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 Wireless sensing has emerged as a dynamic field with diverse applications 

across smart cities, healthcare, the internet of things (IoT), and virtual reality 

gaming. This burgeoning area capitalizes on the capacity to detect locations, 

activities, gestures, and vital signs by assessing their impact on ambient 

wireless signals. This review critically examines the prevailing challenges 

within wireless sensing and predicts future research trajectories. Even with 

the potential for nuanced signal processing facilitated by Wi-Fi propagation, 

its efficacy is impeded by noise interference in confined areas during 

transmission and reception. Consequently, this work aims to augment signal 

processing performance accuracy by delving into the most promising 

techniques and underexplored methods utilizing channel state information 

(CSI). Furthermore, the work offers a view into the potential of human 

activity recognition predicated on CSI properties. The study focusses on 

exploring location-independent sensing technique based on CSI, discussing 

relevant considerations and contemporary approaches used in Wi-Fi sensing 

tasks. The optimal practices in analysis are based on model design, data 

collection, and result interpretation. The discussions analysis investigates in 

detail the representative applications and outlines the major considerations 

of developing human activity recognition human activity recognition (HAR) 

based on Wi-Fi by analyzing the current critical issues of CSI-based 

behavior recognition methods and pointing out possible future research 

directions. 
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1. INTRODUCTION  

In the era of pervasive connectivity, Wi-Fi sensing emerges as an indispensable technology, 

wielding transformative influence across multifaceted domains [1]. The ubiquity of Wi-Fi signals facilitates 

seamless data transmission and serves as an intricate tapestry for understanding and enhancing the world 

around us. Wi-Fi sensing impacts various sectors in today's era of modern urbanization, improving energy 

efficiency with intelligent systems and setting the stage for groundbreaking applications that redefine how 

humans interact with machines. Smart environment designs equipped with different sensors, including  

radio frequency (RF) sensing capabilities, play an important role in adapting to climate change effects and 

addressing future energy needs of energy-intensive systems like heating, ventilation, and air-conditioning 

https://creativecommons.org/licenses/by-sa/4.0/
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(HVAC) [2]. The contemporary landscape of wireless sensing reflects a dynamic convergence of 

technological advancements, reshaping the paradigms of wireless sensing across various domains [3]. At the 

forefront of these innovations is the continued evolution of Wi-Fi technology, transcending its conventional 

role as a communication protocol to emerge as a versatile tool for sensing and environmental monitoring. 

Modern Wi-Fi systems leverage complex algorithms to extract nuanced information from wireless signals, 

including the utilization of channel state information (CSI) to discern subtle variations in the wireless channel 

caused by environmental changes [4], [5]. This development facilitates accurate object tracking and 

localization within a given environment [6], [7], laying the groundwork for applications in indoor navigation 

[8], smart homes [9], and industrial automation [10]. This work provides a literature review on the advances 

in methods empowered Wi-Fi sensing focusing on human activity recognition and movement tracking and 

indoor localization, and the effects of environment of the sensing ability. Furthermore, the analysis highlights 

the challenges in the existing literature and discusses the possible future research directions in Wi-Fi-based 

human sensing assisted by deep learning (DL) techniques. 

The synergy between Wi-Fi sensing and machine learning opens avenues for context-aware 

applications, where the system dynamically responds to changes in its surroundings based on learned 

patterns. The concept of Wi-Fi sensing assumes a pivotal role, representing the fundamental ability to 

identify human activities regardless of their spatial. However, within the narrative of wireless sensing and 

human activity recognition (HAR), an indispensable dimension emerges location independence [11]. 

However, within the narrative of wireless sensing and HAR, an indispensable dimension emerges: location 

independence [12]. Therefore, the pursuit of location independence marks a critical consideration at the 

crossroads of research, propelling investigations beyond the constraints imposed by specific environments 

[13], [14]. Despite the advancements in location-independent HAR methods using Wi-Fi, there are 

limitations to this method, such as the requirement of prior training at known locations, which may limit their 

applicability in real-world scenarios where data collection in specific areas is not feasible.  

The challenges associated with CSI-based Wi-Fi sensing datasets, including generality, location 

dependence, and accurate detection of activities, necessitate innovative solutions for robust and adaptable 

Wi-Fi sensing systems in diverse real-world scenarios. Therefore, existing methods have limitations to 

recognize the same activity in different locations with variance hardware and structures. To address these 

challenges, this work offers an approach that analysis the critical reasons behind the location dependency 

while striking a balance between performance enhancement and reducing the need for an extensive training 

dataset through the concept of data adaptation. The primary contributions of this work are summarized as 

follows: 

− To identify patterns and trends in literature of HAR using Wi-Fi to enable matching different 

environments and removing effects of surroundings from the signal. 

− To identify new research gaps and recommend areas by enabling AI models, thus enhancing adaptability 

to different environments. 

− To provide an experimental analysis of CSI HAR utilizing Wi-Fi based sensing with a combination of 

self-collected data and publicly available datasets. 

This work reviews the most recent advancements in all these sub-areas of HAR and analyses the 

current research trends in device-free, and location independent Wi-Fi sensing. The paper atemps the deep 

and transfer learning techniques approaches to solve the location dependency of Wi-Fi based sensing and 

analyzing the suggested methods with pointing possible directions to achieve practical uses of Wi-Fi sensing. 

The remainder of the paper is organized as follows: section 2 analysis the advancement of Wi-Fi sensing 

technique followed by the framework of Wi-Fi sensing section to understand the concept of Wi-Fi sensing 

topology and theory of wireless sensing system. Section 4 elaborates experimental analysis of environmental 

effects of Wi-Fi sensing system. Finally, section 5 discusses the challenges encountered during the literature 

review, and the last section concludes the finding of this research. 

 

 

2. ADVANCEMENT OF Wi-Fi SENSING 

In recent years, the domain of wireless sensing technologies has witnessed significant enhancement, 

with a notable focus on the integration of Wi-Fi-based sensing techniques [15]. Wireless sensing has shown 

promise in gesture recognition [16], [17], enabling touchless control of devices, interactive gaming, and 

augmented reality experiences. As this technology continues to evolve, its integration into various domains 

holds the promise of revolutionizing the way we perceive and interact with environments. The intricacies of 

RF signals, including reflections and multipath effects, have been meticulously addressed through innovative 

algorithms, enabling precise extraction of relevant sensor data [18]. Figure 1 illustrates incorporation of 

machine learning techniques to enable Wi-Fi-based sensing in dynamic environments and optimizing their 

performance over time. 
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Figure 1. Illustration uses of wireless sensing [19] 

 

 

The Wi-Fi sensing system comprises three essential modules: the RF sensing and data collection 

module, the data processing module, and the classification module. The sensing module for Wi-Fi 

incorporates a Wi-Fi transmitter (Tx) and receiver (Rx) that operate in either the 2.4 or 5 GHz band. The 

measurement and utilization of properties from the physical layer over wireless links, such as the received 

signal strength indicator (RSSI) and channel state information (CSI) [20], [21], facilitate the quantification of 

received Wi-Fi signals. These properties are accessible through modified software and commercial network 

interface cards (NICs), such as the Atheros 9580 NIC [22], Raspberry Pi [23] and Intel 5300 NIC [24]. While 

RSSI-based HAR has gained substantial attention due to its ease of acquisition and compatibility with 

commercial Wi-Fi devices, it needs to provide more coarse-grained information on channel characteristics, 

hampering its sensing capabilities. In contrast to RSSI-based HAR, CSI-based HAR demonstrates enhanced 

capabilities, providing reliable recognition for a broader spectrum of behaviors and performing effectively 

even in intricate environments [25], [26]. However, despite its appealing sensing capacity, CSI-based HAR 

encounters challenging issues requiring attention. Critical among these challenges is selecting and designing 

appropriate features, a factor directly influencing the sensing performance. Consequently, numerous efforts 

have been dedicated to developing diverse signal-processing techniques to address this concern, although 

feature extraction remains an open and active research problem in this domain. 

The attainment of environmental effects holds significance within wireless sensing, constituting a 

pivotal aspect that enhances the applicability and effectiveness of sensing technologies [27]. The attribute is 

particularly crucial in scenarios where the deployment of sensors is dynamic or subject to frequent changes in 

the environment. In recent literature, researchers have proposed several methods to tackle the problem of 

location dependency in HAR. One approach uses the model to enhance the inter-class difference by 

extracting inter-class features of different activity samples and improving the generalization ability by pulling 

intra-class features of the same activity at various locations. The applications of deep learning enables more 

nuanced and context-aware analyses, contributing to enhanced precision in sensing ability [28], [29]. 

Furthermore, transfer learning has proven useful in Wi-Fi-based sensing as it allows models trained on 

specific tasks to be repurposed for related applications, thereby improving performance [30], [31]. This 

versatility enhances the efficiency of algorithmic frameworks, facilitating the adaptation of Wi-Fi-based 

sensing systems to diverse and dynamic environments. Collectively, these algorithmic improvements signify 

a transformative phase in Wi-Fi-based sensing, augmenting the capacity to extract meaningful insights from 

wireless signals and expanding the applicability of this technology across various domains. The scholarly 

works have covered a range of topics, including signal processing techniques, hardware requirements, and 

the effectiveness of CSI in diverse environments [32]. Table 1 lists a brief overview of papers and surveys in 

the field of Wi-Fi sensing, encapsulating the collective insights and findings from existing literature.  

Zhang et al. [33] implemented the CSI-PCNH algorithm to achieve location independence by 

employing a parallel convolutional network model, which combines 3-D convolutional neural network 

(3DCNN) with channel attention mechanism (CAM) and 2-D convolutional neural network (2DCNN) with 

long short-term memory (LSTM) to extract activity samples' global and local spatial-temporal features. 

Experimental results have shown promising outcomes, with average recognition accuracies reaching 91.7% in 

indoor areas. Alternative attention-based activity recognition systems (AF-ACT) implemented to fuse semantic 
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activity features and temporal features to better characterize activities at different locations [34]. The model uses 

convolutional neural network (CNN) and convolutional attention modules (CBAM) to extract semantic activity 

features. Furthermore, the system employs bidirectional gated recurrent units (BGRU) combined with self-

attention mechanisms to eliminate temporal characteristics. These features are fused through an attention-based 

feature module, resulting in improved recognition accuracy. Experimental evaluations have demonstrated the 

potential of AF-ACT systems, reaching a maximum accuracy of 91.23% in recognizing various activities across 

different experimental conditions. Table 2 briefly outlines diverse approaches for resolving location 

dependency, employing various tools, techniques, and algorithms. 

 

 

Table 1. Insights and advancements in existing literature Wi-Fi sensing reviews and surveys 
Ref Contributions Methods used Findings Limitations 

[35] Mathematical model of 

CSI based sensing. 

Domain-invariant feature 

extraction with virtual 

sample generation, Few-shot 

and Transfer learning 

Environment effects 

encountering new domains 

using five algorithms. 

Limited sensing performance 

and usability in new 

domains. 

[36] Analyzing Wi-Fi sensing 

principles and challenges. 

Analyzing the available 

technology and utilization of 

ambient Wi-Fi signals for 

sensing applications 

Robustness analyzes 

functionalities and 

applications in various 

industries. 

Critical challenges such as 

environmental effects were 

not analyzed. 

[4] Review recent progress on 

Wi-Fi sensing & proposing 

Sense Fi benchmark. 

Machine learning Few-shot 

learning, and natural language 

processing (NLP) algorithms. 

Deep learning methods are 

effective for applications. 

Data-efficient learning 

methods should be further 

explored for Wi-Fi sensing. 

[37] Proposed a dynamic 

Fresnel zone model for 

Wi-Fi sensing. 

Dynamic Fresnel zone model 

for Wi-Fi sensing 

with prototype system. 

The system measure 

receiver's relative motion 

with high-level accuracy 

Location dependency and 

cross-domain localization 

was not analyzed. 

[38] Survey of Wi-Fi sensing 

systems over the past 

decade. 

Categorizes systems into 

activity recognition, object 

sensing and localization. 

Existing systems face 

challenges in accuracy and 

reliability. 

Limitations such as location 

dependencies were not 

analyzed. 

[39] Exploring Wi-Fi sensing 

performance and challenges 

Recent applications and 

performance of Wi-Fi sensing. 

Wi-Fi sensing divided into 

dynamic and static categories. 

limitations in terms of 

robustness and practicality. 

[40] Fresnel zone model and 

CSI-ratio model for 

device-free sensing. 

Fresnel zone model 

CSI-ratio model 

High potential of device-free 

sensing model using CSI-

ratio model has. 

Not adequately analyze the 

main challenges associated 

with Wi-Fi sensing 

[41] Roadmap of for Wi-Fi 

sensing integration & 

standards. 

Analyzing Wi-Fi standards to 

enhance sensing capabilities. 

Improve capabilities such as 

multiple user sensing. 

Enhanced methods and 

challenges were not 

discussed. 

[18] Model-based human 

sensing methods and 

applications. 

Describes the CSI framework, 

models, preprocessing, and 

applications. 

Discussed model- sensing 

advantages, limitations, & 

future trends 

Requires conducting 

investigations of boundaries 

of CSI model limitations. 

[3] Analyse of signal 

processing techniques and 

algorithms for improving 

applications 

Signal processing techniques 

and algorithms for Wi-Fi 

sensing 

Analyzing various 

applications and challenges 

including cross-layer 

integration. 

Existing Wi-Fi sensing 

focuses on human activities, 

requires expanding to other 

domains. 

 

 

Table 2. Location independent benchmarking summary of Wi-Fi based methods 
Ref Methods Features Freq 

GHz 

Activities Acc. % Insights 

[42] Reinforceme

nt learning 

Multi-layers algorithm 

prediction 

/ 5 97% Similar activities, RL requires huge 

training effort 

[43] Dynamic 

phase vector 

dynamic phase vector 5.24 8 95% Requires multiple receivers of APs, 

limited range and weak reflection 

[44] CNN, CNN-

LSTM 

Doppler frequency shift 5.32 Ghz 8 94% Tested in single location, different 

positions & requires multiple APs. 

[45] CNN Commodity real-time 

manner 

5 Ghz 6 97% Model requires training in some locations 

to adapt user’s motions. 

[1] CNN Body velocity pattern 5 Ghz 6 87% Different people have different body 

velocity, speed preforming actions. 

[46] LSTM Activities generative 2,5 GHz 7 95% Requires more analysis of activities to 

enable high accuracy. 

[33] 2DCNN Parallel convolutional 

networks 

/ 6 91% Requires activity samples at more training 

locations 

 

 

3. Wi-Fi SENSING FRAMEWORK 

In the context of Wi-Fi sensing, CSI captures information about the channel's conditions, including 

signal strength, phase, and frequency response. Integrating CSI into wireless sensing applications introduces 
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a dimension of granularity and precision [47]. Figure 2 depicts the diversity observed in the RSSI and CSI, 

demonstrating the superior reliability of CSI due to its capacity to account for fluctuations in temperature and 

humidity. Conversely, RSSI provides only a singular value, making it less robust under unfavorable 

environmental conditions. The CSI matrix conveys amplitude and phase information for orthogonal 

frequency division multiplexing (OFDM) subcarriers in the Wi-Fi protocol's physical layer [48]. Wi-Fi 

standards like 802.11 a/g/b/n/ac/ax are employed in virtual Wi-Fi routers, offering higher data rates through 

multiple input multiple output (MIMO) and orthogonal frequency division multiplexing (OFDM). These 

standards operate on 56, 114, and 232 subcarriers, facilitating various bandwidths (20 MHz, 40 MHz, and  

80 MHz) at either 2.4 GHz or 5 GHz. The calculation for the optimal received power at the antenna is 

estimated by (1), considering various parameters, including the transmitted power, signal frequency, distance 

traveled, and antenna gains. 

 

𝑃𝑟𝑥 = 𝑃𝑡𝑥𝐺𝑡𝑥𝐺𝑟𝑥 (
𝑐

4𝜋𝐷𝑓
)

2

 (1) 

 

The mathematical representation of CSI is denoted mathematically by (2) as y and x, where y signifies the 

received signal, x denotes the transmitted signal, and their relationship relies on the CSI matrix data 

formatted in the frequency domain via OFDM [49]. 

 

𝑦 =  𝐻𝑥 +  𝑁 (1) 

 

Equation (2) represents the CSI for OFDM subcarriers derived and incorporated into the complex matrix H [6]. 

It is important to note that the equation accounts for the presence of channel noise, represented by the variable n, 

which influences the accuracy of the CSI estimation for each subcarrier. Additionally, MIMO enables multiple 

channels to increase the transmission rate by inducing a matrix of connection links shown in (3). 
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  (2) 

 

In addition, the receiver extracts the captured signal changes by predicting the original and received data to 

determine the CSI. The Hi represents the CSI number of the ith subcarriers between the receiver and 

transmitter antenna. The plotted signal in Figure 3 shows the CSI amplitude of the 64 subcarriers, which 

makes it very useful for figuring out activities based on Wi-Fi characteristics. 

 

 

 
 

Figure 2. Frequency diversity in RSSI and CSI 

 

 

The framework for Wi-Fi sensing is rooted in signal processing methodologies and comprises four 

distinct stages: data collection, signal extraction, signal preprocessing, and activity classifiers, as delineated 

in Figure 4. The organized approach commences with collecting relevant CSI data, followed by extracting 

pertinent signals. Subsequently, the signals undergo preprocessing procedures to enhance their quality and 

relevance for further analysis. The final stage involves the application of activity classifiers, a critical 

component facilitating the recognition of human activities. 

 

3.1.  CSI data collection tools 

Hardware tools used for CSI data collection in wireless communication systems encompass various 

devices, including SDRs [50], WiGig devices [51], and Wi-Fi Network NICs. SDRs such as USRP offer the 

distinctive advantage of programmable RF signal processing capabilities, enabling versatile capture, and 
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processing of CSI data. The continual enhancements of these tools represent a crucial advancement, affording 

unparalleled resources for experimentally validating algorithms using Wi-Fi devices. Table 3 records some 

predominant tools employed for capturing CSI and facilitating advanced analyses in research pursuits. 

 

 

 
 

Figure 3. CSI amplitude for 2.4 Ghz/20 MHz bandwidth 

 

 

 
 

Figure 4. Framework of HAR using CSI 
 

 

Table 3. List of available CSI hardware benchmarking 
Ref. Tool Supported 

Chipsets 

Protocol Feature extraction Performance 

[1] Linux 802.11n 

CSI Tool 

IWL5300 802.11n Dynamic time warping for 

waveform comparisons 

Multi-antennas, with high 

performance. 

[22] Atheros CSI 

Tool 

AR9580, 

AR9590 

802.11n Various supported PCI and 

NICs 

Available, supported free Linux 

firmware 

[21] Raspberry pi BCM4365, 

66,39,58,455 

802.11ac Smart scheme for band-

width optimization 

Precise real-time with open-source 

Linux community 

 

 

Furthermore, firmware updates enhance the functionality and performance of these tools by 

introducing bug fixes, incorporating new features, and improving compatibility with various CSI data 

collection software frameworks. Researchers have developed supported extraction firmware to extract data 

from CSI-Wi-Fi signals using tools like OpenWRT [52], Nexmon CSI Extractor, Linux 802.11n CSI Tool 

[53], Atheros CSI Tool [54], and OpenFWWF CSI Tool. These tools vary in bandwidth range, NSS×NRX, 

and used applications.  

 

3.2.  Signal processing 

Wi-Fi sensing requires a robust filtering system utilizing and applying different filter methods to 

mitigate high-frequency noise and constant values arising from multiple-path effects [55]. Signal 

preprocessing is integral to reading and purifying data for subsequent analysis and modeling. Signal 

preprocessing encompasses the filtration of outliers, the elimination of noise, the adjustment of phase, and the 

mitigation of other unwanted factors. Researchers employ various techniques, including low-pass filters, 

Hampel filters, principal component analysis (PCA), independent component analysis (ICA), discrete 

wavelet transform (DWT), data interpolation, and phase sanitization, for denoising purposes. By effectively 

reducing the noise generated through multipath effects and hardware devices, this multifaceted approach 

ultimately enhances precision in behavior recognition. 
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3.3.  Feature extraction 

Researchers employ various methods to extract features that capture key signal aspects indicative of 

specific activities or behaviors. One commonly utilized approach involves time-domain features, 

encompassing statistical measures such as mean, standard deviation, and skewness. These metrics offer 

insights into the signal's central tendencies, variability, and asymmetry, allowing for the characterization of 

temporal patterns associated with human activities. Frequency-domain features, derived through techniques 

like the Fourier transform (FT), provide information about the signal's spectral composition. These features 

are crucial for discerning frequency-specific characteristics that may indicate activities. Additionally, time-

frequency features, obtained through methods like short-time Fourier transform (STFT) or wavelet 

Transform, offer a more detailed understanding of how the signal's frequency content evolves, enabling the 

discrimination of transient changes in the environment. 

Spatial features also play a role in feature extraction, particularly when multiple antennas are 

involved. Channel impulse response (CIR) characteristics, such as arrival time and amplitude, are extracted 

to capture spatial information about the signal. Furthermore, phase-related features, which involve analyzing 

the phase shifts of the signal, contribute valuable information about the spatial characteristics and multipath 

effects. By combining these time, frequency, and spatial features, researchers aim to construct a feature set 

that effectively encapsulates the diverse aspects of Wi-Fi CSI signals, enabling robust and accurate 

recognition of human activities. Table 4 provides an overview of the feature extraction methods employed in 

CSI-based Wi-Fi systems. 

 

 

Table 4. Feature extraction methods in CSI-based Wi-Fi systems 
Ref Feature patterns Pre-processing Method Classifier Accuracy Figure artwork 

[56] RSSI feature 

scaling of high 

variance. 

Fingerprints 

acquisition 

RSS Neural network 66% to 80% 

 

[57] Measuring the 

slope change of the 

tangent 

CSI ratio 

changes 

CSI ratio CNN 93% 

 

[21] Normalized 

standard of signal 

strength 

DWT LOS/NLOS Support vector 

machines 

(SVM) 

recurrent neural 

network (RNN) 

From 83% to 

93% 

 

[58] Ranging the CSI 

AoA estimate 

spectral entropy. 

Phase 

calibration 

techniques 

LPF, Dual 

Indirect 

Kalman, 

DWT 

SVM About 80% 

 

[59] Motion image 

estimation 

Sequential 

Monte 

Carlo Filtering 

Variance Segmentation 

algorithms 

Error at least 

47% 

 

[60] The position of 

person and the 

fade level 

non-Gaussian 

Kalman and 

DWT filtering 

Skew Laplace 

Model 

Clustering 

algorithm 

Up to 86% 

 

[61] Compute power 

spectral density 

LPF LoS and 

nLoS CSI 

SVM 93% 

 

[62] FFT-based Moving 

Average Filter 

CSI / 92% 

 

[1] Spatial feature 

extraction with 

time-frequency 

analysis 

Quasi-static 

offsets Convo-

filters 

CSI ratio CNN 92.7% 

 

 

 

3.4.  Classification methods 

HAR using CSI has seen notable advancements, encompassing a range of machine learning 

methods. Traditional approaches, including support vector machines (SVM) [63], random forests (RFs) [64], 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 921-939 

928 

and k-nearest neighbor (KNN) [65], leverage pattern recognition to classify activities based on features 

derived from CSI signals. These algorithms have distinguished gestures, movements, and interactions within 

sensing environments. Integrating deep learning methodologies has elevated CSI-based HAR accuracy. 

CNNs and RNNs are pivotal in capturing intricate patterns and temporal dependencies within CSI data [38]. 

Their capacity to autonomously learn hierarchical features from raw CSI signals has proven effective in 

discerning complex human activities. Moreover, advanced transfer learning TL techniques have emerged, 

involving pre-trained models on extensive datasets for generic HAR [35]. These models are subsequently 

fine-tuned for specific CSI applications, enhancing adaptability across diverse sensing environments.  

Table 5 provides a list and description of existing deep-learning approaches utilized in Wi-Fi sensing. 

 

 

Table 5. Existing deep-learning approaches for Wi-Fi sensing 
Reference Task Classifier Platform Learning type Limitations 

[66] HAR LSTM Intel 5300 

NIC 

Supervised 

learning 

Vulnerable to vanishing gradient problem 

in capturing long-term dependencies 

sequences. 

WiVi [67] HAR CNN Atheros CSI 

Tool 

Supervised 

learning 

Struggle with classifying activities that 

have subtle variations or involve complex 

motion patterns. 

DeepSeg 

[68] 

HAR CNN Intel 5300 

NIC 

Supervised 

learning 

Limited context understanding, may not 

capture finer-grained variations in 

activities 

[69] HAR CNN-LSTM Intel 5300 

NIC 

Supervised 

learning 

Sensitive to sequence length variations, 

challenges in handling concurrent & 

overlap activities, reliance on labeled data 

quality. 

[21] HAR LSTM Nexmon 

Tool 

Supervised 

learning 

Prone to vanishing gradient, may struggle 

with capturing long-term dependencies. 

[55] HAR CNN Nexmon 

Tool 

Supervised 

learning 

Vulnerable to noise in wireless signal 

data, require substantial data for robust 

generalization. 

[1] Gesture 

Recognition 

CNN-GRU Intel 5300 

NIC 

Supervised 

learning 

Simplified gating limit capturing complex 

dependencies, potential sensitivity to data 

quality. 

WiONE 

[70] 

HAR CNN Intel 5300 

NIC 

Few-shot learning Limited availability of samples during 

few-shot adaptation, potential challenges 

in handling novel classes. 

[42] HAR CNN, RNN, 

LSTM 

Intel 5300 

NIC 

Supervised 

learning 

Each sub-approach's limitations apply; 

RNNs and LSTMs might face vanishing 

gradient, CNNs might lack sequence 

modeling. 

THAT [71] HAR Transformers Intel 5300 

NIC 

Supervised 

learning 

High computational demands, sensitive to 

hyperparameters, might struggle with 

capturing local temporal dependencies. 

WiGr [16] Gesture 

recognition 

CNN-LSTM Intel 5300 

NIC 

Supervised 

learning 

Sensitive to sequence length variations, 

might not capture fine-grained variations 

in gestures. 

[72] HAR CNN, GAN Atheros CSI 

Tool 

Semi-supervised 

learning 

GAN stability issues, potential mode 

collapse, sensitivity to quality of pseudo-

labeled data. 

CAUTION 

[73] 

Human 

Identification 

CNN Atheros CSI 

Tool 

Few-shot learning Limited labeled samples during 

adaptation, risk of overfitting to the few-

shot set. 

WiGRUNT 

[74] 

Gesture 

recognition 

CNN Attention Intel 5300 

NIC 

Supervised 

learning 

Attention mechanism's sensitivity to 

noise, potential reliance on specific 

attention patterns. 

[75] HAR CNN Atheros CSI 

Tool 

Supervised 

learning 

Potential challenges in handling diverse 

activities, reliance on labeled data for 

various activities. 

AirFi [76] Gesture 

Recognition 

CNN- 
Multilayer 

perceptron 

(MLP) 

Atheros CSI 

Tool 

Transfer learning Success of TL, influenced by source & 

target domains' similarities require 

retraining. 

 

 

3.4.  Environmental effects on Wi-Fi signals  

The CSI estimates the amplitude and phases manipulated by the paths and experiences the number 

of amplitudes and phase shifts. Hence, the CSI entry corresponds to the channel frequency response, as (4) 

indicates [6]. 
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ℎ(𝑓) = ∑  𝑁
𝑙=1 𝛼𝑙𝑒𝑥𝑝−𝑗2𝜋𝑓𝜏𝑙   (3) 

 

Additionally, scattering occurs when the signal encounters obstacles, causing further signal distortion and 

multipath propagation. The attenuation is influenced by the wall material's properties and the transmitted 

signal's frequency [77]. Equation (5) is commonly used to model the received signal power and understand 

these factors' impact. 

 

𝑃𝑟𝑥 =
 𝑃𝑡𝑥∗𝐺𝑡𝑥∗𝐺𝑟𝑥∗𝜆2

4𝜋𝐷2𝐿
  (4) 

 

In addition to the path loss exponent captures the effects of signal attenuation caused by factors such as wall 

characteristics and scattering. The path loss exponent captures the effects of signal attenuation caused by 

factors such as wall characteristics and scattering [1]. The received gain can be represented by (6): 

 

𝐺𝑟𝑥 =
 Power density directed 

 Power density isotropic 
=

𝐴sphere 

𝐴ont 
=

4𝜋𝑅2

𝐴ant 
  (5) 

 

where 

 

 Aext ≈ θAz ⋅ θEL ≈
Rλ

b
⋅

Rλ

h
  (6) 

 

𝐺𝑟𝑥 =
4𝜋

2/2⋅𝜋/ℎ
≈

4𝜋𝐴

𝜆2 ⇒ 𝐴 =
𝐺𝑟𝜆2

4𝜋
 (7) 

 

𝑇ℎ𝑢𝑠, Pr =
GtGrλ

2σF

(4π)3R4L
         (8) 

 

Equations (6)-(9) demonstrates the area A effects in the signal covered by Wi-Fi transmitted power 𝑃𝑡𝑥 with 

transmitting gain 𝐺𝑡𝑥 in radiation cross section measured by σ, and propagation factor F. The range of 

propagation R with losses of strength L varies between transmitter and receiver in different locations. 

Moreover, the equation appears that F is the factor of environmental effect on that received signal illustrated 

in Figure 5. 

Moreover, the performance of CSI-based human activity recognition systems heavily relies on the 

quality and consistency of the Wi-Fi signals, which can degrade in environments with complex layouts or 

dense infrastructures. For instance, in environments with multiple rooms, corridors, or floors, Wi-Fi signals 

may experience reflections, diffraction, and multipath effects differently at each location, leading to 

inconsistencies in the measured CSI. Consequently, the models trained on CSI data collected from one 

location may not generalize well to other locations within the same environment, limiting the robustness and 

reliability of the human activity recognition system. 

 

 

 
 

Figure 5. Wall effects on the propagation of CSI subcarriers in Wi-Fi signals 

 

 

The unidirectional or spherical propagation of Wi-Fi signals also significantly affects CSI-based 

human activity recognition systems, contributing to location dependency issues. Figure. 6 illustrates the 

segmentation of the signal in a spherical manner, depicting how the signal strength varies across different 

segments at varying distances from the transmitter. In a real-world scenario, this spherical propagation 
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pattern means that the signal strength attenuates as distance from the transmitter increases, leading to 

variations in CSI measurements even within a relatively small physical area. This uneven distribution of 

signal strength across different segments introduces challenges in accurately capturing the CSI 

measurements, particularly when deploying Wi-Fi devices in large or irregularly shaped environments. 

Consequently, the CSI data collected from different locations within the same environment may exhibit 

varying signal strengths and propagation patterns, further exacerbating the location dependency issues in 

CSI-based human activity recognition systems. 

 

 

 
 

Figure 6. The propagation phenomenon of MIMO signals 

 

 

4. EXPERIMENTAL ANALYSIS OF ENVIRONMENTAL EFFECTS OF Wi-Fi SENSING 

4.1.   Physical signal influence 

The physical form of the signal is influenced by various factors, such as multipath fading, where the 

signal takes multiple paths to reach the receiver due to reflections, diffractions, and scattering. distortions 

alter the amplitude and phase characteristics of the received signal, subsequently affecting CSI. Signal 

polarization plays a role in CSI as well in varying signal attenuation, reflection, and scattering levels, 

impacting the quality and reliability of CSI measurements. The evaluation of Wi-Fi sensing methods for CSI 

analysis reveals the effectiveness of different techniques in extracting valuable information about the 

environment, objects, and human activities. CSI analysis involves the examination of variations in CSI 

caused by reflections, diffractions, and scattering, which allows for detecting the presence of objects or 

people. Researchers commonly employ machine learning algorithms and signal processing techniques to 

analyze CSI data. Doppler shift analysis, on the other hand, focuses on the changes in the frequency of the 

received signal due to the motion of objects or people, enabling the detection and tracking of movement and 

activities. We emphasize the pivotal aspect of location independence while conducting an empirical analysis 

of studies on Wi-Fi sensing in Table 6. The table notably covered a spectrum of methodologies, 

encompassing CSI-based sensing mechanisms and the exploration of Wi-Fi signals for human motion 

tracking. The selected works addressed inherent challenges such as robustness and the impact of location on 

the efficacy of Wi-Fi-based sensing systems.  
 

 

Table 6. Location independence in Wi-Fi-based sensing, encompassing methods, accuracy, and challenges 
Ref Method Classifier No. of activates No. of locations Accuracy% Limitation 

[1] Doppler 

frequency 

domains 

Hybrid RNN-CNN 6 4 Cross-

domain 

82.6% 

Systems require explicit 

adaptation efforts to new 

domains 

[14] CSI 

Amplitude 

CNN-LSTM Meta 

learning 

4 24 over 90% Large-scale sensing is labor-

intensive and time-consuming 

[78] CSI 

Amplitude 

CNN with Bi-GRU 

& self-attention 

8 12 Up to 91% Different characteristics of same 

activity at different locations 

[33] CSI 

Amplitude 

3DCNN 6 22 Up to 90% Computational complexity, 

risk of overfitting 

[79] CSI 

Amplitude 

CNN with GAN 3 3 Up to 76% Labor-intensive training 

instability, and sensitive to 

hyperparameters 

[42] CSI 

Amplitude 

2D-CNN with RL 5 / 82% to 

92% 

Handling partial observability 

& RL complexity 

[46] CSI 

Amplitude 

Cascaded logical 

LSTM 

8 5 Up to 95% Requires intensive analyses of 

activities to achieve high 

accuracy. 

[80] Doppler 

shift of CSI 

Convolutional based 5 3 / Effected to the complexity of 

activities, orientation, and speed. 
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4.2.  Frequencies effects 

A comparative analysis between the 2.4 GHz and 5 GHz frequency bands reveals that lower frequencies 

exhibit superior coverage, penetration through solid obstacles, and wider-angle detection, making them more 

suitable for HAR. In addition, the wavelength λ of the Wi-Fi signal, measured in meters, and losses unrelated to the 

propagation process dynamically influence the transmission gain of Wi-Fi signals in LoS scenarios. To better 

understand the signal power attenuation, a plotted curve in Figure 7 illustrates the approximate loss of signal power 

for both 2.4 GHz, 5 GHz, and 5.7 GHz in the free space path in the LoS region.  

The experiment conducted further investigations in buildings with varying wall compositions. 

Specifically, we focused on three building materials: 8-inch-thick concrete walls, 5-inch walls supported by 

steel frames with sheetrock, and tinted glass. Furthermore, the researchers conducted experiments in an open, 

unobstructed environment. Figure 8 presents the model's performance across different building materials. 

The detection rate represents the proportion of experiments in which the model accurately decoded the 

activities. It demonstrates the model's effectiveness in detecting human presence and accurately identifying 

activities across a range of indoor building materials, including tinted glass, solid wood doors, 5-inch walls, 

and, to a notable extent, 8-inch concrete walls. As expected, the thickness and density of the obstructing 

materials directly influence the sensing capability to capture reflections from behind them, with thicker and 

denser materials presenting greater challenges. 

 

 

  
 

Figure 7. Impact of frequency on free-space path 

loss (FSPL) in Wi-Fi sensing 

 

Figure 8. Different material detection accuracy at 

position 1 with 2.4 GHz frequency 

 

 

The dataset for the experimental evaluation was obtained using the Nexmon CSI extraction tool on a 

Raspberry Pi 4B in high-throughput mode with an 80 MHz bandwidth. CSI samples provided complex-

valued channel data from 242 subcarriers (80 MHz) and 56 subchannels (20 MHz) for each antenna pair. The 

study details the data acquisition process and hardware configuration, using the Broadcom BCM43455c0 

NIC with the Raspberry Pi 4B as the receiver and a TP-Link AC1350 router as the transmitter. Both devices, 

running Linux version 5.10.92 and Nexmon, support IEEE 802.11n/ac standards and multi-user MIMO, 

offering 20 MHz, 40 MHz, and 80 MHz bandwidths within a dual-band frequency spectrum. Figure 9 

illustrates the experimental setup for data collection, detailing the arrangement and connectivity of the 

Raspberry Pi 4B receiver and TP-Link AC1350 router transmitter in the test environment. 

 

 

 
 

Figure 9. Data collection process  
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As humans engage in various activities within the monitored space, the Wi-Fi signals experience 

alterations due to the presence and movement of the human body. The receiver nodes then extract the CSI 

data from the received signals, which serves as the foundation for subsequent data processing and feature 

extraction.  The two-node Wi-Fi sensing system offers a non-intrusive and scalable approach to human 

activity recognition, leveraging the ubiquity of Wi-Fi infrastructure in modern environments. 
 

4.4.  Impact of dataset rate  

It is important to note that there is a potential linear relationship between the size of the training 

dataset and computational efficiency. As the training set grows, the computational demand on the algorithm 

increases, potentially affecting its efficiency. Balancing these aspects becomes crucial in optimizing 

algorithmic performance. The number of samples in the dataset is also a core factor in capturing a clear 

detailed representation of each activity, contributing to improving accuracy, as shown in Figure 10. However, 

the computational cost of processing many samples will impact the algorithm's efficiency. 

 

 

  
 

Figure 10. Illustration depicting the impact of the number of training datasets and transmission data rate on 

accuracy [1] 

 

 

Additionally, the number of transmitters (Tx) and receivers (Rx) in the communication system 

directly influences the quality and quantity of CSI data available for activity recognition. Increased Tx and 

Rx enhance the granularity of CSI measurements, potentially leading to more accurate recognition of subtle 

human movements. Furthermore, the effects of different individuals and the number of locations on 

algorithmic performance are notable considerations. Variations in how different individuals perform 

activities and the diverse environments across multiple locations introduce challenges in achieving precise 

classification. Robust algorithms should demonstrate adaptability to other individuals and locations, ensuring 

generalization beyond specific scenarios. Striking a balance between adaptability and specificity is crucial in 

addressing the challenges of diverse human behaviors and environmental contexts. 

HAR advancement and Computational efficiency  

To rigorously assess the evaluation and robustness of proposed models, we applied publicly 

available datasets [21], [55], [80], and self-collected datasets. The considered methods encompass LSTM, 

CNN+RL, CNN with generative adversarial network (CNN+GAN), CNN with (CNN+Bi-GRU+Attention), 

and meta-learning with CNN-LSTM. The comparison revolves around the trade-off between computational 

efficiency and accuracy between these algorithms. The LSTM method leverages memory retention 

capabilities, while CNN+RL exploits reinforcement learning for dynamic adaptation. CNN+GAN introduces 

a generative adversarial approach, and CNN+Bi-GRU+Attention incorporates bidirectional processing and 

self-attention for context awareness. Meta-learning with CNN-LSTM combines the strengths of both CNN 

and LSTM. Achieving a harmonious balance between computational efficiency and accuracy is paramount, 

as it ensures the practical applicability of these methods in real-world scenarios, particularly in the 

challenging domain of CSI-based. Figure 11 illustrates the computational efficiency and accuracy across 

diverse locations for the proposed algorithms in CSI-based HAR. 

The RL paradigm requires more epochs to learn new features due to its reliance on trial-and-error 

interactions with the environment. In contrast to seq2seq algorithms like LSTM and CNN, which focus on 

capturing temporal dependencies and spatial patterns, RL emphasizes learning optimal decision-making 

strategies through repeated interactions, making it particularly suited for dynamic environments with 

evolving features. The pursuit of interpretability aligns with the broader ethos of responsible and ethical 

artificial intelligence deployment, ensuring that the inner workings of these algorithms remain accessible and 

understandable to various stakeholders. Figure 12 shows that LSTM and algorithms exhibit lower 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Challenges and opportunities to location independent human activity recognition … (Fahd Abuhoureyah) 

933 

interpretability scores due to their inherent complexity and intricate architectures. The sequential nature of 

LSTM, designed for capturing long-term dependencies, makes it challenging to discern the specific features 

and patterns driving predictions. In contrast, algorithms with superficial structures or those explicitly 

incorporating interpretable components, such as attention mechanisms, offer precise insights into the 

decision-making process, contributing to higher interpretability scores. 

The evaluation encompasses different locations, acknowledging the impact of environmental 

variability on algorithmic performance linked to several critical parameters, each of which influences their 

accuracy and efficiency. Primarily, the number of activities undertaken within a dataset poses a notable 

impact. A higher diversity of activities requires algorithms to possess robust discriminatory capabilities, 

ensuring accurate recognition across a spectrum of human movements. Algorithms capable of adapting to a 

broad range of activities exhibit enhanced accuracy in recognizing different actions, thereby underscoring the 

importance of datasets. The efficacy of the considered algorithms in CSI HAR is reflected in their robustness 

to environmental changes, showcasing their adaptability and reliability across diverse scenarios and varying 

conditions, as shown in Figure 13. 

 

 

 
 

Figure 11. Comparative analysis of computational efficiency and accuracy for listed algorithms in single 

location domain 

 

 

  
 

Figure 12. Comparative interpretability scores of 

algorithms in CSI-based HAR using 

Wi-Fi 

 

Figure 13. Comparable robustness scores of modules 

in CSI-based HAR resilience to environmental 

variations 

 

 

4.5.  Deep learning benchmarks in Wi-Fi sensing 

The choice of model architecture plays a crucial role in determining the models' performance in this 

study. The models investigated encompass various approaches, including SVM, NB, GRU, LSTM, 
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bidirectional long short-term memory neural network (BiLSTM), attention mechanism, MLP, CNN, 

vision transformers (ViT), CCT, and SWIN transformers. Each model brings its unique characteristics and 

capabilities to the table, and their performances on the given task are assessed based on their respective 

architectures and implementations. The models investigated in this study include MLP, CNN, ResNet with 

different depths, RNN, GRU, LSTM, Bi-LSTM, CNN, and ViT and CCT. The number of layers 

characterizes each model's architecture, and the experimental procedures provide specific design details. The 

study utilizes four datasets, which [21], [55], [80], and self-collected datasets. To facilitate comparison, the 

study visualizes the results in Figure 14, leading to several key observations. MLP, CNN-5, GRU, LSTM, 

and ViT demonstrate good performance across all benchmark datasets, suggesting their suitability as feature 

extractors for Wi-Fi CSI data.  

MLP, GRU, and CNN consistently exhibit stable and superior performance compared to other 

models, while also having fewer parameters and lower computational complexity. Furthermore, the study 

reveals that transformer architecture, specifically ViT, does not operate satisfactorily when the training 

dataset size is inadequate, or the task is difficult. Additionally, the study highlights that no single model 

consistently performs well across all datasets. 

 

 

 
 

Figure 14. Comparative performance analysis across four distinct dataset scenarios 

 

 

4.6.  Wi-Fi based free environment localization 

Understanding and analyzing complex human activities in analytics can be complicated for several 

reasons. First, human can do same activity activities with variation in motion patterns, timings, and postures. 

This complexity makes it challenging to detect and classify activities using traditional methods accurately. 

Furthermore, amplitude and phase characteristics are often considered exclusive factors to enhance the 

accuracy of indoor localization in complicated indoor environments. Table 7 summarizes localization 

methods based on the RSSI and CSI. The table categorizes indoor localization into three types: i) amplitude-

based, ii) phase-based, and iii) a combination of both amplitude and phase of CSI. In indoor localization. 

 

 

Table 7. Recent studies on localization and fingerprinting using Wi-Fi technology 
Ref. Method Classifier Tool Freq 

GHz 

Localization 

Method 

Real 

time 

Accuracy 

error 

Performance and Limitations 

[81] CSI-

Amplitude 

AdaBoost Intel NIC 5 Multi-user 

Localization 
× ~0.8m-

1.1m 

Limitations in highly dynamic 

environments 

[31] CSI Phase Meta learning Intel NIC x Device-free 

localization 
× ~1.3m Requires extensive offline 

training 

[82] CSI-Phase 

Calibration 

SSIM-based 

Augmentation 

x x Device-free 

localization 
× ~2.4m Not suitable for dynamic 

environments or with obstacles 

[83] CSI 

amplitude 

and phase 

AdaptDNN Intel 5300 

NIC 

5 Device-free 

localization 
× ~0.61m Location-dependent limitations 

and requires training 

[84] CSI 

amplitude 

and phase 

Multilayer extreme 

learning machine 

(ML-ELM) 

Intel 5300 

NIC 

5Ghz Device-free 

localization 
✓ ~1.1 Requires large training data and 

may vary by location 

[23] CSI 

Amplitude 

Untrained Raspberry 

pi 4B 

5 Device-free 

localization 
✓ ~0.9m Provides dynamic 

environmental localization 

using CSI amplitude with 

untrained model. 
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5. BARRIERS OF LOCATION-BASED SENSING WITH Wi-Fi 

The significance of location independence lies in its capacity to elevate the flexibility and scope of 

wireless sensing technologies, foster their broader integration into various domains, and optimize their 

potential impact. Besides, achieving location dependency in Wi-Fi-based systems, whether through pattern-

based or model-based approaches, entails several challenges. In the pattern-based paradigm, the variability in 

signal patterns influenced by environmental factors poses a challenge [83]. In the model-based approach, 

generalization across diverse backgrounds presents a substantial hurdle, demanding a balance between 

overfitting and underfitting [46]. Furthermore, acquiring and labeling extensive datasets that represent 

various locations is resource-intensive, and ensuring the real-time adaptation of models to dynamic changes 

in Wi-Fi signal patterns remains a challenge.  

Addressing these challenges requires development of a systems that adapt to diverse environments 

without the need for extensive retraining or sample collection. Techniques such as CNNs and RNNs, two 

popular deep learning architectures, face challenges adapting to the location independence challenge in the 

Wi-Fi sense. CNNs are known for their ability to extract spatial features effectively [19], [72]. However, in 

the context of Wi-Fi signals, the spatial characteristics can vary across different locations. Variations in 

signal strength, multipath effects, and obstacles introduce spatial variability that can affect the performance 

of CNNs in recognizing activities across different environments. On the other hand, RNNs model sequential 

data and capture temporal dependencies [21], [55]. While RNNs can capture the temporal dynamics of Wi-Fi 

signals, they need help with longer sequences and suffer from the vanishing or exploding gradient problem. 

Additionally, CNNs and RNNs require labeled training data to learn discriminative features and generalize 

well. Collecting labeled data from various locations can be challenging and time-consuming. 

Moreover, to address these challenges, current studies are exploring alternative architectures and 

techniques. For example, researchers employ attention mechanisms to focus on informative regions or time 

steps in the data, enhancing the models' ability to capture relevant features across different locations [85]. 

Researchers are also investigating transfer learning and domain adaptation techniques to leverage pre-trained 

models from one location and adapt them to new environments [4], [35]. However, one limitation is that the 

source and target domains should share some similarities for effective transfer. If the variations between 

locations are too, the transferred knowledge is applicable, and the model's performance improves. 

Additionally, meta-learning and few-shot learning are promising approaches for location-independent Wi-Fi 

sensing. They aim to develop models that quickly adapt to new environments with minimal training data 

[14], [31]. However, meta-learning requires a diverse set of meta-training settings that adequately represent 

the target environments [14]. In addition to the limitation of few-shot learning is the reliance on accurate and 

semantic representations [86]. Furthermore, zero-shot learning needs help to recognize activities not 

encountered during training or exhibiting variations across different areas. Researchers are exploring new 

techniques, such as RL and graph neural networks, reinforcement learning, or hybrid architectures, to address 

the limitations of existing methods [42]. However, these techniques still have their limits and challenges and 

require additional computational resources, extensive fine-tuning, or specialized data preprocessing methods.  

 

 

6. CONCLUSION 

In conclusion, this paper offers a comprehensive and in-depth analysis of contemporary HAR 

methods combined with localization techniques utilizing CSI. It presents a meticulous survey of relevant 

research, shedding light on the fundamental principles behind CSI-based behavior recognition. The study 

introduces models that effectively leverage CSI for HAR, addressing the issue of location dependency by 

incorporating insights from deep learning approaches. These models prioritize features that have versatile 

applications across different locations. Furthermore, the article discusses considerations regarding factors that 

impact HAR and provides clear categorizations of models, making the content accessible to a wide range of 

readers. The study explores various techniques, including the incorporation of additional testing locations, 

which illuminates the potential for enhancing the precision and capabilities of Wi-Fi sensing systems. In a 

departure from previous efforts, this review identifies areas that require further evaluation, specifically 

outlining methods, approaches, and algorithms that warrant scrutiny to guide future researchers entering this 

domain. Moreover, the work examines specific applications, facilitating in-depth discussions on recognition 

techniques and performance assessment. Future advancements in location-independent Wi-Fi sensing will 

benefit from incorporating transfer learning techniques. Transfer learning offers a promising avenue, 

especially for pre-training on large datasets or related tasks. Researchers can explore methods such as domain 

adaptation to transfer knowledge gained from one Wi-Fi environment to another, fostering improved 

generalization across diverse locations.  

Furthermore, exploring unsupervised learning techniques, including self-supervised learning will 

contribute to overcoming limitations associated with labeled data scarcity. By designing innovative self-

supervised tasks based on the inherent structure of Wi-Fi data, models will learn meaningful representations 
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without explicit supervision. Additionally, exploring the adaptation of reinforcement learning frameworks for 

Wi-Fi sensing tasks opens a compelling opportunity. This allows agents to acquire optimal strategies for 

location-independent sensing by interacting with their environment. The future directions underscore the 

evolving landscape of Wi-Fi sensing research, emphasizing a multi-faceted approach toward achieving 

location independence and anticipating emerging technological trends. 
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