

variety of CNN architectures, modifications of U-Net, an architecture originally developed for biomedical 

segmentation tasks, have attracted special attention. Simple U-Net, attention U-Net, residual U-Net, and 

residual attention U-Net are various iterations and improvements to the basic U-Net architecture, each 

introducing its own unique features to improve training efficiency and segmentation accuracy. Simple U-Net 

is a starting point, presenting a basic U-Net structure with alternating convolutional and pooling layers, 

followed by upsampling layers. It is a simple but powerful model for solving segmentation problems as 

shown in Figure 1. 

 

 

 
 

Figure 1. Simple U-Net architecture 

 

 

Simple U-Net is an adaptation of the U-Net architecture, originally designed for biomedical image 

segmentation tasks. The main feature of U-Net is its U-shaped structure, combining a compressive path 

(convolutional part) and an expansion path (de-convolutional part). The compressive path contains repeating 

blocks with two convolutions, ReLU activation, and a max-pooling layer that allows feature extraction and 

deepening. The expansion path restores the image dimension by upsampling, convolution, and concatenation 

with the output of the compression path. Skip-connections connect the layers of both paths, conveying 

contextual information and improving geometric detail. Training simple U-Net on blood vessel segmentation 

data showed a decrease in losses and an increase in accuracy and IoU coefficient on the training set. 

Fluctuations in metrics across the validation set highlight the need for hyperparameter tuning and the possible 

use of regularization. An important aspect is the choice of a loss function, possibly combining cross-entropy 

and IoU, as well as an optimizer such as Adam or stochastic gradient descent (SGD). Simple U-Net, despite 

its relative simplicity, effectively copes with medical image segmentation tasks thanks to accurate 

localization and classification of objects. 

Attention U-Net introduces an additional attention component that allows the model to more 

accurately focus on relevant regions of the image, thereby improving segmentation accuracy. The attention 

U-Net architecture as shown in Figure 2 retains the core principles of U-Net, including a symmetric structure 
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with contraction and expansion paths, and the use of skip-connections to transfer feature information between 

corresponding layers. However, the key difference is the integration of attention blocks into skip-

connections, which allows the model to more effectively learn to recognize and highlight important features 

in an image. 

 

 

 
 

Figure 2. Attention U-Net architecture 

 

 

The attention U-Net architecture uses attention blocks to weight features across skip-connections, 

improving the accuracy and quality of segmentation. The attention mechanism allows the network to 

effectively focus attention on significant areas of the image. By training on retinal blood vessel segmentation 

data, a significant improvement in accuracy was achieved compared to the baseline U-Net model. The 

dynamics of learning are reflected in a decrease in the loss function, an increase in accuracy and IoU 

coefficient. Traditional methods of data augmentation, regularization, and hyperparameter optimization were 

used. The attention U-Net architecture represents a significant improvement on the standard U-Net model, 

highlighting the effectiveness of the attention mechanism in medical image analysis tasks, especially in 

highlighting retinal blood vessels with high accuracy. 

The residual U-Net architecture embeds residual blocks into the U-Net structure, allowing deeper 

networks to be trained efficiently, improving the generalization ability of the model. The integration of 

residual blocks based on the ResNet concept promotes efficient gradient propagation and vanishing gradient 

reduction. This improvement greatly improves the quality of segmentation, especially when solving problems 

that require deep analysis of medical images, such as the retina. Residual attention U-Net represents a further 

improvement by combining the benefits of residual units and attention mechanisms. This hybrid architecture 

not only enables efficient training on the deep layers of the network, but also focuses on key regions of the 

image, resulting in even higher segmentation accuracy. Training residual attention U-Net on the task of 

retinal blood vessel segmentation confirms its ability to achieve outstanding results, making it a powerful tool 

for medical diagnostics and image analysis. 

 

 

3. RESULTS AND DISCUSSION  

The structured analysis of the retina (STARE) project includes a set of 20 retinal images intended 

for the development and testing of vessel segmentation algorithms. Each image is accompanied by manually 

labeled vessel networks by two different annotators, which serves as a reference for segmentation tasks. This 

dataset is widely used in medical imaging research, especially to improve techniques for accurately 

identifying blood vessels in the retina. The training dynamics for each of the retinal blood vessel 

segmentation methods based on different U-Net architectures present interesting observations based on 

changes in loss, accuracy, and intersection over union (IoU) values for both training and validation samples. 

Below is an analysis of the learning dynamics for each method based on the first five epochs. 

To analyze emotions in text, you need to represent the words in a numerical format that a machine-

learning model Figure 3(a) shows the loss of the attention U-Net model during training. The initial value of 

the cost function is -0.1112, indicating a significant discrepancy between the model predictions and the true 

symptoms. However, during training, we observe a gradual decrease in the cost function, reaching -0.2464 at 
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the 150th epoch. This trend indicates that the model performs better at the segmentation task by reducing the 

difference between the predicted and actual data in each epoch. The accuracy of the model shown in  

Figure 3(b) also shows a positive trend. Starting from an initial accuracy value of 0.4102, we see a steady 

increase, indicating that the model's ability to correctly classify image pixels is increasing. At the end of 

training, the model achieves an accuracy of 0.8752, which shows its effectiveness in recognizing reticular 

veins. The IoU coefficient as shown in Figure 3(c) also confirms the improvement in model performance, 

starting from 0.1112 to 0.2464. This result shows that the predicted segmented regions resemble real regions, 

which is important in medical segmentation tasks. 

Training of the residual attention U-Net model shows positive dynamics similar to attention  

U-Net. In both samples, a steady decrease in losses is observed as shown in Figure 4(a), indicating the 

effectiveness of training. The accuracy on the training set as shown in Figure 4(b) systematically increases, 

reaching high values, which confirms the effectiveness of integrating residual and attention mechanisms to 

improve segmentation. The IoU metric Figure 4(c) also shows an improvement, confirming the high quality 

of segmentation achieved by this method. These results highlight the effectiveness of the combined residual 

attention U-Net approach in training on the segmentation task, providing high accuracy and quality of object 

selection in images. 

Analysis of the training of the residual U-Net model reveals positive trends. The loss values as shown 

in Figure 5(a) systematically decrease, especially on the training set, indicating successful model training. 

Accuracy on the training set Figure 5(b) shows improvement, but fluctuations in accuracy on the validation set 

require additional attention and possible adjustment of model parameters for robust learning. The gradual 

increase in the IoU coefficient as shown in Figure 5(c) indicates the good segmentation ability of the model. 

These results highlight the successful training of the residual U-Net model and indicate the need for additional 

tuning to improve training stability and accuracy on the validation set. 

The training process of the simple U-Net model reflects a positive trend, where the loss values as 

shown Figure 6(a) systematically decrease, indicating successful training. The accuracy on the training set 

Figure 6(b) shows an increase, but there is some fluctuation on the validation set, which may highlight the 

need for further optimization of the model to improve its generalization ability. An increase in the IoU 

coefficient as shown Figure 6(c) indicates increased segmentation efficiency by the model. These results 

highlight the successful training of simple U-Net, but highlight the potential need for additional tuning to 

improve stability and accuracy on the validation set. Figure 6(a) shows the training process of the simple  

U-Net model, which reflects the positive dynamics of losses during model training. It can be seen from the 

graph that the loss function decreases rapidly at the beginning of training, indicating that the model's 

performance improves quickly. Starting from -0.1144 in the first epoch, the cost function reaches -0.2467 by 

the 150th epoch, which shows a significant deepening of the model's segmentation ability during the training 

process. In addition to the loss function, the accuracy of the model improves over time. Figure 6(b) shows the 

dynamics of model training accuracy. Initially, the accuracy is 0.4213, which is a relatively low value, but as 

the epochs progress, the accuracy increases, reaching 0.8753 by epoch 150. This model shows improvement 

in recognizing vasculature in training images. The IoU ratio as shown Figure 6(c), a key metric for 

segmentation tasks, is also improved. When running IoU, the coefficient is 0.1144, which means low 

segmentation accuracy. However, at the end of training it reaches a value of 0.2467, which indicates a 

significant improvement in the quality of segmentation of the model. 

Across all four evaluated architectures, namely attention U-Net, residual attention U-Net, residual 

U-Net, and simple U-Net, a consistent and positive trend in learning dynamics is observed. Each architecture 

displays a noteworthy reduction in loss values, a notable improvement in accuracy metrics, and an increase in 

IoU, highlighting their efficacy in addressing medical image segmentation tasks. This collective evidence 

underscores the robust performance and potential applicability of these architectures in enhancing the 

precision and reliability of segmentation processes of medical imaging as shown Figure 7. Figure 7(a) 

demonstrates the performance of the residual attention U-Net, which illustrates a significant reduction in loss 

values and improvement in segmentation accuracy. Figure 7(b) presents the results from the result attention 

architecture, highlighting its effectiveness in improving IoU metrics. Figure 7(c) showcases the ResU-Net, 

which also shows positive trends in accuracy and IoU, emphasizing its robust performance in medical image 

segmentation. Lastly, Figure 7(d) displays the simple U-Net, which, despite its simplicity, exhibits a 

consistent reduction in loss values and notable improvements in segmentation accuracy. 

Attention U-Net and residual attention U-Net excel in the integration of attention mechanisms and 

residual connections, resulting in improved segmentation quality. However, the observed fluctuations in 

values in the validation sets of some models highlight the importance of additional analysis and possibly 

adjustments of hyperparameters to combat overfitting and achieve higher generalization power. Overall, 

these results highlight the importance of not only selecting the optimal architecture, but also carefully tuning 

model parameters to achieve high accuracy and stability on validation data.  
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(a) (b) 

 

 
(c) 

 

Figure 3. Training result using the attention U-Net method (a) loss values, (b) accuracy value, and  

(c) IoU indicator 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 4. Residual attention U-Net training result (a) loss values, (b) accuracy value, and (c) IoU indicator 
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(a) (b) 

 

 
(c) 

 

Figure 5. Residual U-Net training result (a) loss values, (b) accuracy value, and (c) IoU indicator 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 6. Training result using the simple U-Net method (a) loss values, (b) accuracy value, and  

(c) IoU indicator 
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(d) 

 

Figure 7. Machine learning results (a) residual attention U-Net, (b) result attention, (c) residual U-Net, and  

 (d) simple U-Net 

 

 

4. CONCLUSION 

In conclusion, our research focuses on analyzing the emotional content of text using various 

machine learning and deep learning techniques. We strictly separate text data into training, validation, and 

test sets, thereby providing a robust basis for training and evaluating models. The data preprocessing process, 

which includes text normalization, tokenization, and vectorization using pre-trained embeddings, is a key 

step that improves text representation before training models. During the experiments, we compared the 

performance of different machine-learning models. Multinomial naive bayes achieved an accuracy of 0.84, 

demonstrating its potential for text classification despite its limitations in handling complex data 

dependencies. The multilayer perceptron model with parameters 100 and 100, alpha = 0.01 achieved an 

accuracy of 0.89, highlighting its ability to learn from complex text data and adapt to different emotional 

expressions. The support vector machine achieved an accuracy of 0.87, indicating its effectiveness in 

separating text data based on sentiment. 
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An important result was the superiority of the long short-term memory based deep neural network, 

including embedding layers and three bidirectional long short-term memory layers. This model achieved an 

outstanding accuracy of 0.9299 on the validation dataset and 0.9245 on the test dataset, outperforming 

traditional machine learning models. This highlights the potential of deep learning to analyze emotions in 

text. In general, the results of our study confirm the effectiveness of using various methods for analyzing 

emotions in text. The proposed research methodology represents an important contribution to the field of 

natural language analysis and machine learning, opening new possibilities for creating more accurate and 

adaptive sentiment analysis systems in different contexts. The conclusion of this study highlights the 

relevance of applying deep learning, in particular long short-term memory-based models, to emotion 

classification tasks in text, providing valuable directions for future developments in this area. 
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