
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 6, December 2024, pp. 7145~7157

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i6.pp7145-7157  7145

Journal homepage: http://ijece.iaescore.com

Efficient smart distributed face identification using the

MixMaxSim decision function

Sayed Mohammad Ahmadi, Rouhollah Dianat
Department of Computer Engineering and Information Technology, Faculty of Engineering, University of Qom, Qom, Iran

Article Info ABSTRACT

Article history:

Received Mar 14, 2024

Revised Jul 22, 2024

Accepted Aug 6, 2024

 Recognizing a large number of people is a common challenge in face

identification applications, involving decreased accuracy, increased memory

and time complexities. To address these issues, this study introduces a three-

module approach: “toilers,” “affinity-meter,” and “decision-maker.” Unlike

the random distribution methods used in previous solutions, this method

employs clustering to distribute the problem into subnetworks called

“toilers.” The toiler’s module calculates the likelihood of test data belonging

to each class of each toiler, using the last layer outputs of deep learning

models. Meanwhile, the affinity-meter module determines the similarity

between the test data and the average of each class, employing a similarity

measure. The decision-maker module combines the reports from the

previous two modules and selects the final class, utilizing a mix of the max-

max criterion and the similarity criterion. The proposed method outperforms

existing solutions, achieving improved recall, precision, and F1-score. It

effectively addresses memory, speed, and accuracy issues in face

identification, surpassing both no-distribution and random methods on

Glint360K, VGGFace2, and MS-Celeb-1M datasets. Overall, this method

offers a more efficient and accurate approach by distributing the problem

into subnetworks, demonstrating superior performance and scalability for

large-scale face recognition applications.

Keywords:

Clustering

Deep learning

Distributed learning

Face identification

Facial recognition

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sayed Mohammad Ahmadi

Department of Computer Engineering and Information Technology, Faculty of Engineering, University of Qom

Qom, Iran

Email: sm.ahmadi@stu.qom.ac.ir

1. INTRODUCTION

Facial recognition has been an active research area in machine vision [1], [2], encompassing various

subfields such as face detection [3], [4], alignment [5], anti-spoofing [6], [7], and recognition [8], [9]. Face

recognition involves both face identification and verification, where the former involves identifying the

person in an input image and the latter involves verifying whether two input images belong to the same

person. Face recognition has recently gained significant attention as a means of biometric authentication due

to the coronavirus disease 2019 (COVID-19) pandemic [10], [11]. Deep learning techniques, especially

convolutional neural networks (CNNs), have been at the forefront of face recognition methods for over a

decade [12].

Many applications of machine vision and face processing share common challenges with face

recognition, including varying light conditions such as brightness and contrast, different poses, or various

appearances of the same object in multiple images. Additionally, face recognition is plagued by specific

challenges, such as differences in facial expressions, makeup, and age in various images of a single person.

Moreover, there are times when intra-class distances exceed inter-class distances [13]. Unlike objects in

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 7145-7157

7146

object detection that have a clear distinction from each other, faces in face recognition have a very similar

structure to each other. The more individuals (classes) involved in face recognition, the more general

problems arise due to these common challenges and specific facial features: i) memory consumption

problem, ii) increased temporal complexity, and iii) increased accuracy drops

For a large-scale face identification application, the weight matrix requires more memory than most

current graphics processing units (GPUs) can handle because the classifier layer in the model is fully connected

to the previous layer. Many parameters in this part alone impose a heavy computational burden on the network

to compute the loss function and update the weights. Additionally, the large number of neurons in the output

layer results in significant overfitting on the network. Due to the specific nature of the face structure, the more

classes there are, the more pronounced the drop in accuracy. When all data are trained and identified together,

there is a high degree of data dispersion, making it more challenging to distinguish difficult, i.e., similar data.

Adopting a distributed approach automatically solves the problems of memory and time. This study aims to

propose a distributed approach that does not sacrifice accuracy and, if possible, even improves it.

Two general approaches have been taken to address the challenges posed by face recognition with

large-scale datasets. The first approach involves the development of new architectures or loss functions,

which have led to the creation of innovative techniques such as L-Softmax [14], A-Softmax [15], NormFace

[13], CosFace [16], and ArcFace [17], SFace [18], GhostFace [19]. Although these efforts have yielded

promising results, they are often not practical for very high numbers of classes and must be combined with

additional techniques. The second approach involves techniques such as softmax dissection [20], active class

selection [21], or sampling [22], which have been employed to make it possible to implement the first

approach for very high numbers of classes. Although these techniques may result in a slight drop in accuracy,

they have proven useful in making it feasible to use new architectures or loss functions for large-scale

datasets. The second approach focuses on decomposing the problem into smaller subproblems through

divide-and-conquer techniques. Error-correcting output model (ECOC) [23], label mapping [24], independent

softmax model (ISM) [25], multi-cognition softmax model (MCSM) [26] are some methods of this approach.

The ECOC technique partitions an N-class network into multiple parallel two-class networks. Each binary

network can function as a clustering method to categorized data samples. The original class label can be

obtained by combining the results of binary class networks. However, this approach requires establishing a

correspondence between binary and original network labels. Furthermore, determining the number of binary-

class networks and ensuring independence among rows and columns are crucial to minimizing errors.

Although this method has not been widely used for face recognition, it could provide valuable insights for

related studies. Label mapping is a variant of the ECOC approach that divides the N-class network into larger

subnetworks instead of binary-class subnetworks. The subnetworks can have either equal or mixed sizes, and

the label mapping approach can be applied accordingly. While this method has not been directly used for face

recognition, it could inspire future research in the area.

The ISM method [25], which involves randomly distributing classes into subnetworks, is one such

example of the second approach. However, the random distribution of classes can lead to errors, detailed in

the proposed method section. one solution to clear this type of error is MCSM. MCSM provides a description

of the entire architecture used in [25] as one of its components, termed a cognition unit. It then concurrently

trains several cognition units. All cognition units receive test data. Using a voting mechanism, the predicted

class is determined by the class with the most votes among multiple cognitive units. MCSM was proposed to

address the problem with [25] and mitigate the impact of errors caused by an improper random distribution.

MCSM outperforms ISM methods in terms of accuracy. However, it consumes more memory and requires

more time for training and prediction.

This study proposes a better solution for the mentioned type of error. It utilizes intelligent

distribution of classes to subnetworks through clustering. The clustering algorithm groups similar classes

together, leading to a reduction in data dispersion within each cluster. With increased focus on similar data,

each subnetwork is expected to improve accuracy. Our proposed method includes three modules: toilers,

affinity-meter, and final decision maker. The toiler’s module uses supervised neural networks to classify

facial images into N/m classes, where N is the total number of classes and m is the number of toilers. The

affinity-meter calculates the similarity between the input image and the average features of each class for

each toiler. The final decision maker selects the best class from each toiler and determines the final output.

Our approach offers several advantages over traditional facial recognition methods. By distributing the

workload among multiple toilers, we can significantly reduce the time and memory complexities.

Additionally, the use of deep learning allows for a more accurate classification of facial features, leading to

improved performance. Finally, our method can easily scale to accommodate larger datasets and more

complex classification tasks. Overall, our proposed method offers a powerful and efficient approach to facial

recognition. We believe that this method will pave the way for the development of more accurate and reliable

facial recognition systems that can be used in a wide range of applications.

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient smart distributed face identification using the MixMaxSim … (Sayed Mohammad Ahmadi)

7147

The main contributions of this study are: i) Proposing a novel method to enhance face identification

accuracy by integrating clustering algorithms with deep learning models; ii) Evaluating the proposed method

on three widely used face recognition datasets (Glint360K, VGGFace2, MS-Celeb-1M) and demonstrating

significant improvements in accuracy compared to competitive methods; iii) Employing state-of-the-art and

robust backbones, such as ArcFace, SFace, and GhostFace, for facial feature extraction; and iv) Conducting a

comprehensive experimental analysis of the proposed approach, including comparisons with competitive

methods.

2. PROPOSED METHOD

The limitation of ISM [25]. This limitation has been generally mentioned in [26] and is thoroughly

examined in [27]. Considering that the proposed method is based on the ISM approach [25], we discuss the

limitations of the ISM method here. ISM method has a weakness that arises from the random distribution of

classes among subnets. To help understand this weakness, consider two scenarios. In the first scenario, we

can make the following assumptions:

a. The problem consists of four classes: x, y, z, and w.

b. The test sample t belongs to class x.

c. There are two subnets: A and B.

d. Classes x and w are situated within subnet A, while classes y and z reside within subnet B.

e. Classes x, y, and z bear striking resemblances to one another, yet they diverge significantly from class w,

as visually depicted in Figure 1.

When we input the test sample into both subnetworks, we anticipate that subnetwork A will yield

output values of approximately 0.99 and 0.01, respectively. This expectation arises from the close

resemblance between the test sample (t) and class x, while it significantly differs from class w. Conversely, in

subnetwork B, we foresee output values around 0.48 and 0.52, as t exhibits similarity to both classes y and z.

As a result of the max-max approach, subnet A is chosen from the two subnetworks, and class x is selected,

which is the correct choice. This scenario is a fortunate status for the random distribution of classes. In the

second scenario, we assume that all the assumptions of the first scenario are met, except for assumption d,

which changes as follows: dd) x and y belong to subnet A, and w and z belong to subnet B, see Figure 2.

Figure 1. Fortunate in ISM [27]. The test image is

predicted true in random distributed scenario

Figure 2. Unfortunate in ISM [27]. The test image is

not predicted in random distributed scenario

When the test sample t is fed into both subnets in the second scenario, the output values in subnet A

will be approximately 0.52 for class x and 0.48 for class y, while the output values in subnet B will be 0.80

for class w and 0.20 for class z. Therefore, selecting class w within subnet B is an incorrect choice. This

phenomenon occurs because the score of the output value of the actual class is randomly reduced since it is

placed within a subnet of similar classes. However, similar negative classes within other clusters get higher

scores without any serious competitors due to the max-max mechanism, causing the true class to ultimately

fail. We call this scenario an unfortunate status. To fall into the trap of unfortunate, two conditions must be

met together:

Condition A: The actual class should be in the same subnetwork as similar classes.

Condition B: Similar classes should be distributed in different subnetworks.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 7145-7157

7148

One approach to overcoming the weakness of ISM is to use clustering to prevent the occurrence of

Condition B. This means that efforts are made to prevent similar classes from being distributed across

different clusters and, instead, to place them in a unified cluster. Clustering algorithms, such as k-means, can

be used for this purpose. This approach may seem to result in severe competition within clusters and low

output values for winning classes. However, this perception is not accurate as clustering actually decreases

the dispersion of data within each cluster and allows the network to focus more on distinguishing between

similar classes. Thus, the negative effect is neutralized by this positive property.

In contrast to ISM, this method can determine the cluster to which the input image belongs. For each

cluster, a representative can be determined and compared with the feature vector of the input image to assign

it to the cluster with the highest similarity. This is not possible with ISM, which relies on the max-max

mechanism. Therefore, an alternative criterion needs to be used. We use nearest neighbor with similarity

measure in the affinity-meter module, instead of cluster centers. Figure 3 shows the main idea of this study:

Figure 3(a) show pre-processing phase involves distributing all classes into multiple toilers using clustering.

Each toiler contains similar classes. In Figure 3(b) test phase, two candidate categories are considered: (b1)

predicting the test sample using each subnet (toiler's module) and selecting the class with the highest output

value (max-max), and (b2) determining the closest class to the sample based on the affinities of the toiler

(nearest class). Finally, (b3) the predicted class is chosen to maximize the product of the output value and the

similarity.

(a) (b)

Figure 3. The main concept in the study (a) preprocessing phase, and (b) postprocessing phase

2.1. Framework overview

We begin by using a pre-trained CNN [28], [29] to extract features for all images in each dataset,

resulting in a collection of features denoted as 𝐹𝐷 = {𝑓𝑖}𝑖=1
𝑁 , where 𝑓𝑖 𝜖ℝ𝑑, N represents the number of

images, D is a dataset, and d represents the feature vector dimension. To implement our face identification

architecture, we break the identification problem into three modules. The first module comprises a group of

toilers, with each being trained to identify a specific subset of classes. Clustering is used to distribute all

classes among the toilers, ensuring that each toiler is responsible for identifying similar classes. During

testing, the extracted feature vector from the test image is given as input to all toilers. Each toiler (which is a

neural network) calculates and returns the output values associated with each class for the test data. The

second module, the affinity-meter module, calculates the similarity of the input to the average features of

each class of each toiler separately. Finally, the third module, the final decision maker module, summarizes

the reports received from the first and second modules and selects a class as the final category that has the

highest overall score obtained from the first module's output value and the affinity score from the second

module.

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient smart distributed face identification using the MixMaxSim … (Sayed Mohammad Ahmadi)

7149

2.2. Framework modules

Our proposed method consists of three modules: i) toilers, ii) affinity meter, and iii) final decision

maker. Each module plays a crucial role in ensuring accurate and efficient outcomes. This modular

architecture allows for specialized processing while maintaining a clear flow of information between

components.

2.2.1. Toilers

Each toiler is a supervised neural network that works in parallel with other toilers and is responsible

for identifying approximately 𝑁/𝑚 classes, where N is the total number of classes and m is the number of

toilers. The distribution of classes among these toilers is performed using clustering algorithms such as

k-means, which groups similar classes in the same cluster and dissimilar classes in different clusters. Each

toiler is trained using data corresponding to its classes, which are the features of images extracted by a pre-

trained LResNet100-IR model. During the test phase, the toiler’s module determines the similarity of the

input data to each of its assigned classes and sends the results to the next module for further processing.

a. Time complexity

With a 512-dimensional input feature vector (𝑑 = 512) and each toiler handling approximately 𝑁/𝑚

classes, the weight matrix in the pre-final layer has dimensions of 𝑑 × 𝑁/𝑚. Given that each toiler is trained

solely on data relevant to its assigned classes and the entire dataset size is 𝐷, each toiler is trained with about

𝐷/𝑚 data. This leads to a total time complexity for each epoch (Epoch Time):

𝐸𝑇 =
𝐷

𝑚
× 𝑑 ×

𝑁

𝑚
= 𝑑 × 𝑁 ×

𝐷

𝑚2 (1)

If the toilers are trained in parallel on multiple machines, the Total Time required in Parallel Mode can be

calculated as (2):

𝑇𝑇𝑃𝑀 = 𝑒 ×
𝐷

𝑚
× 𝑑 ×

𝑁

𝑚
= 𝑑 × 𝑒 × 𝑁 ×

𝐷

𝑚2 (2)

However, if they are trained sequentially, the Total Time required in Serial Mode need to be calculated as

(3):

𝑇𝑇𝑆𝑀 = 𝑒 × 𝑑 ×
𝑁

𝑚
× 𝐷 (3)

If only a single toiler is employed (m=1), the necessary number of time units will be:

𝑇𝑇𝑂𝑀(𝑚=1) = 𝑇𝑇𝑆𝑀(𝑚=1) = 𝑒 × 𝑑 × 𝑁 × 𝐷, (4)

which is 𝑚 times slower than the distributed model in serial running and 𝑚2 times slower than the distributed

model in parallel running. Hence, the greater the number of toilers, the fewer total operations are needed. But

on the other hand, the risk of overfitting will increase. Therefore, a balance point should be considered

between the complexity of time (the number of required operations) and the accuracy of the system.

b. Memory complexity

Each toiler needs to be trained for e epochs, with each step of each epoch requiring b batches of

data. These batches are multiplied by the weight matrix with dimensions 512×C/m, resulting in a C/m vector.

Therefore, in each step, we require b×512×4 bytes to store input data and 512×C/m×4 bytes for storing

weight matrix.

2.2.2. Affinity meter

This module calculates the similarities between the input data and the average features of each class

for each toiler. First, we calculate the average feature vectors of training data for each class:

�̄�𝑐𝑖
=

∑ 𝑓𝑗
𝑛𝑖
𝑗=1

𝑛𝑖
, 𝑖 = 1,2,3, . . . , 𝐶, (5)

where 𝑐𝑖 denotes the specific class in the dataset, �̅�𝑐𝑖
 is the mean of feature vectors of class 𝑐𝑖, C is the total

number of classes in the dataset, 𝑓𝑗 is the j-th feature vector of the class 𝑐𝑖 from the training data, 𝑛𝑖 is the

number of training samples for class 𝑐𝑖. Next, we calculate the affinity matrix based on the similarity between

the input feature vector and the mean feature vectors of all classes for each toiler.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 7145-7157

7150

(1,2,...,)
in (1,2,...,)

(,),
i t

t mt t
in c i C

A cos f F
=

=
= , (6)

where 𝑓𝑖𝑛 represents the features of the input sample, 𝑚 denotes the number of toilers, 𝐶𝑡 is the number of

classes in t-th toiler. 𝐴𝑖𝑛
𝑡 represents the affinity between the input and all classes in toiler t, and �̅�𝑐𝑖

𝑡 denotes the

average feature vector of class 𝑐𝑖 for toiler 𝑡.

a. Time complexity

If we assume that we have n images for each identity, calculating the mean of these n feature vectors

will require 𝑛 × 512 operations. Additionally, calculating the affinity between any two feature vectors

requires 512 operations. With 𝐶 classes, the total number of operations needed is 5122 × 𝑛 × 𝐶 operations.

2.3.3. Final decision maker

This module is responsible for selecting the final class label for the input image based on the results

obtained from each toiler. The following steps are performed for every toiler:

- The module finds the class with the highest output score from the toiler’s module. Subsequently, it

retrieves the affinity value of that class from the affinity-meter module and multiplies the two values.

- The module also finds the class with the highest affinity value from the affinity-meter module and

retrieves its toiler response value from the toiler’s module. It multiplies these two values as well.

- The module selects the maximum multiplied value obtained from steps a and b, and the class

corresponding to that value is considered as the chosen class of that toiler.

Although the three modules are logically separate, in practice, the first module performs its task and

sends the results to the third module. By examining the results of the first module, the third module may

decide not to use the second module to speed up performance. This is because if the selected class according

to the results of the first module has a very high score, its decision is accurate and true and almost always

verified by the second module. The second module is actually used as an auxiliary tool for cases where the

first module is uncertain and has a low score. Further details regarding this point will be provided in the

experiments section. Algorithm 1 provides a more detailed description of the post-processing step (test

phase).

Algorithm 1. Post-processing phase
INPUTS: face: 112 × 112 × 3 RGB face image, c: number of subnets, thr: threshold
OUTPUT: 𝑦𝑝𝑟𝑒𝑑: predicted class label

Feature extraction

1 F = extract_features(face)

Best classes from toilers module

2 for m in range(0, c):

3 𝐴𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑎𝑥(𝑀𝑜𝑑𝑒𝑙(𝑚, 𝐹))
4 𝐴𝑐𝑙𝑎𝑠𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑀𝑜𝑑𝑒𝑙(𝑚, 𝐹))
5 𝐴𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 = 0.
6 if 𝐴𝑣𝑎𝑙𝑢𝑒 > 𝐴𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒:
7 𝐴𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 = 𝐴𝑣𝑎𝑙𝑢𝑒
8 𝐴𝑏𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 = 𝐴𝑐𝑙𝑎𝑠𝑠

9 𝐴𝑏𝑒𝑠𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑚

10 𝐶𝑣𝑎𝑙𝑢𝑒 = 𝑐𝑜𝑠_𝑠𝑖𝑚(𝐴𝑏𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠, 𝐹)
11 if 𝐴𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 > 𝑡ℎ𝑟:
12 return 𝑦𝑝𝑟𝑒𝑑

Best classes from affinity-meter module

13 for m in range(0, c):

14 𝐵𝑐𝑙𝑎𝑠𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑐𝑜𝑠𝑆𝑖𝑚(𝑐𝑙𝑢𝑠𝑡𝐷𝑎𝑡𝑎 , 𝐹))
15 𝐵𝑣𝑎𝑙𝑢𝑒 = 𝑐𝑜𝑠_𝑠𝑖𝑚(𝐵𝑐𝑙𝑎𝑠𝑠, 𝐹)
16 if 𝐵𝑣𝑎𝑙𝑢𝑒 > 𝐵𝑏𝑒𝑠𝑡:
17 𝐵𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 = 𝐵𝑣𝑎𝑙𝑢𝑒

18 𝐵𝑏𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 = 𝐵𝑐𝑙𝑎𝑠𝑠

19 𝐵𝑏𝑒𝑠𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑚

20 𝐷𝑣𝑎𝑙𝑢𝑒 = 𝑀𝑜𝑑𝑒𝑙(𝐵𝑏𝑒𝑠𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟, 𝐹)[𝐵𝑏𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠]

Final decision

21 If 𝐴𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 × 𝐶𝑣𝑎𝑙𝑢𝑒 > 𝐵𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 × 𝐷𝑣𝑎𝑙𝑢𝑒:
22 𝑦𝑝𝑟𝑒𝑑 = label of 𝐴𝑏𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠.

23 otherwise:

24 𝑦𝑝𝑟𝑒𝑑 = label of 𝐵𝑏𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠.

25 return 𝑦𝑝𝑟𝑒𝑑

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient smart distributed face identification using the MixMaxSim … (Sayed Mohammad Ahmadi)

7151

3. RESULTS AND DISCUSSION

3.1. Experimental settings

a. Datasets

This study used the following datasets: i) The Glint360k database [22] is renowned as the cleanest

and most extensive resource for face recognition. Within this database, a remarkable 360,232 unique

individuals are represented, accompanied by an impressive collection of 17 million images; ii) MS-Celeb-1M

[30] contains 100K identities, each identity has about 100 facial images; and iii)VGGFace2 [31] contains

more than 3.3M images of over 9K identities.

For each dataset, the classes were selected randomly. They were divided into three parts: 60% for

training, 20% for validation, and the rest for testing. In consideration of the varying number of samples in

each class, we, therefore, consider the evaluation sample size equivalent to the number of test samples, i.e.,

five for each. In the absence of sufficient samples in some classes, new data were generated using data

augmentation, through random rotation, flip, brightness, and contrast transformations.

b. Feature extraction

The proposed algorithm employs some of the latest and most powerful feature extractors instead of

the raw images:

- ArcFace [17]: The backbone architecture of this extractor is LResNet100E-IR [17], which is a residual

network [28]. It was trained using the ArcFace loss function and the MS-Celeb-1M [30] dataset.

- Sface [18]: This study employs the IResNet50 version of the feature extractor as the backbone and

utilizes CosFace [16] as the loss function. The authors trained this model from scratch using the

VGGFace2 [31] dataset.

- GhostFaceNet [19]: This backbone incorporating GhostModules. The utilized version in this study is the

first and configured with a width of 1 and a stride of 3.

All backbones take 112×112 RGB images and convert them into 512-dimensional feature vectors. We

utilized the pre-trained weights provided in.

c. Selection of toilers’ representatives

There are some candidates for choosing a representative for each cluster: i) The mean can

potentially serve as the representative for each cluster. However, in practice, it may not accurately represent

large-scale face features due to the nature of data distribution, refer to Table 1; ii) Alternatively, a strong

candidate for being the cluster representative is the closest data point to the sample features. In other words,

the test sample belongs to the cluster containing the closest data point, refer to Table 1; and iii) The

maximum value of all toiler outputs can be used to determine the cluster to which each data belongs (ISM

method).

Table 1. Clustering accuracy
Representative Train Accuracy % Test Accuracy %

Mean 67.08 59.72

Nearest 98.08 98.17

* For 20,000 classes, using k-means with 10 clusters

d. Uncertainty area

For a problem involving 20,000 classes, within the Glint360k dataset, most of the test samples yield

output values ranging from 0.6 and 0.8. Approximately 80% of the output values of these test samples are

exceed a specific threshold (approximately 0.4 for 20,000 classes) in the max-max approach, see Figure 4.

Nearly 100% of these values represent correct predictions as shown in Figure 5. In other words, almost all of

the network's predictions have been accurate for output values greater than 0.4. When the network's

confidence level drops to around 0.4, the error prediction rate increases. Consequently, any proposed solution

should primarily concentrate on this particular range. It should be noted that this threshold value may vary

depending on the type of dataset, backbone type, loss function, and architectural features. For this reason, we

employed a dynamic approach to determine it. In this manner, for validation datasets, we consider the largest

value as the threshold, ensuring that at least 99.5% of the data with output values higher than this threshold

are correctly predicted. In other words, we find a point where the majority of error-prone data have output

values lower than it, and we refer to this region as the uncertainty region. Our method aims to concentrate its

focus on this region. For example, in Figure 6, which illustrates the distribution of toiler unit candidates, the

threshold value is 0.49, and almost all output values above this threshold have been accurately predicted.

Figure 7 depicts the distribution of affinity-meter unit candidate values, which is very similar in shape to

Figure 6. This implies that in the uncertainty region, with the collaboration of the opinions of both units, a

higher accuracy can be achieved. In fact, whenever the output value of a test data input from toiler unit

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 7145-7157

7152

exceeds the threshold, the framework no longer awaits the opinion of the affinity-meter unit and relies solely

on the toiler unit's report for decision-making. In addition, when considering the similarity between the

features of those classes and the test data, it is significantly low. Nevertheless, mixing these two criteria, i.e.,

similarity and the max-max criterion, can lead to more robust results.

Figure 4. Cumulative frequency of test samples

based on the output value, with errors occurring

before the red line (uncertainty area)

Figure 5. Ratio of correct and incorrect predictions

for max-max output values in the test dataset, with

incorrect predictions occurring before the red line

(uncertainty area)

Figure 6. Frequency of each max-max value of

toiler’s candidates for validation data (GhostFace,

MS-Celeb-1M, 20,000 classes, 6 subnets)

Figure 7. Frequency of each similarity value of

affinity-meter candidates for validation data

(GhostFace, MS-Celeb-1M, 20,000 classes,

6 subnets)

e. Clustering of classes

This study demonstrates that the use of clustering can alleviate the errors caused by the random

distribution of data in toiler’s module. The more accurate the clustering is performed, the higher the final

performance will be. For simplicity and to prove the correctness of our proposed method, we use a very

simple clustering algorithm, k-means. According to this approach, clustering was applied on all feature

vectors of the training data. However, the problem is that not all samples related to each class are grouped

into a single cluster. Nevertheless, to address this issue, each class is assigned to a cluster that has the highest

number of samples in it. In the test phase, we can estimate the toiler (cluster) of a test sample using the

affinity-meter module. This is because the nearest neighbors of each toiler provide a better measure for

estimating the cluster compared to the centers of the clusters. From the mentioned descriptions, it can be

inferred that the provided framework is independent of the dataset and also the backbone. Our experiment

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient smart distributed face identification using the MixMaxSim … (Sayed Mohammad Ahmadi)

7153

results in Table 2 also confirm this claim. These experiments were conducted on the datasets MS-Celeb-1M

[30], VGGFace2 [31], with various new backbones including SFace [18], GhostFaceNet [19]. In all of these

cases, an improvement in accuracy is observed in the proposed scenario compared to competing methods.

Table 2. Comparison results on GhostFaceNet and SFace
Dataset Backbone Classes Distribution-Free Toilers ISM [25] our pre+ISM post our pre+our post

Pre* Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

MS-

Celeb-

1M [30]

GhostFaceNet

[19]

5,000 97.19 96.68 96.59 2 97.21 96.74 96.64 97.14 96.66 96.56 97.27 96.80 96.71

10,000 95.29 94.46 94.27 3 95.93 95.22 95.08 95.85 95.10 94.97 96.00 95.29 95.17

20,000 94.25 93.16 92.92 6 95.79 95.05 94.91 95.64 94.88 94.73 95.87 95.13 95.00

50,000 91.19 89.21 88.70 16 95.15 94.23 94.08 94.87 93.90 93.73 95.23 94.32 94.18

VGG-
Face2

[31]

SFace [18] 5,000 91.31 90.03 89.73 2 91.60 90.35 90.07 91.47 90.12 89.84 91.99 90.68 90.46

6,000 90.91 89.50 89.20 3 91.33 89.99 89.73 91.02 89.58 89.31 91.73 90.37 90.15

7,000 90.51 89.03 88.70 3 90.94 89.55 89.26 90.80 89.34 89.04 91.47 90.07 89.84

8,000 90.12 88.54 88.23 3 90.72 89.27 88.97 90.60 89.08 88.77 91.21 89.78 89.53

8,900 89.65 88.05 87.69 4 90.42 88.95 88.62 90.10 88.49 88.16 90.87 89.44 89.17

* Evaluation metrics are Precision (Pre), Recall (Rec), and F1-score

f. Implementation details

A single architecture was employed in all the experiments, featuring a 512-dimensional vector in the

input layer, followed by L2 normalization. The final layer, referred to as the classifier layer, consists of 𝑁𝑖

neurons, which 𝑖 represents the subnetwork's index. We utilized the ArcFace loss function for training,

employing the Adam optimizer with a learning rate of 0.001, a beta1 of 0.9, and a beta2 of 0.99. All scenarios

were trained for 50 epochs, and the experiments were conducted with varying class sizes.

g. Similarity value or subnetworks output value?

It has been noted that the decision-making unit multiplies the values entered from the previous units

for each of these two candidates and selects the class with the higher product. However, experiments indicate

that the importance of candidates from toiler and affinity-meter units may not be equal, depending on the

type of datasets, training methodologies, loss functions used in the training of subnetworks, and other factors.

As the extracted features become more accurate, the affinity-meter unit candidate gains higher importance in

decision-making. Therefore, an additional coefficient term, denoted as w, is introduced to the formula. In

other words, assuming: i) The affinity-meter unit candidate class is denoted as x and ii) The toiler unit

candidate class is denoted as y,

The selected class will be the one that maximizes the expression (7) among all subnetworks:

𝑚𝑎𝑥(𝑎 × 𝑏 × 𝑤, 𝑐 × 𝑑), (7)

where a represents the output value of x, b represents the similarity value of x, c represents the output value y,

and d represents the similarity value of y. As mentioned, w represents the importance of the affinity-meter

unit candidate, ranging between zero and two. If its value is less than one, it signifies a higher importance

given to the affinity-meter unit candidate. If it is greater than one, it indicates a higher importance given to

the toiler unit candidate.

The question arises: How to determine the value of w? We consider 200 potential values for w in the

range of zero to two with intervals of 0.01. Subsequently, we calculate the accuracy for each of these w

values on the validation dataset. The point where the highest accuracy is achieved is then regarded as the

final value for w. As depicted in Figure 8, for the MS-Celeb-1M datasets with 20,000 categories and 6

subnetworks, and for validation datasets, the optimal w is 1.4, yielding the highest accuracy of 95.131. This

same w is applied to test dataset in Figure 9, and it is observed that nearly optimal results are achieved. The

best w for test datasets is 1.36 (with an accuracy of 95.163), very close to our chosen value of w=1.4

(accuracy of 95.156). Additionally, the figure illustrates that solely utilizing the toiler unit criterion (i.e.,

w=0) would result in an accuracy of 94.837, while using only the affinity-meter unit criterion (i.e., w=2)

would yield an accuracy of 95.114. The combination of both criteria surpasses the performance of each

criterion individually.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 7145-7157

7154

Figure 8. Finding best threshold point from validation dataset with 20000 classes and 6 subnetworks

(GhostFaceNet+MS-Celeb-1M)

Figure 9. Accuracy (recall) in different potential threshold values and selected threshold value for test dataset

(GhostFaceNet+MS-Celeb-1M)

3.2. Method comparison

The following face identification scenarios were evaluated in each case:

a. Distribution-Free: A single network.

b. ISM: Multiple subnets in parallel, random class distribution between subnets, and the max-max prediction

mechanism.

c. Our 𝑃𝑟𝑒 + 𝑚𝑎𝑥 − 𝑚𝑎𝑥 Post: Multiple subnets in parallel, distribution classed by clustering, max-max

decision method.

d. Our 𝑃𝑟𝑒 + 𝑂𝑢𝑟 Post: Multiple subnets in parallel, clustering-based class distribution, and a modified

max-max prediction mechanism (proposed method).

Table 3 summarizes the results of face identification for all scenarios. Different results for different

datasets can be caused by differences in the level of cleanliness or difficulties of the dataset images. Another

reason is that the pre-trained model was trained using MS-Celeb-1M dataset, which is why it has better

results than other datasets. Of course, in this case, the proposed method worked better than other methods.

When the number of classes is small, there is a lower risk of overfitting, and consequently, the proposed

model and other distribution methods may not necessarily lead to performance improvement. However, as

the number of classes increases, the proposed method consistently outperforms other methods. According to

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient smart distributed face identification using the MixMaxSim … (Sayed Mohammad Ahmadi)

7155

Figures 10 to 12. Recall drop for distributive scenarios (Sface [18], VGGFace2 [31]) the accuracy rate

decreases with increasing class size in all scenarios. However, the proposed method has a lower accuracy

drop. The source code of experiments, is available in [32].

Table 3. Comparison results on ArcFace for all scenarios
Dataset Classes Distribution-Free Toilers ISM [25] our pre + ISM post our pre + our post

Pre* Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

Glint-360K [22] 5000 95.58 94.76 94.65 2 95.86 95.09 94.99 95.88 95.09 94.99 95.99 95.26 95.19

10,000 93.31 91.95 91.74 3 94.49 93.46 93.29 94.53 93.49 93.34 94.79 93.84 93.74

20,000 89.38 86.54 86.04 6 93.23 91.94 91.74 93.39 92.15 91.96 93.57 92.43 92.28
50,000 73.21 63.38 61.85 16 90.64 88.87 88.60 90.84 89.19 88.91 91.21 89.68 89.49

MS-Celeb-1M [30] 5,000 93.46 92.26 92.00 2 94.05 92.94 92.73 94.22 93.16 92.94 94.16 93.16 92.94

10,000 90.42 88.54 88.10 3 91.91 90.46 90.15 91.95 90.60 90.29 91.99 90.63 90.34
20,000 87.97 85.10 84.44 6 91.56 90.13 89.79 91.81 90.38 90.03 91.80 90.51 90.18

50,000 74.31 65.30 63.86 16 90.22 88.58 88.16 90.43 88.80 88.40 90.47 88.99 88.58

VGG-Face2 [31] 5,000 89.08 87.18 86.87 2 89.35 87.54 87.24 89.33 87.49 87.18 89.38 87.66 87.38
6,000 88.50 86.55 86.26 3 89.03 87.23 86.93 89.07 87.31 86.99 89.07 87.31 86.99

7,000 87.68 85.64 85.28 3 88.52 86.67 86.32 88.65 86.72 86.42 88.61 86.77 86.49

8,000 87.24 85.05 84.67 3 88.15 86.18 85.82 88.15 86.22 85.87 88.17 86.28 85.96
8,900 86.54 84.24 83.85 4 87.55 85.63 85.24 87.68 85.76 85.39 87.87 85.93 85.61

* Evaluation metrics are Precision (Pre), Recall (Rec), and F1-score

Figure 10. Recall drop for distributive scenarios

(ArcFace [17], Glint360k [22])

Figure 11. Recall drop for distributive scenarios

(GhostFace [19], MS-Celeb-1M [30])

Figure 12. Recall drop for distributive scenarios (Sface [18], VGGFace2 [31])

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 7145-7157

7156

4. CONCLUSION

In summary, this study comprised two distinct phases: preprocessing and post-processing, both of

which introduced no additional complexity to the training operation. To address challenges related to

accuracy, speed, and memory, a divide-and-conquer approach was employed, effectively breaking down the

problem into smaller subproblems. The classifier layer plays a critical role, especially when dealing with

numerous classes within a single network. The risk of overfitting can be mitigated by decomposing a large-

scale problem into smaller subproblems. We divided the large problem into subproblems using clustering in

the preprocessing phase and combined similarity criteria with subnetwork output values in the postprocessing

phase. One promising avenue for future research is the reduction of clustering errors to maximize overall

classification accuracy for numerous classes. Additionally, the potential exists to enhance feature extraction

robustness by unfreezing the last few layers during retraining of the base model.

REFERENCES
[1] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: a unified embedding for face recognition and clustering,” in 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 815–823, doi: 10.1109/CVPR.2015.7298682.

[2] M. A. Al Noman et al., “A computer vision-based lane detection technique using gradient threshold and hue-lightness-saturation

value for an autonomous vehicle,” International Journal of Electrical and Computer Engineering, vol. 13, no. 1, pp. 347–357,
Feb. 2023, doi: 10.11591/ijece.v13i1.pp347-357.

[3] T. Tsai and P. Chi, “A single‐stage face detection and face recognition deep neural network based on feature pyramid and triplet
loss,” IET Image Processing, vol. 16, no. 8, pp. 2148–2156, Mar. 2022, doi: 10.1049/ipr2.12479.

[4] T. H. Obaida, A. S. Jamil, and N. F. Hassan, “Real-time face detection in digital video-based on Viola-Jones supported by

convolutional neural networks,” International Journal of Electrical and Computer Engineering, vol. 12, no. 3, pp. 3083–3091,
Jun. 2022, doi: 10.11591/ijece.v12i3.pp3083-3091.

[5] M. Jabberi, A. Wali, B. B. Chaudhuri, and A. M. Alimi, “68 landmarks are efficient for 3D face alignment: what about more?: 3D

face alignment method applied to face recognition,” Multimedia Tools and Applications, vol. 82, no. 27, pp. 41435–41469, Apr.
2023, doi: 10.1007/s11042-023-14770-x.

[6] R. Huang and X. Wang, “Face anti-spoofing using feature distilling and global attention learning,” Pattern Recognition, vol. 135,

Mar. 2023, doi: 10.1016/j.patcog.2022.109147.
[7] M. Khammari, “Robust face anti‐spoofing using CNN with LBP and WLD,” IET Image Processing, vol. 13, no. 11,

pp. 1880–1884, Jul. 2019, doi: 10.1049/iet-ipr.2018.5560.

[8] G. Gao, Y. Yu, J. Yang, G.-J. Qi, and M. Yang, “Hierarchical deep CNN feature set-based representation learning for robust
cross-resolution face recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 5,

pp. 2550–2560, May 2022, doi: 10.1109/tcsvt.2020.3042178.

[9] Y. El Madmoune, I. El Ouariachi, K. Zenkouar, and A. Zahi, “Robust face recognition using convolutional neural networks
combined with Krawtchouk moments,” International Journal of Electrical and Computer Engineering, vol. 13, no. 4,

pp. 4052-4067, Aug. 2023, doi: 10.11591/ijece.v13i4.pp4052-4067.

[10] M. I. P. Nasution, N. Nurbaiti, N. Nurlaila, T. I. F. Rahma, and K. Kamilah, “Face recognition login authentication for digital
payment solution at COVID-19 pandemic,” 2020 3rd International Conference on Computer and Informatics Engineering

(IC2IE), Yogyakarta, Indonesia, 2020, pp. 48-51, doi: 10.1109/ic2ie50715.2020.9274654.

[11] J. S. Talahua, J. Buele, P. Calvopiña, and J. Varela-Aldás, “Facial recognition system for people with and without face mask in
times of the COVID-19 pandemic,” Sustainability, vol. 13, no. 12, p. 6900, Jun. 2021, doi: 10.3390/su13126900.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the

IEEE, vol. 86, no. 11, pp. 2278–2324, 1998, doi: 10.1109/5.726791.
[13] F. Wang, X. Xiang, J. Cheng, and A. L. Yuille, “NormFace: L2 hypersphere embedding for face verification,” in Proceedings of

the 25th ACM International Conference on Multimedia, Oct. 2017, pp. 1041–1049, doi: 10.1145/3123266.3123359.

[14] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss for convolutional neural networks,” arXiv:1612.02295, 2016.
[15] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “SphereFace: deep hypersphere embedding for face recognition,” in 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 6738–6746, doi: 10.1109/CVPR.2017.713.

[16] H. Wang et al., “CosFace: large margin cosine loss for deep face recognition,” 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 5265-5274, doi: 10.1109/cvpr.2018.00552.

[17] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: additive angular margin loss for deep face recognition,” 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 4685-4694, doi:
10.1109/cvpr.2019.00482.

[18] F. Boutros, M. Huber, P. Siebke, T. Rieber, and N. Damer, “SFace: Privacy-friendly and accurate face recognition using synthetic

data,” 2022 IEEE International Joint Conference on Biometrics (IJCB), Abu Dhabi, United Arab Emirates, 2022, pp. 1-11, doi:
10.1109/ijcb54206.2022.10007961.

[19] M. Alansari, O. A. Hay, S. Javed, A. Shoufan, Y. Zweiri, and N. Werghi, “GhostFaceNets: lightweight face recognition model

from cheap operations,” IEEE Access, vol. 11, pp. 35429–35446, 2023, doi: 10.1109/access.2023.3266068.
[20] L. He, Z. Wang, Y. Li, and S. Wang, “Softmax dissection: Towards understanding intra- and inter-class objective for embedding

learning,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 7, pp. 10957–10964, Apr. 2020, doi:

10.1609/aaai.v34i07.6729.
[21] X. Zhang, L. Yang, J. Yan, and D. Lin, “Accelerated training for massive classification via dynamic class selection,” Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018, doi: 10.1609/aaai.v32i1.12337.

[22] X. An et al., “Partial FC: training 10 million identities on a single machine,” 2021 IEEE/CVF International Conference on
Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 2021, pp. 1445-1449, doi: 10.1109/iccvw54120.2021.00166.

[23] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via error-correcting output codes,” Journal of Artificial

Intelligence Research, vol. 2, pp. 263–286, Jan. 1995, doi: 10.1613/jair.105.
[24] Q. Zhang, K.-C. Lee, H. Bao, Y. You, W. Li, and D. Guo, “Large scale classification in deep neural network with label mapping,”

2018 IEEE International Conference on Data Mining Workshops (ICDMW), Nov. 2018, doi: 10.1109/icdmw.2018.00163.

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient smart distributed face identification using the MixMaxSim … (Sayed Mohammad Ahmadi)

7157

[25] Y. Wu, J. Li, Y. Kong, and Y. Fu, “Deep convolutional neural network with independent softmax for large scale face
recognition,” In Proceedings of the 24th ACM international conference on Multimedia (MM '16). Association for Computing

Machinery, New York, NY, USA, Oct. 2016, pp. 1063–1067 doi: 10.1145/2964284.2984060.

[26] Y. Xu et al., “High performance large scale face recognition with multi-cognition softmax and feature retrieval,” 2017 IEEE
International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 2017, pp. 1898-1906, doi:

10.1109/iccvw.2017.224.

[27] S. M. Ahmadi and R. Dianat, “A two-stage clustering-based distributed framework for large-scale face identification,” Signal and
Data Processing, vol. 21, no. 1, 2024.

[28] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual networks,” 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 6307-6315, doi: 10.1109/cvpr.2017.668.
[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[30] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “MS-Celeb-1M: a dataset and benchmark for large-scale face recognition,” in
Computer Vision, Springer International Publishing, 2016, pp. 87–102.

[31] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VGGFace2: A dataset for recognising faces across pose and age,”

2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), May 2018, pp. 67-74 doi:
10.1109/fg.2018.00020.

[32] S. M. Ahmadi and R. Dianat, “MixMaxSim: mixture of MaxMax and similarity,” GitHub,

https://github.com/mohammadahmadi1395/MixMaxSim (accessed Feb. 10, 2024).

BIOGRAPHIES OF AUTHORS

Sayed Mohammad Ahmadi was born in Qom, Iran in 1986. is a professional in

the field of computer science and information technology. He holds a bachelor of computer

science degree from the Faculty of Basic Sciences at University of Qom in 2010. He further

pursued his studies and obtained a master’s degree in information technology engineering

from the Faculty of Engineering at University of Qom in 2014. Currently, he is a Ph.D.

student in information technology engineering at the same institution. He has a diverse

academic and teaching background, having taught at various universities in Afghanistan and

Iran. He has also been involved in data analysis and image processing projects. He can be

contacted at email: ahmadi.mohammad2008@gmail.com and sm.ahmadi@stu.qom.ac.ir.

Rouhollah Dianat was born in Qom, Iran, in 1977. He received his B.Sc. degree

in computer engineering from Shahid Beheshti University, Tehran, Iran, in 2001, and his

M.Sc. degree in computer engineering from the Sharif University of Technology, Tehran, in

2004. In 2010, he successfully completed his Ph.D. degree in the Department of Computer

Engineering at the same institution. His research interests lie in the areas of signal processing,

speech processing, image processing, and pattern recognition. He focuses on multi (hyper)

spectral image analysis, pattern recognition and texture segmentation and classification. Dr.

Rouhollah Dianat is currently an assistant professor in the Department of Computer

Engineering and Information Technology at Qom University. He can be contacted at email:

rdianat@qom.ac.ir.

mailto:ahmadi.mohammad2008@mail.com
mailto:sm.ahmadi@stu.qom.ac.ir
mailto:rdianat@qom.ac.ir
https://orcid.org/0000-0002-5515-6454
https://scholar.google.com/citations?user=WHi6euAAAAAJ&hl=en
https://orcid.org/0000-0002-6236-5131
https://scholar.google.com/citations?user=DqNnkTwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57191328291

