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 Recognizing a large number of people is a common challenge in face 

identification applications, involving decreased accuracy, increased memory 

and time complexities. To address these issues, this study introduces a three-

module approach: “toilers,” “affinity-meter,” and “decision-maker.” Unlike 

the random distribution methods used in previous solutions, this method 

employs clustering to distribute the problem into subnetworks called 

“toilers.” The toiler’s module calculates the likelihood of test data belonging 

to each class of each toiler, using the last layer outputs of deep learning 

models. Meanwhile, the affinity-meter module determines the similarity 

between the test data and the average of each class, employing a similarity 

measure. The decision-maker module combines the reports from the 

previous two modules and selects the final class, utilizing a mix of the max-

max criterion and the similarity criterion. The proposed method outperforms 

existing solutions, achieving improved recall, precision, and F1-score. It 

effectively addresses memory, speed, and accuracy issues in face 

identification, surpassing both no-distribution and random methods on 

Glint360K, VGGFace2, and MS-Celeb-1M datasets. Overall, this method 

offers a more efficient and accurate approach by distributing the problem 

into subnetworks, demonstrating superior performance and scalability for 

large-scale face recognition applications. 
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1. INTRODUCTION 

Facial recognition has been an active research area in machine vision [1], [2], encompassing various 

subfields such as face detection [3], [4], alignment [5], anti-spoofing [6], [7], and recognition [8], [9]. Face 

recognition involves both face identification and verification, where the former involves identifying the 

person in an input image and the latter involves verifying whether two input images belong to the same 

person. Face recognition has recently gained significant attention as a means of biometric authentication due 

to the coronavirus disease 2019 (COVID-19) pandemic [10], [11]. Deep learning techniques, especially 

convolutional neural networks (CNNs), have been at the forefront of face recognition methods for over a 

decade [12]. 

Many applications of machine vision and face processing share common challenges with face 

recognition, including varying light conditions such as brightness and contrast, different poses, or various 

appearances of the same object in multiple images. Additionally, face recognition is plagued by specific 

challenges, such as differences in facial expressions, makeup, and age in various images of a single person. 

Moreover, there are times when intra-class distances exceed inter-class distances [13]. Unlike objects in 

https://creativecommons.org/licenses/by-sa/4.0/
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object detection that have a clear distinction from each other, faces in face recognition have a very similar 

structure to each other. The more individuals (classes) involved in face recognition, the more general 

problems arise due to these common challenges and specific facial features: i) memory consumption 

problem, ii) increased temporal complexity, and iii) increased accuracy drops 

For a large-scale face identification application, the weight matrix requires more memory than most 

current graphics processing units (GPUs) can handle because the classifier layer in the model is fully connected 

to the previous layer. Many parameters in this part alone impose a heavy computational burden on the network 

to compute the loss function and update the weights. Additionally, the large number of neurons in the output 

layer results in significant overfitting on the network. Due to the specific nature of the face structure, the more 

classes there are, the more pronounced the drop in accuracy. When all data are trained and identified together, 

there is a high degree of data dispersion, making it more challenging to distinguish difficult, i.e., similar data. 

Adopting a distributed approach automatically solves the problems of memory and time. This study aims to 

propose a distributed approach that does not sacrifice accuracy and, if possible, even improves it. 

Two general approaches have been taken to address the challenges posed by face recognition with 

large-scale datasets. The first approach involves the development of new architectures or loss functions, 

which have led to the creation of innovative techniques such as L-Softmax [14], A-Softmax [15], NormFace 

[13], CosFace [16], and ArcFace [17], SFace [18], GhostFace [19]. Although these efforts have yielded 

promising results, they are often not practical for very high numbers of classes and must be combined with 

additional techniques. The second approach involves techniques such as softmax dissection [20], active class 

selection [21], or sampling [22], which have been employed to make it possible to implement the first 

approach for very high numbers of classes. Although these techniques may result in a slight drop in accuracy, 

they have proven useful in making it feasible to use new architectures or loss functions for large-scale 

datasets. The second approach focuses on decomposing the problem into smaller subproblems through 

divide-and-conquer techniques. Error-correcting output model (ECOC) [23], label mapping [24], independent 

softmax model (ISM) [25], multi-cognition softmax model (MCSM) [26] are some methods of this approach. 

The ECOC technique partitions an N-class network into multiple parallel two-class networks. Each binary 

network can function as a clustering method to categorized data samples. The original class label can be 

obtained by combining the results of binary class networks. However, this approach requires establishing a 

correspondence between binary and original network labels. Furthermore, determining the number of binary-

class networks and ensuring independence among rows and columns are crucial to minimizing errors. 

Although this method has not been widely used for face recognition, it could provide valuable insights for 

related studies. Label mapping is a variant of the ECOC approach that divides the N-class network into larger 

subnetworks instead of binary-class subnetworks. The subnetworks can have either equal or mixed sizes, and 

the label mapping approach can be applied accordingly. While this method has not been directly used for face 

recognition, it could inspire future research in the area. 

The ISM method [25], which involves randomly distributing classes into subnetworks, is one such 

example of the second approach. However, the random distribution of classes can lead to errors, detailed in 

the proposed method section. one solution to clear this type of error is MCSM. MCSM provides a description 

of the entire architecture used in [25] as one of its components, termed a cognition unit. It then concurrently 

trains several cognition units. All cognition units receive test data. Using a voting mechanism, the predicted 

class is determined by the class with the most votes among multiple cognitive units. MCSM was proposed to 

address the problem with [25] and mitigate the impact of errors caused by an improper random distribution. 

MCSM outperforms ISM methods in terms of accuracy. However, it consumes more memory and requires 

more time for training and prediction. 

This study proposes a better solution for the mentioned type of error. It utilizes intelligent 

distribution of classes to subnetworks through clustering. The clustering algorithm groups similar classes 

together, leading to a reduction in data dispersion within each cluster. With increased focus on similar data, 

each subnetwork is expected to improve accuracy. Our proposed method includes three modules: toilers, 

affinity-meter, and final decision maker. The toiler’s module uses supervised neural networks to classify 

facial images into N/m classes, where N is the total number of classes and m is the number of toilers. The 

affinity-meter calculates the similarity between the input image and the average features of each class for 

each toiler. The final decision maker selects the best class from each toiler and determines the final output. 

Our approach offers several advantages over traditional facial recognition methods. By distributing the 

workload among multiple toilers, we can significantly reduce the time and memory complexities. 

Additionally, the use of deep learning allows for a more accurate classification of facial features, leading to 

improved performance. Finally, our method can easily scale to accommodate larger datasets and more 

complex classification tasks. Overall, our proposed method offers a powerful and efficient approach to facial 

recognition. We believe that this method will pave the way for the development of more accurate and reliable 

facial recognition systems that can be used in a wide range of applications. 
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The main contributions of this study are: i) Proposing a novel method to enhance face identification 

accuracy by integrating clustering algorithms with deep learning models; ii) Evaluating the proposed method 

on three widely used face recognition datasets (Glint360K, VGGFace2, MS-Celeb-1M) and demonstrating 

significant improvements in accuracy compared to competitive methods; iii) Employing state-of-the-art and 

robust backbones, such as ArcFace, SFace, and GhostFace, for facial feature extraction; and iv) Conducting a 

comprehensive experimental analysis of the proposed approach, including comparisons with competitive 

methods. 

 

 

2. PROPOSED METHOD 

The limitation of ISM [25]. This limitation has been generally mentioned in [26] and is thoroughly 

examined in [27]. Considering that the proposed method is based on the ISM approach [25], we discuss the 

limitations of the ISM method here. ISM method has a weakness that arises from the random distribution of 

classes among subnets. To help understand this weakness, consider two scenarios. In the first scenario, we 

can make the following assumptions: 

a. The problem consists of four classes: x, y, z, and w.  

b. The test sample t belongs to class x.  

c. There are two subnets: A and B.  

d. Classes x and w are situated within subnet A, while classes y and z reside within subnet B.  

e. Classes x, y, and z bear striking resemblances to one another, yet they diverge significantly from class w, 

as visually depicted in Figure 1. 

When we input the test sample into both subnetworks, we anticipate that subnetwork A will yield 

output values of approximately 0.99 and 0.01, respectively. This expectation arises from the close 

resemblance between the test sample (t) and class x, while it significantly differs from class w. Conversely, in 

subnetwork B, we foresee output values around 0.48 and 0.52, as t exhibits similarity to both classes y and z. 

As a result of the max-max approach, subnet A is chosen from the two subnetworks, and class x is selected, 

which is the correct choice. This scenario is a fortunate status for the random distribution of classes. In the 

second scenario, we assume that all the assumptions of the first scenario are met, except for assumption d, 

which changes as follows: dd) x and y belong to subnet A, and w and z belong to subnet B, see Figure 2. 

 

 

  

  

Figure 1. Fortunate in ISM [27]. The test image is 

predicted true in random distributed scenario 

Figure 2. Unfortunate in ISM [27]. The test image is 

not predicted in random distributed scenario 

 

 

When the test sample t is fed into both subnets in the second scenario, the output values in subnet A 

will be approximately 0.52 for class x and 0.48 for class y, while the output values in subnet B will be 0.80 

for class w and 0.20 for class z. Therefore, selecting class w within subnet B is an incorrect choice. This 

phenomenon occurs because the score of the output value of the actual class is randomly reduced since it is 

placed within a subnet of similar classes. However, similar negative classes within other clusters get higher 

scores without any serious competitors due to the max-max mechanism, causing the true class to ultimately 

fail. We call this scenario an unfortunate status. To fall into the trap of unfortunate, two conditions must be 

met together:  

 

Condition A: The actual class should be in the same subnetwork as similar classes.  

Condition B: Similar classes should be distributed in different subnetworks. 
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One approach to overcoming the weakness of ISM is to use clustering to prevent the occurrence of 

Condition B. This means that efforts are made to prevent similar classes from being distributed across 

different clusters and, instead, to place them in a unified cluster. Clustering algorithms, such as k-means, can 

be used for this purpose. This approach may seem to result in severe competition within clusters and low 

output values for winning classes. However, this perception is not accurate as clustering actually decreases 

the dispersion of data within each cluster and allows the network to focus more on distinguishing between 

similar classes. Thus, the negative effect is neutralized by this positive property. 

In contrast to ISM, this method can determine the cluster to which the input image belongs. For each 

cluster, a representative can be determined and compared with the feature vector of the input image to assign 

it to the cluster with the highest similarity. This is not possible with ISM, which relies on the max-max 

mechanism. Therefore, an alternative criterion needs to be used. We use nearest neighbor with similarity 

measure in the affinity-meter module, instead of cluster centers. Figure 3 shows the main idea of this study: 

Figure 3(a) show pre-processing phase involves distributing all classes into multiple toilers using clustering. 

Each toiler contains similar classes. In Figure 3(b) test phase, two candidate categories are considered: (b1) 

predicting the test sample using each subnet (toiler's module) and selecting the class with the highest output 

value (max-max), and (b2) determining the closest class to the sample based on the affinities of the toiler 

(nearest class). Finally, (b3) the predicted class is chosen to maximize the product of the output value and the 

similarity. 

 

 

 

 
(a) (b) 

 

Figure 3. The main concept in the study (a) preprocessing phase, and (b) postprocessing phase 

 

 

2.1.  Framework overview 

We begin by using a pre-trained CNN [28], [29] to extract features for all images in each dataset, 

resulting in a collection of features denoted as 𝐹𝐷 = {𝑓𝑖}𝑖=1
𝑁 , where 𝑓𝑖  𝜖ℝ𝑑, N represents the number of 

images, D is a dataset, and d represents the feature vector dimension. To implement our face identification 

architecture, we break the identification problem into three modules. The first module comprises a group of 

toilers, with each being trained to identify a specific subset of classes. Clustering is used to distribute all 

classes among the toilers, ensuring that each toiler is responsible for identifying similar classes. During 

testing, the extracted feature vector from the test image is given as input to all toilers. Each toiler (which is a 

neural network) calculates and returns the output values associated with each class for the test data. The 

second module, the affinity-meter module, calculates the similarity of the input to the average features of 

each class of each toiler separately. Finally, the third module, the final decision maker module, summarizes 

the reports received from the first and second modules and selects a class as the final category that has the 

highest overall score obtained from the first module's output value and the affinity score from the second 

module. 
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2.2.  Framework modules 

Our proposed method consists of three modules: i) toilers, ii) affinity meter, and iii) final decision 

maker. Each module plays a crucial role in ensuring accurate and efficient outcomes. This modular 

architecture allows for specialized processing while maintaining a clear flow of information between 

components. 

 
2.2.1. Toilers 

Each toiler is a supervised neural network that works in parallel with other toilers and is responsible 

for identifying approximately 𝑁/𝑚 classes, where N is the total number of classes and m is the number of 

toilers. The distribution of classes among these toilers is performed using clustering algorithms  such as  

k-means, which groups similar classes in the same cluster and dissimilar classes in different clusters. Each 

toiler is trained using data corresponding to its classes, which are the features of images extracted by a pre-

trained LResNet100-IR model. During the test phase, the toiler’s module determines the similarity of the 

input data to each of its assigned classes and sends the results to the next module for further processing. 

a. Time complexity 

With a 512-dimensional input feature vector (𝑑 = 512) and each toiler handling approximately 𝑁/𝑚 

classes, the weight matrix in the pre-final layer has dimensions of 𝑑 × 𝑁/𝑚. Given that each toiler is trained 

solely on data relevant to its assigned classes and the entire dataset size is 𝐷, each toiler is trained with about 

𝐷/𝑚 data. This leads to a total time complexity for each epoch (Epoch Time): 

 

𝐸𝑇 =
𝐷

𝑚
× 𝑑 ×

𝑁

𝑚
= 𝑑 × 𝑁 ×

𝐷

𝑚2 (1) 

 

If the toilers are trained in parallel on multiple machines, the Total Time required in Parallel Mode can be 

calculated as (2): 

 

𝑇𝑇𝑃𝑀 = 𝑒 ×
𝐷

𝑚
× 𝑑 ×

𝑁

𝑚
= 𝑑 × 𝑒 × 𝑁 ×

𝐷

𝑚2 (2) 

 

However, if they are trained sequentially, the Total Time required in Serial Mode need to be calculated as 

(3): 

 

𝑇𝑇𝑆𝑀 = 𝑒 × 𝑑 ×
𝑁

𝑚
× 𝐷 (3) 

 

If only a single toiler is employed (m=1), the necessary number of time units will be: 

 

𝑇𝑇𝑂𝑀(𝑚=1) = 𝑇𝑇𝑆𝑀(𝑚=1) = 𝑒 × 𝑑 × 𝑁 × 𝐷, (4) 

 

which is 𝑚 times slower than the distributed model in serial running and 𝑚2 times slower than the distributed 

model in parallel running. Hence, the greater the number of toilers, the fewer total operations are needed. But 

on the other hand, the risk of overfitting will increase. Therefore, a balance point should be considered 

between the complexity of time (the number of required operations) and the accuracy of the system. 

b. Memory complexity 

Each toiler needs to be trained for e epochs, with each step of each epoch requiring b batches of 

data. These batches are multiplied by the weight matrix with dimensions 512×C/m, resulting in a C/m vector. 

Therefore, in each step, we require b×512×4 bytes to store input data and 512×C/m×4 bytes for storing 

weight matrix. 

 

2.2.2. Affinity meter 

This module calculates the similarities between the input data and the average features of each class 

for each toiler. First, we calculate the average feature vectors of training data for each class: 

 

�̄�𝑐𝑖
=

∑ 𝑓𝑗
𝑛𝑖
𝑗=1

𝑛𝑖
, 𝑖 = 1,2,3, . . . , 𝐶, (5) 

 

where 𝑐𝑖 denotes the specific class in the dataset, �̅�𝑐𝑖
 is the mean of feature vectors of class 𝑐𝑖, C is the total 

number of classes in the dataset, 𝑓𝑗 is the j-th feature vector of the class 𝑐𝑖 from the training data, 𝑛𝑖 is the 

number of training samples for class 𝑐𝑖. Next, we calculate the affinity matrix based on the similarity between 

the input feature vector and the mean feature vectors of all classes for each toiler. 
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( 1,2,..., )
in ( 1,2,..., )

( , ),
i t

t mt t
in c i C

A cos f F
=

=
= , (6) 

 

where 𝑓𝑖𝑛 represents the features of the input sample, 𝑚 denotes the number of toilers, 𝐶𝑡 is the number of 

classes in t-th toiler. 𝐴𝑖𝑛
𝑡  represents the affinity between the input and all classes in toiler t, and �̅�𝑐𝑖

𝑡  denotes the 

average feature vector of class 𝑐𝑖 for toiler 𝑡. 

a. Time complexity 

If we assume that we have n images for each identity, calculating the mean of these n feature vectors 

will require 𝑛 × 512 operations. Additionally, calculating the affinity between any two feature vectors 

requires 512 operations. With 𝐶 classes, the total number of operations needed is 5122 × 𝑛 × 𝐶 operations. 

 

2.3.3. Final decision maker 

This module is responsible for selecting the final class label for the input image based on the results 

obtained from each toiler. The following steps are performed for every toiler: 

- The module finds the class with the highest output score from the toiler’s module. Subsequently, it 

retrieves the affinity value of that class from the affinity-meter module and multiplies the two values. 

- The module also finds the class with the highest affinity value from the affinity-meter module and 

retrieves its toiler response value from the toiler’s module. It multiplies these two values as well.  

- The module selects the maximum multiplied value obtained from steps a and b, and the class 

corresponding to that value is considered as the chosen class of that toiler.  

Although the three modules are logically separate, in practice, the first module performs its task and 

sends the results to the third module. By examining the results of the first module, the third module may 

decide not to use the second module to speed up performance. This is because if the selected class according 

to the results of the first module has a very high score, its decision is accurate and true and almost always 

verified by the second module. The second module is actually used as an auxiliary tool for cases where the 

first module is uncertain and has a low score. Further details regarding this point will be provided in the 

experiments section. Algorithm 1 provides a more detailed description of the post-processing step (test 

phase). 

 

Algorithm 1. Post-processing phase 
INPUTS: face: 112 × 112 × 3 RGB face image, c: number of subnets, thr: threshold 
OUTPUT: 𝑦𝑝𝑟𝑒𝑑: predicted class label 
  

# Feature extraction 

1 F = extract_features(face) 
  

#  Best classes from toilers module 

2 for m in range(0, c): 

3  𝐴𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑎𝑥(𝑀𝑜𝑑𝑒𝑙(𝑚, 𝐹)) 
4  𝐴𝑐𝑙𝑎𝑠𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑀𝑜𝑑𝑒𝑙(𝑚, 𝐹)) 
5  𝐴𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 = 0. 
6  if 𝐴𝑣𝑎𝑙𝑢𝑒 > 𝐴𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒: 
7   𝐴𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 = 𝐴𝑣𝑎𝑙𝑢𝑒  
8   𝐴𝑏𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 = 𝐴𝑐𝑙𝑎𝑠𝑠 

9   𝐴𝑏𝑒𝑠𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟 =  𝑚 

10 𝐶𝑣𝑎𝑙𝑢𝑒 = 𝑐𝑜𝑠_𝑠𝑖𝑚(𝐴𝑏𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠, 𝐹) 
11 if 𝐴𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 > 𝑡ℎ𝑟: 
12  return 𝑦𝑝𝑟𝑒𝑑 
   

#  Best classes from affinity-meter module 

13 for m in range(0, c): 

14  𝐵𝑐𝑙𝑎𝑠𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑐𝑜𝑠𝑆𝑖𝑚(𝑐𝑙𝑢𝑠𝑡𝐷𝑎𝑡𝑎 , 𝐹)) 
15  𝐵𝑣𝑎𝑙𝑢𝑒 = 𝑐𝑜𝑠_𝑠𝑖𝑚(𝐵𝑐𝑙𝑎𝑠𝑠, 𝐹) 
16  if 𝐵𝑣𝑎𝑙𝑢𝑒 > 𝐵𝑏𝑒𝑠𝑡: 
17   𝐵𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 = 𝐵𝑣𝑎𝑙𝑢𝑒 

18   𝐵𝑏𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 = 𝐵𝑐𝑙𝑎𝑠𝑠 

19   𝐵𝑏𝑒𝑠𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑚 

20 𝐷𝑣𝑎𝑙𝑢𝑒 = 𝑀𝑜𝑑𝑒𝑙(𝐵𝑏𝑒𝑠𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟, 𝐹)[𝐵𝑏𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠] 
  

#  Final decision 

21 If 𝐴𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 × 𝐶𝑣𝑎𝑙𝑢𝑒 > 𝐵𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 × 𝐷𝑣𝑎𝑙𝑢𝑒: 
22  𝑦𝑝𝑟𝑒𝑑 = label of 𝐴𝑏𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠. 

23 otherwise: 

24  𝑦𝑝𝑟𝑒𝑑 = label of 𝐵𝑏𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠. 

25 return 𝑦𝑝𝑟𝑒𝑑 
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3. RESULTS AND DISCUSSION 

3.1.  Experimental settings 

a. Datasets 

This study used the following datasets: i) The Glint360k database [22] is renowned as the cleanest 

and most extensive resource for face recognition. Within this database, a remarkable 360,232 unique 

individuals are represented, accompanied by an impressive collection of 17 million images; ii) MS-Celeb-1M 

[30] contains 100K identities, each identity has about 100 facial images; and iii)VGGFace2 [31] contains 

more than 3.3M images of over 9K identities. 

For each dataset, the classes were selected randomly. They were divided into three parts: 60% for 

training, 20% for validation, and the rest for testing. In consideration of the varying number of samples in 

each class, we, therefore, consider the evaluation sample size equivalent to the number of test samples, i.e., 

five for each. In the absence of sufficient samples in some classes, new data were generated using data 

augmentation, through random rotation, flip, brightness, and contrast transformations. 

b. Feature extraction 

The proposed algorithm employs some of the latest and most powerful feature extractors instead of 

the raw images: 

- ArcFace [17]: The backbone architecture of this extractor is LResNet100E-IR [17], which is a residual 

network [28]. It was trained using the ArcFace loss function and the MS-Celeb-1M [30] dataset.  

- Sface [18]: This study employs the IResNet50 version of the feature extractor as the backbone and 

utilizes CosFace [16] as the loss function. The authors trained this model from scratch using the 

VGGFace2 [31] dataset. 

- GhostFaceNet [19]: This backbone incorporating GhostModules. The utilized version in this study is the 

first and configured with a width of 1 and a stride of 3. 

All backbones take 112×112 RGB images and convert them into 512-dimensional feature vectors. We 

utilized the pre-trained weights provided in. 

c. Selection of toilers’ representatives 

There are some candidates for choosing a representative for each cluster: i) The mean can 

potentially serve as the representative for each cluster. However, in practice, it may not accurately represent 

large-scale face features due to the nature of data distribution, refer to Table 1; ii) Alternatively, a strong 

candidate for being the cluster representative is the closest data point to the sample features. In other words, 

the test sample belongs to the cluster containing the closest data point, refer to Table 1; and iii) The 

maximum value of all toiler outputs can be used to determine the cluster to which each data belongs (ISM 

method). 

 
 

Table 1. Clustering accuracy 
Representative Train Accuracy % Test Accuracy % 

Mean 67.08 59.72 

Nearest 98.08 98.17 

* For 20,000 classes, using k-means with 10 clusters 

 

 

d. Uncertainty area 

For a problem involving 20,000 classes, within the Glint360k dataset, most of the test samples yield 

output values ranging from 0.6 and 0.8. Approximately 80% of the output values of these test samples are 

exceed a specific threshold (approximately 0.4 for 20,000 classes) in the max-max approach, see Figure 4. 

Nearly 100% of these values represent correct predictions as shown in Figure 5. In other words, almost all of 

the network's predictions have been accurate for output values greater than 0.4. When the network's 

confidence level drops to around 0.4, the error prediction rate increases. Consequently, any proposed solution 

should primarily concentrate on this particular range. It should be noted that this threshold value may vary 

depending on the type of dataset, backbone type, loss function, and architectural features. For this reason, we 

employed a dynamic approach to determine it. In this manner, for validation datasets, we consider the largest 

value as the threshold, ensuring that at least 99.5% of the data with output values higher than this threshold 

are correctly predicted. In other words, we find a point where the majority of error-prone data have output 

values lower than it, and we refer to this region as the uncertainty region. Our method aims to concentrate its 

focus on this region. For example, in Figure 6, which illustrates the distribution of toiler unit candidates, the 

threshold value is 0.49, and almost all output values above this threshold have been accurately predicted. 

Figure 7 depicts the distribution of affinity-meter unit candidate values, which is very similar in shape to 

Figure 6. This implies that in the uncertainty region, with the collaboration of the opinions of both units, a 

higher accuracy can be achieved. In fact, whenever the output value of a test data input from toiler unit 
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exceeds the threshold, the framework no longer awaits the opinion of the affinity-meter unit and relies solely 

on the toiler unit's report for decision-making. In addition, when considering the similarity between the 

features of those classes and the test data, it is significantly low. Nevertheless, mixing these two criteria, i.e., 

similarity and the max-max criterion, can lead to more robust results. 

 

 

 
 

  

Figure 4. Cumulative frequency of test samples 

based on the output value, with errors occurring 

before the red line (uncertainty area) 

Figure 5. Ratio of correct and incorrect predictions 

for max-max output values in the test dataset, with 

incorrect predictions occurring before the red line 

(uncertainty area) 

 

 

  

  

Figure 6. Frequency of each max-max value of 

toiler’s candidates for validation data (GhostFace, 

MS-Celeb-1M, 20,000 classes, 6 subnets) 

Figure 7. Frequency of each similarity value of 

affinity-meter candidates for validation data 

(GhostFace, MS-Celeb-1M, 20,000 classes,  

6 subnets) 

 

 

e. Clustering of classes 

This study demonstrates that the use of clustering can alleviate the errors caused by the random 

distribution of data in toiler’s module. The more accurate the clustering is performed, the higher the final 

performance will be. For simplicity and to prove the correctness of our proposed method, we use a very 

simple clustering algorithm, k-means. According to this approach, clustering was applied on all feature 

vectors of the training data. However, the problem is that not all samples related to each class are grouped 

into a single cluster. Nevertheless, to address this issue, each class is assigned to a cluster that has the highest 

number of samples in it. In the test phase, we can estimate the toiler (cluster) of a test sample using the 

affinity-meter module. This is because the nearest neighbors of each toiler provide a better measure for 

estimating the cluster compared to the centers of the clusters. From the mentioned descriptions, it can be 

inferred that the provided framework is independent of the dataset and also the backbone. Our experiment 
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results in Table 2 also confirm this claim. These experiments were conducted on the datasets MS-Celeb-1M 

[30], VGGFace2 [31], with various new backbones including SFace [18], GhostFaceNet [19]. In all of these 

cases, an improvement in accuracy is observed in the proposed scenario compared to competing methods. 

 

 

Table 2. Comparison results on GhostFaceNet and SFace 
Dataset Backbone Classes Distribution-Free Toilers ISM [25] our pre+ISM post our pre+our post 

Pre* Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 

MS-

Celeb-

1M [30] 

GhostFaceNet 

[19] 

5,000 97.19 96.68 96.59 2 97.21 96.74 96.64 97.14 96.66 96.56 97.27 96.80 96.71 

10,000 95.29 94.46 94.27 3 95.93 95.22 95.08 95.85 95.10 94.97 96.00 95.29 95.17 

20,000 94.25 93.16 92.92 6 95.79 95.05 94.91 95.64 94.88 94.73 95.87 95.13 95.00 

50,000 91.19 89.21 88.70 16 95.15 94.23 94.08 94.87 93.90 93.73 95.23 94.32 94.18 

VGG-
Face2 

[31] 

SFace [18] 5,000 91.31 90.03 89.73 2 91.60 90.35 90.07 91.47 90.12 89.84 91.99 90.68 90.46 

6,000 90.91 89.50 89.20 3 91.33 89.99 89.73 91.02 89.58 89.31 91.73 90.37 90.15 

7,000 90.51 89.03 88.70 3 90.94 89.55 89.26 90.80 89.34 89.04 91.47 90.07 89.84 

8,000 90.12 88.54 88.23 3 90.72 89.27 88.97 90.60 89.08 88.77 91.21 89.78 89.53 

8,900 89.65 88.05 87.69 4 90.42 88.95 88.62 90.10 88.49 88.16 90.87 89.44 89.17 

* Evaluation metrics are Precision (Pre), Recall (Rec), and F1-score 

 

 

f. Implementation details 

A single architecture was employed in all the experiments, featuring a 512-dimensional vector in the 

input layer, followed by L2 normalization. The final layer, referred to as the classifier layer, consists of 𝑁𝑖 

neurons, which 𝑖 represents the subnetwork's index. We utilized the ArcFace loss function for training, 

employing the Adam optimizer with a learning rate of 0.001, a beta1 of 0.9, and a beta2 of 0.99. All scenarios 

were trained for 50 epochs, and the experiments were conducted with varying class sizes. 

g. Similarity value or subnetworks output value? 

It has been noted that the decision-making unit multiplies the values entered from the previous units 

for each of these two candidates and selects the class with the higher product. However, experiments indicate 

that the importance of candidates from toiler and affinity-meter units may not be equal, depending on the 

type of datasets, training methodologies, loss functions used in the training of subnetworks, and other factors. 

As the extracted features become more accurate, the affinity-meter unit candidate gains higher importance in 

decision-making. Therefore, an additional coefficient term, denoted as w, is introduced to the formula. In 

other words, assuming: i) The affinity-meter unit candidate class is denoted as x and ii) The toiler unit 

candidate class is denoted as y, 

The selected class will be the one that maximizes the expression (7) among all subnetworks: 

 

𝑚𝑎𝑥( 𝑎 × 𝑏 × 𝑤, 𝑐 × 𝑑), (7) 

 

where a represents the output value of x, b represents the similarity value of x, c represents the output value y, 

and d represents the similarity value of y. As mentioned, w represents the importance of the affinity-meter 

unit candidate, ranging between zero and two. If its value is less than one, it signifies a higher importance 

given to the affinity-meter unit candidate. If it is greater than one, it indicates a higher importance given to 

the toiler unit candidate. 

The question arises: How to determine the value of w? We consider 200 potential values for w in the 

range of zero to two with intervals of 0.01. Subsequently, we calculate the accuracy for each of these w 

values on the validation dataset. The point where the highest accuracy is achieved is then regarded as the 

final value for w. As depicted in Figure 8, for the MS-Celeb-1M datasets with 20,000 categories and 6 

subnetworks, and for validation datasets, the optimal w is 1.4, yielding the highest accuracy of 95.131. This 

same w is applied to test dataset in Figure 9, and it is observed that nearly optimal results are achieved. The 

best w for test datasets is 1.36 (with an accuracy of 95.163), very close to our chosen value of w=1.4 

(accuracy of 95.156). Additionally, the figure illustrates that solely utilizing the toiler unit criterion (i.e., 

w=0) would result in an accuracy of 94.837, while using only the affinity-meter unit criterion (i.e., w=2) 

would yield an accuracy of 95.114. The combination of both criteria surpasses the performance of each 

criterion individually. 
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Figure 8. Finding best threshold point from validation dataset with 20000 classes and 6 subnetworks 

(GhostFaceNet+MS-Celeb-1M) 

 

 

 
 

Figure 9. Accuracy (recall) in different potential threshold values and selected threshold value for test dataset 

(GhostFaceNet+MS-Celeb-1M) 

 

 

3.2.  Method comparison 

The following face identification scenarios were evaluated in each case: 

a. Distribution-Free: A single network. 

b. ISM: Multiple subnets in parallel, random class distribution between subnets, and the max-max prediction 

mechanism. 

c. Our 𝑃𝑟𝑒 + 𝑚𝑎𝑥 − 𝑚𝑎𝑥 Post: Multiple subnets in parallel, distribution classed by clustering, max-max 

decision method. 

d. Our 𝑃𝑟𝑒 + 𝑂𝑢𝑟 Post: Multiple subnets in parallel, clustering-based class distribution, and a modified 

max-max prediction mechanism (proposed method). 

Table 3 summarizes the results of face identification for all scenarios. Different results for different 

datasets can be caused by differences in the level of cleanliness or difficulties of the dataset images. Another 

reason is that the pre-trained model was trained using MS-Celeb-1M dataset, which is why it has better 

results than other datasets. Of course, in this case, the proposed method worked better than other methods. 

When the number of classes is small, there is a lower risk of overfitting, and consequently, the proposed 

model and other distribution methods may not necessarily lead to performance improvement. However, as 

the number of classes increases, the proposed method consistently outperforms other methods. According to 
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Figures 10 to 12. Recall drop for distributive scenarios (Sface [18], VGGFace2 [31]) the accuracy rate 

decreases with increasing class size in all scenarios. However, the proposed method has a lower accuracy 

drop. The source code of experiments, is available in [32]. 

 

 

Table 3. Comparison results on ArcFace for all scenarios 
Dataset Classes Distribution-Free Toilers ISM [25] our pre + ISM post our pre + our post 

Pre* Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 

Glint-360K [22] 5000 95.58 94.76 94.65 2 95.86 95.09 94.99 95.88 95.09 94.99 95.99 95.26 95.19 

10,000 93.31 91.95 91.74 3 94.49 93.46 93.29 94.53 93.49 93.34 94.79 93.84 93.74 

20,000 89.38 86.54 86.04 6 93.23 91.94 91.74 93.39 92.15 91.96 93.57 92.43 92.28 
50,000 73.21 63.38 61.85 16 90.64 88.87 88.60 90.84 89.19 88.91 91.21 89.68 89.49 

MS-Celeb-1M [30] 5,000 93.46 92.26 92.00 2 94.05 92.94 92.73 94.22 93.16 92.94 94.16 93.16 92.94 

10,000 90.42 88.54 88.10 3 91.91 90.46 90.15 91.95 90.60 90.29 91.99 90.63 90.34 
20,000 87.97 85.10 84.44 6 91.56 90.13 89.79 91.81 90.38 90.03 91.80 90.51 90.18 

50,000 74.31 65.30 63.86 16 90.22 88.58 88.16 90.43 88.80 88.40 90.47 88.99 88.58 

VGG-Face2 [31] 5,000 89.08 87.18 86.87 2 89.35 87.54 87.24 89.33 87.49 87.18 89.38 87.66 87.38 
6,000 88.50 86.55 86.26 3 89.03 87.23 86.93 89.07 87.31 86.99 89.07 87.31 86.99 

7,000 87.68 85.64 85.28 3 88.52 86.67 86.32 88.65 86.72 86.42 88.61 86.77 86.49 

8,000 87.24 85.05 84.67 3 88.15 86.18 85.82 88.15 86.22 85.87 88.17 86.28 85.96 
8,900 86.54 84.24 83.85 4 87.55 85.63 85.24 87.68 85.76 85.39 87.87 85.93 85.61 

* Evaluation metrics are Precision (Pre), Recall (Rec), and F1-score 

 

 

  
 

Figure 10. Recall drop for distributive scenarios 

(ArcFace [17], Glint360k [22]) 

 

Figure 11. Recall drop for distributive scenarios 

(GhostFace [19], MS-Celeb-1M [30]) 

 

 

 
 

Figure 12. Recall drop for distributive scenarios (Sface [18], VGGFace2 [31]) 
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4. CONCLUSION 

In summary, this study comprised two distinct phases: preprocessing and post-processing, both of 

which introduced no additional complexity to the training operation. To address challenges related to 

accuracy, speed, and memory, a divide-and-conquer approach was employed, effectively breaking down the 

problem into smaller subproblems. The classifier layer plays a critical role, especially when dealing with 

numerous classes within a single network. The risk of overfitting can be mitigated by decomposing a large-

scale problem into smaller subproblems. We divided the large problem into subproblems using clustering in 

the preprocessing phase and combined similarity criteria with subnetwork output values in the postprocessing 

phase. One promising avenue for future research is the reduction of clustering errors to maximize overall 

classification accuracy for numerous classes. Additionally, the potential exists to enhance feature extraction 

robustness by unfreezing the last few layers during retraining of the base model. 
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