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 Recently, the wavelet scattering transform (WST) was introduced as a 

powerful feature extraction tool for classification processes. It provides good 

performance in applications involving audio signals, images, medical data, 

and quadcopters for structural health diagnosis. It is also employed in several 

electrical engineering applications, such as the classification of induction 

motor bearing failures, electrical loads, and industrial robot faults. Despite 

its development, the performance of the wavelet scattering (WS) network 

constructed in the MATLAB environment to compute WST coefficients has 

not been highlighted in the literature so far. In this paper, the properties of 

the WST feature matrix are examined, and the parameters that have a 

significant impact on coefficient magnitudes and matrix dimensions are 

defined. With minimal configuration, a WS network could extract low-

variance features from real-valued time series for use in machine learning 

and deep learning applications. The feature matrix, which contains zero, 

first, and second-level WST coefficients derived from various power system 

signal configurations, is constructed to be trained using long short-term 

memory (LSTM) networks. The simulation results demonstrate the efficacy 

of the proposed classifier with an accuracy approach of 100%. The 

MATLAB toolbox has been used to create different signals for the WS and 

LSTM networks. WST has proven to be a powerful tool for power system 

disturbance classification. 
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1. INTRODUCTION 

Wavelet scattering transform (WST) which is used to compute a locally translation-invariant 

representation of the real-valued signals that are stable to time-warping deformations and suitable for many 

signal processing and machine learning applications, was developed by Bruna and Malat. The translation-

invariant representation is computed by cascading wavelet convolutions, modulus operators, and low-pass 

filters, which average the amplitude of iterated wavelet coefficients. The strength of traditional signal-

processing tools and the depth of a deep neural network are combined in WST. It provides feature vectors 

that are robust to noise, time-shift invariant, and stable against time-warping deformations, which have 

recently provided a powerful result in classification tasks [1]–[5]. 

As a powerful feature extraction tool, WST has recently been introduced as a part of powerful 

classification algorithms for image and audio classification, which has led to its widespread use in various 

applications. In [6], the WST coefficients of the audio signals are used to provide an accurate classification of 
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voiced and unvoiced sounds, and WST's translation-invariant image representation could be classified as 

introduced in [7]. Also, in the audio and image processing applications, a speaker identification system based 

on WST has been introduced in [8], indoor fingerprinting localization-based WST has been introduced in [9], 

and in [10], a WST-based machine learning for ground penetrating radar imaging has been introduced. In the 

medical field, WST has been used as a powerful feature extraction tool for X-ray COVID-19 detection [11], 

classification of interictal and preictal EEG signals [12], wearable electrocardiogram quality assessment [13], 

glaucoma detection [14]. Also, WST provides good performance in chemistry applications; the classification 

of organic molecules has been introduced by Hirn et al. [15]. In the electrical engineering field, the growth of 

WST applications is still very slow. By using WST, Rohan [16] has introduced a method by which the 

mechanical components of industrial robots could be diagnosed. In study [17], the different mixed faults of 

quadcopter structures could be accurately classified. Reaching up to 99.98% accuracy, a classification 

framework for nonintrusive appliance load monitoring-based WST feature extraction is proposed in [18]. 

Greater fault diagnosis accuracy than other methods in the literature; AlBader and Toliyat [19] proposed a 

fault diagnosis technique for analog circuits and rotating machinery bearings and gear faults based on WST 

features. Based on WST feature extraction, an algorithm for rotating machines bearing fault detection is 

introduced in [20], [21]. In all these applications, a feature matrix is implemented using one or multi-levels of 

WST according to the nature of the analyzed signal components.  

In power system protection, feature extraction from current signals in various normal and up-normal 

conditions is considered a vital issue, with generating a discriminative feature matrix being the desired task to 

achieve accurate fault diagnosis, particularly in low fault current cases such as high impedance faults and 

isolated micro-grid faults. As a pre-processing tool required for artificial intelligence (AI) based classification 

algorithms, WST has not yet been introduced for power system disturbance diagnosis in the literature. 

Electric current signals, which contain extensive information in both time and frequency, are the principal 

sources of information in power system applications. Separating information embedded in the power system 

current signal could be achieved by WST, which provides significant power for classification. There are 

multiple factors that determine the characteristics of the WST network implemented in the MATLAB toolbox 

[22], [23]. Each factor's appropriate value needs to be carefully selected based on the input signal's 

characteristics. For the first time in the literature, this paper examines the impacts of the input signal 

sampling frequency, its length, the invariance scale, and the Q-factor of the filter banks on the WST feature 

matrix dimensions and their coefficient magnitudes created in the MATLAB toolbox. Furthermore, a new 

classification algorithm has been proposed for power system disturbance diagnosis that utilizes the WST as a 

feature extraction tool and the long short-term memory network (LSTM) network as a binary classifier. 

Designed to capture historical information of time series data, a LSTM is a type of deep neural network 

suitable for predicting long-term nonlinear series. The inability to remember long-term dependencies due to 

gradient is the shortcoming that is faced by recurrent neural networks (RNN). LSTM networks are explicitly 

designed to avoid this problem, making them ideal for learning features, identifying, and classification. The 

LSTM network has recently been proposed in the literature for identifying power system disturbances, with 

promising results [24], [25]. Zhang et al. [24] developed a line trip fault prediction algorithm based on LSTM 

and support vector machine (SVM) with accuracy reaching about 97%. Karan and Yeh [26] introduce a fault 

classification model for microgrids that employs DWT as a preprocessing tool and LSTM and convolutional 

neural networks (CNN) for data training. The analysis revealed that the LSTM network outperformed the 

CNN classifier and achieved high accuracy in classifying the faults. Belagoune et al. [27] introduces three 

unique classification methods based on LSTM with high accuracy for fault region identification, fault type, 

and fault location prediction of the transmission line. The suggested LSTM classifier in [28] provides an 

overall classification accuracy of 91.21% for detecting high impedance faults in solar PV integrated power 

networks. Branco et al. [29] introduced a fault prediction model based on LSTM using DWT. The wavelet 

LSTM model showed better results in all analyses compared with the standard LSTM mode. Omar et al. [30] 

introduced a fault classification on the transmission line using the LSTM network as a tool to classify 

different types of faults. Simulation results show promising classification accuracy of 100%, 99.77%, and 

99.55% for ideal 30 and 20 dB noise, respectively. Cortes-Robles et al. [31] proposed an LSTM-based 

technique for classifying events that affect power quality (PQ) in power networks with distributed generation 

sources, with an accuracy of 99.75%. A comprehensive fault identification model-based LSTM is introduced 

in [32]. This model can accurately identify the short circuit, surge, residual current, and other faults in the 

distribution network lines. With an accuracy of 99.98% compared to 42.98% for ANN. Also, the authors of 

[25] introduced deep learning techniques for transmission line fault classification based on LSTM. 

Although CNN-based classification models with learned filters can provide adequate accuracy, they 

have some limitations, such as a lack of understanding of their architecture and the need for a large dataset 

for training, which leads to longer training times, making training computationally expensive. In contrast, 

Bruna and Mallat in 2013 [7] introduce wavelet scattering (WS) networks as CNNs with fixed filters and 

weights, that provide a generic and fixed initialization of the first layers of a deep network, while the 
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remaining layers are learned supervised. So, the WS network is regarded as a deep learning tool that is fast, 

well-understood, computationally inexpensive, and works with a small dataset of training samples. As 

demonstrated by Mallat, these properties guide the optimization of the network architecture to preserves 

high-frequency information for classification while avoiding useless computations. In the MATLAB toolbox, 

the pre-assigned factors affect the architecture of the WS network; by adjusting these variables, the dominant 

features of the input time signal could be correctly extracted. In power system analysis, the signal's features 

could be accurately retrieved by adjusting the sampling frequency, wavelet filter coefficients, and the number 

of wavelets per octave. Furthermore, the matrix dimensions can be adjusted, potentially adjusting the 

computational burden. Wavelet's multi-resolution property makes it an appropriate tool for analyzing irregular 

transient changes in voltage or current signals in the power system network during upnormal conditions. For 

all of these reasons, the WS network is appropriate for power system disturbance classification. Using the 

LSTM model without a pre-filtering stage made it difficult to make accurate predictions. As a preprocessing 

tool, WST is used to extract the feature matrix in this study. The suggested classifier is investigated and 

validated using a variety of WS networks and sine-wave signals with varying lengths and sampling 

frequencies. In this work, the MATLAB software platform is used for tasks involving the creation, analysis, 

and plotting of signals and WS networks and creating a WS feature matrix and LSTM network.  

The paper is organized as follows: section 2 outlines the WST network architecture. Section 3 

investigates the WST network's specified parameters. Section 4 examines the WST's performance, and the 

new LSTM-based classification model for power system disturbances is described and evaluated in section 5. 

Finally, the research results are concluded in section 6. 

 

 

2.  ARCHITECTURE OF WST NETWORK 

In 2012, Bruna and Malat [3] introduced the mathematical algorithm and structure of WST, which is 

similar to a CNN. WST decomposes the original data into a series of stages or layers of a tree structure, with 

the output from one layer being the input for the next. Each layer performs three basic transform operations: 

convolution, nonlinearity (modulus), and average pooling. As shown in Figure 1, WST analyzes the real-

valued signal in three successive computation phases; the convolution step determines the signal's 

resemblance to wavelets of different frequencies and scales. The modulus non-linearity step extracts the 

amplitude modulation of the convoluted signal and allows for the extraction of higher-order modulations. 

Regarding the complicated signal: 

 

𝑓(𝑡) = 𝑓𝑟(𝑡) + 𝑗 𝑓𝑖(𝑡) (1) 

 

The modulus operator is defined as (2): 

 

|𝑓(𝑡)| = √𝑓𝑟(𝑡)2 + 𝑓𝑖(𝑡)2 (2) 

 

By squaring the real and imaginary parts of the signal and convolving with the invariance scale 

function, a modulated coefficient is generated. Finally, the averaging step, which can be considered a type of 

pooling, in which an implicit down sampling operation is performed to reduce the dimensions of the feature 

map. This enhances the model's resistance to shifts in the relative positions of the transients in the input 

signal and enhances its robustness against time-wrapping distortion. In contrast, the averaging process leads 

to the loss of accurate time localization. WST calculates higher order or layers coefficients by iterating over 

wavelet transforms and modulus operators. Bruna and Mallat [3] developed a computational implementation 

with a specific architecture of a WST similar to a deep convolutional network using a predetermined wavelet 

filter, as illustrated in Figure 2.  

 

 

 
 

Figure 1. WST mathematical steps 
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Figure 2. Wavelet time scattering network, 𝑁𝑐 number of coefficients in each path (depends on the sampling 

frequency of the input signal, input signal length, subsampling factor, and invariance scale), Npath1 the number 

of paths in the first order scattering level, Npath2 the number of paths in the second order scattering level (Npath1, 

Npath2 depends on the Q-factor of each level filter bank, and the sampling frequency of the input signal) 

 

 

It provides coefficients that resemble the time-averaged values of the modulated magnitude of the 

input signal, providing informative signal invariants over potentially large time scales that are suitable for 

classifications. By this hierarchical implementation, the feature array of WST coefficients is computed as: 

The input signal 𝑓(𝑡) is convolved with the scale function 𝜑(𝑡) to provide the zero-order scattering 

coefficient, i.e., the average of the input signal along the scale function according to (3). 

 

𝑆𝑜 = 𝑓(𝑡) ∗ 𝜑(𝑡) (3) 

 

The input signal is convolved with the first filter bank of the continuous wavelet function 𝜓1,𝑛 to produce 

continuous wavelet transform coefficients (CWTC), then the modulus of the CWTC is computed and 

convolved with the scaling function to provide a set of first-order scattering coefficients as in (4): 
 

𝑆1 = ห𝑓(𝑡) ∗ 𝜓1,𝑛ห ∗ 𝜑(𝑡)  (4) 

 

where n is the number of filters in the first-order filter bank, in the MATLAB toolbox, its value is dependent 

on the values of the invariance scale, the number of filters per octave of the first-order WST, and the 

sampling frequency of the input signal. By repeating the same calculations, the second-order WST 

coefficients are computed; the modulus of the CWTC of the input signal with the first filter bank is 

convolved with the second CWT filter bank, then the modus is computed, and convolved with the scaling 

function as in (5): 

 

𝑆2 = |ห𝑓(𝑡) ∗ 𝜓1,𝑛ห ∗ 𝜓2,𝑚| ∗  𝜑(𝑡)  (5) 

 

where m is the number of filters in the second-order filter bank, in the MATLAB toolbox, its value is 

dependent on the values of the invariance scale, the number of filters per octave of the second-order filter 

bank, and the sampling frequency of the input signal. The higher levels are computed to recover the 

information that has been lost in the previous levels. Andén and Mallat [2] proved that the first- and second-

order coefficients carry more than 98% of the input signal energy, and the feature matrix that contains the 

feature captured in the first three levels is sufficient for classification issues [2]. 

 

 

3. WST NETWORK PREDEFINED PARAMETERS 

As the coefficient order increases, Andén and Mallat [2] confirm that the energy of all scattering 

coefficients decays to zero, with the first and second-order coefficients carrying more than 98% of the input 
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signal energy. Furthermore, their examination of audio signals demonstrated the ability to characterize non-

stationary signals using the WST coefficient, as well as the ability to identify more sophisticated phenomena 

such as transient circumstances. Therefore, this study focuses on the zero, first, and second layer coefficients 

of WST. 

In power systems, the dominant frequency is the fundamental frequency of normal operation, which 

is 50 or 60 Hz, as well as high-frequency components and some harmonics associated with the fundamental 

frequency in up-normal situations. Power system faults are typically characterized by variations in current 

magnitude, high frequencies due to the switching operations, harmonics, and DC exponential components. 

The unique characteristics of the power system signal make WST a suitable tool for capturing its key 

features. The zero-order coefficient contains the majority of the low frequency and DC components, whereas 

the dominant fundamental frequency can be described by the set of first-order coefficients, and the transient 

phenomena associated with faults and switching conditions can be described by the set of second-order 

scattering coefficients, which demonstrate wavelets with more narrow time support. Furthermore, the fault 

diagnosis can be achieved irrespective of its time occurrences due to the time-invariant effect of WST. 

In the MATLAB programming environment, a WST scientific toolbox that provides tools for the 

analysis and classification of digital signals, such as sounds, images, and time series. The toolbox enables 

data-centric AI workflows by providing time-frequency transforms and automated feature extraction [22], 

[23]. To create a wavelet time scattering network with two filter banks, several parameters should be well 

defined in order to create a wavelet time scattering network capable of representing the features of the input 

signal. These parameters encompass: 

− The wavelet function: The input signal's decomposition is achieved by using the wavelet function, by 

default, the Gabor (analytic Morlet) wavelet was utilized. 

− The number of wavelet filters per octave (quality factor Q of the filter bank): The Q-factor value 

determines the center frequencies of the created wavelet filters; therefore, it should be specified so that all 

of the input signal's significant features can be effectively represented. The number of paths in each layer 

that can represent the characteristics of the input signal is determined by the Q-factor value. The 

architectural design of a WST network considers each path (the bold nodes in Figure 2) to be a row in the 

feature matrix, so the dimension of the feature matrix is strongly affected by this parameter. Contrary to 

the CNN, the filter weight of WST is constant and predefined. The first and second filter banks employ 

[8, 1] filters per octave by default. 

− The duration of translation invariance (invariance scale IS): The invariance scale is measured in samples 

by default if the sampling rate is left unspecified, and in seconds if the sampling rate is specified. Its 

maximum value is limited by the length of the input signal. For instance, with 1,024 samples input signal 

and a sampling rate of 3,200 Hz, the highest possible value of the invariance scale is 0.32 seconds. In the 

MATLAB toolbox, if the IS value is not determined, the length of the input signal and the sampling 

frequency are needed to confirm the invariance scale value. If the value of the invariance scale is not 

predetermined, it is automatically calculated according to (6), where Ls is the input signal's length per 

samples, and sampling frequency fs. 

 

𝐼𝑆 = (𝐿𝑠/𝑓𝑠)/2  (6) 

 

The larger the invariance scale, the larger the time support of the scale function, and accordingly, the 

more the down-sample since the average of the modulus of wavelet coefficients is calculated over a half-

overlapping time window, the width of this time window is defined by scale invariance value. In essence, 

this factor is crucial in determining the dimensions of the feature matrix and plays a vital role in shaping 

its characteristics. 

− The signal length (number of samples in the input signal): In the MATLAB toolbox, it is defined  

as an integer positive value that is either greater than or equal to 16. By default, a signal length of  

1,024 samples are utilized. Its value determines the number of coefficients of each path, and hence the 

feature matrix dimensions. 

− Sampling rate (sampling frequency of the input signal): It is chosen based on the frequency content of the 

input signal. Based on this value, the frequency span and hence the number of created wavelet filters are 

determined. The highest frequency passband is designed so that the amount of passband gain drops to half 

of its peak value at the Nyquist frequency. Thus, the number of wavelets in the filter bank, and the 

number of coefficients in each path are determined. 

Careful selection of these parameters is critical since they have a significant impact on the WST coefficients' 

characteristics and the dimensions of the feature matrix. As a result, carefully choosing these variables is 

critical to obtaining relevant results. 
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4. POWER SYSTEM SIGNALS ANALYSIS USING WST  

In this section, the performance of WST is investigated for different power system signal 

configurations. This experimental study is based on a pure 50 Hz sine wave as the dominant power system 

frequency signal with different sampling rates and lengths. Different versions of this signal are then created 

to simulate different operating conditions in the power system. Different WS networks are implemented 

according to different values of the factors discussed in section 3. The ability of WST to extract 

characteristics from power system signals has been extensively researched. 

 

4.1.  Sampling frequency impacts 

Unless the frequency limits in the WST toolbox are pre-defined, the frequency span and hence the 

number of wavelet filters that specify the number of WST paths are calculated based on the value of the input 

signal's sampling frequency. A constant signal length and a scale-invariance factor are used to examine the 

impacts of sampling frequency fluctuation. The following parameters are defined to create a WS network 

using the MATLAB toolbox if the input signal is a pure sine wave with a fundamental frequency of 50 Hz: 

the sampling frequency of 3,200 Hz, scale invariance of 0.32 sec, default signal length of 1,024 samples, and 

default quality factor [8, 1]. For the first filter bank, 48 decomposition filters were developed, and for the 

second filter bank, 8 filters, as illustrated in Figure 3. 

 

 

 
 

Figure 3. The bandwidth of the wavelets in the 1st and 2nd filter banks with a 3,200 Hz sampling frequency 

 

 

It is evident that the 40th filter's center frequency for the first filter bank is 52 Hz, while the 39 th and 

41th filters' center frequencies are 57 and 46 Hz, respectively. Thus, as Figure 4 illustrates, the weight of the 

fundamental frequency seems to have a large energy for the 40th black node of the first WST coefficients. 

Figure 5 shows that the weight associated with the fundamental frequency is lowest in the 0 th and 2nd order 

coefficients and highest in the 1st order coefficients. A total of 154 paths have been generated, with 1 being 

the 0th order, 48 being the 1st order, and 105 being the 2nd order shown by the black nodes in Figure 2. In this 

case, there are four coefficients in each path. Either the signal length or the invariance scale needs to be 

adjusted in order to modify the coefficient number in each path for this sampling rate. The number of paths 

created in the MATLAB toolbox is influenced by the frequency rate; as we mentioned in section 3, the 

number of paths decreases as the frequency rate does. When both the invariance scale and the signal length 

are constant, then each path's number of coefficients must also be constant. 

However, because the length of the signal is determined by the number of samples rather than a time 

in the MATLAB toolbox, the time period increases by decreasing the frequency rate, and thus the number of 

coefficients in each path increases. As shown in Figure 6, if the sampling rate is halved with the same  

1,024 samples as a signal length, the number of coefficients in each path doubles. Consequently, since the 

signal length in time is doubled, there are 109 paths created (1 for the zero-order, 40 for the first order, and 

68 for the second order). The first-order scattering coefficients exhibit a prominent appearance of the 

fundamental frequency weight. Additionally, there are 72 total paths at an 800 Hz sampling rate, with 16 

coefficients in each path. In summary, the highest possible sampling frequency with a signal length of  

1,024 samples and an invariance scale value of 0.32 is 3,200 Hz. It can be observed that if the sampling 

frequency is decreased, the number of paths decreases as well, while the number of coefficients in each path 
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increases; hence, the dimensionality of the feature matrix increases for the same signal length in samples,  

Q-factor, and invariance factor. 

 

 

 
 

Figure 4. The bandwidth of the 40th wavelet and its WST 1st order coefficients with 3,200 Hz 

sampling frequency 

 

 

 
 

Figure 5. The input fundamental frequency signal, and the 0th (1 node), 1st (48 nodes), and 2nd (105 nodes) 

order WST coefficients for sampling rate 3,200 Hz, invariance scale 0.32 sec, and signal length  

1,024 samples, feature matrix dimension (154×4) 

 

 

4.2.  Signal length impacts  

Since the signal length in the MATLAB toolbox is actually determined by samples rather than time, 

any variation in its value with the other parameters held constant should be considered. By increasing the 

signal length, the number of paths remains constant, but the number of coefficients in each path increases 

with a constant Q-factor, sampling frequency, and invariance scale. As a result, the dimensionality of the 

feature matrix increases. Figures 6, 7, and 8 show the zero, first, and second scattering coefficient sets for 

signal lengths of 1,024, 2,048, and 4,096 for default values of Q-factor, invariance scale 0.32 sec, and 

sampling frequency of 1,600 Hz. The number of paths for all cases is 109, with 8, 16, and 32 coefficients in 

each path, respectively, and the amplitude of the coefficients in the feature matrix is slightly altered. 

Therefore, it is advised to shorten the signal length in order to lighten the computational load. 
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Figure 6. The input fundamental frequency signal, and the 0th (1 node), 1st (40 nodes), and 2nd (68 nodes) 

order WST coefficients for sampling rate 1,600 Hz, invariance scale 0.32 sec, and signal length  

1,024 samples, feature matrix dimension (109×8) 

 

 

 
 

Figure 7. The input fundamental frequency signal, and the 0th (1 node), 1st (40 nodes), and 2nd (68 nodes) 

order WST coefficients for sampling rate 1,600 Hz, invariance scale 0.32 sec, and signal length  

2,048 samples, feature matrix dimension (109×16) 

 

 

 
 

Figure 8. The input fundamental frequency signal, and the 0th (1 node), 1st (40 nodes), and 2nd (68 nodes) order 

WST coefficients for sampling rate 1,600 Hz, invariance scale 0.32 sec, and signal length 4,096 samples, feature 

matrix dimension (109×32) 
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4.3.  Quality factors impact 

By dividing the frequency span into octaves, the Q-factor determines the number of the wavelet 

filters per octave that will be created by the WS network in the MATLAB toolbox, just as the sampling rate 

determines the frequency span that the wavelet filters must cover. The wavelet scattering networks with 

154, 130, and 100 paths are created for the signal length 1,024, 0.64 sec invariance scale, 1,600 Hz 

sampling frequency, and different Q-factors for the first filter bank while keeping the second filter bank as 

default value ([8, 1]-[6, 1]-[4, 1]), as shown in Figures 9, 10, and 11. The number of created wavelets 

changes when the Q-factor for the first filter bank changes, as does the number of paths in the first-order 

WST coefficients, the number of paths in the second-order WST, and the dimensionality of the feature 

matrix. Furthermore, the change in feature coefficient magnitudes in each path is affected by the change in 

center frequency filters as well as the degree of fundamental frequency coverage with filter bandwidth. The 

first-order coefficients for the Q-factor [6, 1] are greater than those for the others [8, 1] and [4, 1]. So, the  

Q-factor should be carefully defined in accordance with the input signal's dominant frequency and its 

sampling rate. 

 

 

 
 

Figure 9. The input fundamental frequency signal, and the 0th (1 node), 1st (48 nodes), and 2nd (105 nodes) 

order WST coefficients for sampling rate 1,600 Hz, invariance scale 0.64, and Q-factor [8, 1] and default 

signal length, feature matrix dimension (154×4) 

 

 

 
 

Figure 10. The input fundamental frequency signal, and the 0th (1 node), 1st (39 nodes), and 2nd (90 nodes) 

order WST coefficients for sampling rate 1,600 Hz, invariance scale 0.64, and Q-factor [6, 1] and default 

signal length, feature matrix dimension (130×4) 
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Figure 11. The input fundamental frequency signal, and the 0th (1 node), 1st (27 nodes), and 2nd (72 nodes) 

order WST coefficients for sampling rate 1,600 Hz, invariance scale 0.64, and Q-factor [4, 1] and default 

signal length, feature matrix dimension (100×4) 

 

 

4.4.  Invariance scale impacts  

The invariance scale parameter is critical in determining how the WS network is created in the 

MATLAB toolbox. For time series data, the invariance scale is a time duration T, along which the modulus of 

the CWT coefficients is averaged. Referring to Figure 3, the logarithmic spacing of the higher center 

frequencies and the linear spacing of the lower center frequencies of the filter banks, indicating that a wavelet's 

time support cannot exceed the invariance scale (the coarsest-scale wavelet does not exceed the invariance scale 

determined by the time support of the low-pass filter). As a result, the invariance scale value has a substantial 

effect on the spacing of the center frequencies of the low-frequency wavelets in the filter banks. For a sampling 

frequency of 1,600 Hz and the default values of the Q-factor and signal length, the number of paths increases 

while the number of coefficients in each path decreases due to down sampling; as invariance scale values 

increase, the dimensionality of the feature matrix decreases; see Figures 12, 13, and 14, which show the WST 

coefficients of the input signal with three different invariance scale values of 0.16, 0.32, and 0.64 sec.  

The amplitudes of the coefficients of the paths of first-order WST increase with noticeable values 

when the invariance scale decreases, owing to decreasing the time support of the low-pass filter equation 

𝜑(𝑡). Lowering the invariance scale value increases the number of coefficients in each path and represents 

signal frequencies with more equal points, hence enhancing the classification process. For power system 

signal diagnosis, increasing the amplitudes of the feature matrix parameters is beneficial; thus, low values of 

the invariance scale are advised, with the wavelet's time support of the dominant frequency not exceeding the 

invariance scale. 

 

 

 
 

Figure 12. The input signal, and the 0th (1 node), 1st (32 nodes), and 2nd (39 nodes) order WST coefficients 

for sampling rate 1,600 Hz, invariance scale 0.16, and default Q-factor and signal length, feature matrix 

dimension (72×16) 
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Figure 13. The input signal, and the 0th (1 node), 1st (40 nodes), and 2nd (68 nodes) order WST coefficients 

for sampling rate 1,600 Hz, invariance scale 0.32, and default Q-factor and signal length, feature matrix 

dimension (109×8) 

 

 

 
 

Figure 14. The input signal, and the 0th (1 node), 1st (48 nodes), and 2nd (105 nodes) order WST coefficients 

for sampling rate 1,600 Hz, invariance scale 0.64, and default Q-factor and signal length, feature matrix 

dimension (154×4) 

 

 

4.5.  Input signal with DC component  

Power system faults are frequently associated with DC components, especially those occurring near 

power sources. If the input signal contains a fundamental frequency with a peak value of 200 and a constant 

DC component with a magnitude of 60, the presence of a constant DC component is clearly visible in zero-

order WST coefficients but has no discernible effect on the amplitudes of first and second order WST 

coefficients, as shown in Figure 15. When compared to the input signal's performance with exponentially 

decayed DC components (whose peak is 60 and time constant is 0.5 sec), the zero-order WST coefficient was 

able to separate the decaying DC component from the fundamental signal, as shown in Figure 16. The zero-

order coefficient pattern clearly distinguishes between the constant and decaying DC components. In power 

system fault diagnostics, the values of zero-order coefficients in the feature matrix can easily distinguish 

between failures associated with high DC component values and other ones, i.e. the fault's closeness to the 

power sources.  

 

4.6.  Change of the input signal magnitude  

Power system faults are typically accompanied with an increase in electrical current magnitudes; 

hence, this section investigates the change in input signal magnitude. If the peak value of the fundamental 

frequency input signal is doubled at 0.86 sec, as shown in Figure 17, increasing the input signal magnitude 
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results in increasing the first-order coefficient amplitudes, and the time of change has no effect on coefficient 

value. So, in power system classification, the WST feature matrix could produce good classification results 

between normal and abnormal conditions regardless of the time of fault occurrence. 

 

 

 
 

Figure 15. The input signal, and the 0th (1 node), 1st (32 nodes), and 2nd (39 nodes) order WST coefficients 

for sampling rate 1,600 Hz, invariance scale 0.16, and default Q-factor and signal length, feature matrix 

dimension (72×16) 

 

 

 
 

Figure 16. The input signal, and the 0th (1 node), 1st (32 nodes), and 2nd (39 nodes) order WST coefficients for 

sampling rate 1,600 Hz, invariance scale 0.16, and default Q-factor and signal length, feature matrix dimension 

(72×16) 

 

 

4.7.  Variation of signal frequency   

Reasonable-magnitude harmonics in the power system are a common issue during fault conditions, 

especially with the high penetration of power electronics-based resources. The ability of WST to discriminate 

between a pure fundamental signal and one that contains harmonics is tested in this section. As in Figure 18, 

a nonstationary signal with the 2nd, 3rd, 5th, and 7th harmonics all having the same peak value. A WS network 

with 0.16 invariance scale, 1,600 Hz sampling frequency, signal length of 2,048 samples, and default  

Q-factor is created. The four frequency components emerge correctly in the first-order coefficients, each with 

the same amplitude and reflecting the four paths (black nodes). Each path displays the frequency that falls 

within its bandwidth with the highest energy value (each harmonic has about 5 coefficients in its path, with 

the rest 32 being zeros). As a result, the WST feature matrix in this situation could be completely different 

from the one for an input signal with only a fundamental frequency. Furthermore, when these harmonics are 

superimposed on the fundamental, as shown in Figure 19, the four harmonics have equal 32 coefficients in 

their paths in the first-order WST coefficients, which distinguishes them from the other two cases. 
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Figure 17. The input signal (step change at 0.86 sec), and the 0th (1 node), 1st (32 nodes), and 2nd (39 nodes) 

order WST coefficients for sampling rate 1,600 Hz, invariance scale 0.16, and default Q-factor and signal 

length, feature matrix dimension (72×32) 

 

 

 
 

Figure 18. The non-stationary input signal (50, 150, 250, 350 Hz), and the 0th (1 node), 1st (32 nodes), and 2nd  

(39 nodes) order WST coefficients for sampling rate 1,600 Hz, invariance scale 0.16, default Q-factor and signal 

length 2,048 samples, feature matrix dimension (72×32) 

 

 

 
 

Figure 19. Multi harmonics signal (50, 150, 250, 350 Hz), and the 0th (1 node), 1st (32 nodes), and 2nd  

(39 nodes) order WST coefficients for sampling rate 1,600 Hz, invariance scale 0.16, default Q-factor and 

signal length 2,048 samples, feature matrix dimension (72×32) 
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5. PRPOSED LSTM-BASED CLASSIFIER USING WST FEATURE MATRIX  
Despite its significant capabilities for discriminating between different power system signal 

configurations, as demonstrated by the preceding analysis in section 4, WST has yet to be introduced as a 

preprocessing approach for identifying power system disturbances in the literature. In this study, WST, a 

feature extraction tool, is introduced for the first time as a preprocessing tool for AI-training of power system 

disturbances classification. The LSTM network has been introduced in the literature for power system 

disturbance classifications with promising results, for more details about LSTM network, Sherstinsky 

introduced its fundamentals in [33]. 

The LSTM-based classification model using WST is modeled and tested. The workflow of the 

proposed classification model is shown in Figure 20. Using the MATLAB toolbox, the signals are created, WS 

network and its feature matrix are implemented, and finally, the training and testing process is carried out. 

 

 

 

Figure 20. Signals classification model using LSTM 

 

 

5.1.  Signal generation  

As a power signal simulation, a sine wave is generated with a fundamental frequency of 60 Hz, a 

peak value of 200, and a sampling frequency of 1,600 Hz. To cover the majority of power system scenarios, a 

dataset of 250 alternative variants of this signal with varying magnitudes and frequency contents is created. 

Pure fundamental frequency signal, fundamental frequency signal with DC components, fundamental 

frequency signal with DC exponential, nonstationary signal containing fundamental, third, fifth, and seventh 

harmonics, and a third, fifth, and seventh harmonics superimposed on the fundamental frequency signal are 

all generated. To evaluate the accuracy of the training model, 70% of the data set is used for training and 

30% for testing. 
 

5.2.  Feature extraction 

Due to its appealing properties described in section 4, WST is used to construct performance metrics 

for the training process of the created data set. The parameters for creating a WS network in the MATLAB 

toolbox are as follows: 1,600 Hz sampling rate, three layers or orders (zero, first, and second), [8, 1]  

Q-factors for the two filter banks, a 0.16 sec invariance scale, signal length 1,024 samples, and the analytic 

Morlet wavelet filter. A matrix with 72 paths and 32 coefficients for each path is created. For a 250-signal 

data set, a feature matrix of 72×32×170 dimensions is built for training and a 72×32×80 matrix for 

prediction. A sampling frequency has been chosen according to the input signal's fundamental frequency  

(50 Hz) and the highest frequency that is generated to be superimposed on the fundamental (7 th harmonic). 

To realize the Nyquist criterion and ensure that all signal frequencies are represented in the WST coefficients 

with high magnitudes, a sampling frequency of 1,600 Hz is adopted. The [8, 1] filter Q-factor is appropriate 

for providing sufficient wavelet bandwidths capable of covering all signal frequencies. Furthermore, the  

0.16 sec invariance scale value is appropriate for 1,024 samples signal length (the scale invariance is half the 

signal length), resulting in an averaging window of adequate length to ensure the time-invariance property. 

Finally, the Morlet wavelet was chosen because it can evaluate signals with both short high-frequency 

transients and long low-frequency components, and it is commonly used for time-frequency analysis of non-

stationary time series data. As a result, it is appropriate for power system transients caused by faults. 

 

5.3.  Results and discussion 

WST developed a data set containing the zero, first, and second-order coefficients. These feature 

matrices are regarded as inputs to the classification model based on the LSTM network. The LSTM network 

is employed to characterize the long-term dependencies hidden in the time series of the power system fault 

signals. Figure 21 depicts the LSTM model's confusion matrix, which clearly shows that the training strategy 

produced excellent results. After 150 iterations, the accuracy reached nearly 100% and the loss was 

practically zero, with a computation time of roughly 0.24 seconds.  

Signal generation 
Data pre-processing using 

WST and feature matrix 

extraction 

Disturbance 
type  

Classifier training with 
LSTM  
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Figure 21. The testing confusion matrix of the signal classification model 

 

 

Although the DWT-based classifier introduced in the literature [28], [29], [34], [35] delivers 

acceptable accuracy, DWT is not shift-invariant, so a shift in the input signal does not manifest itself as a 

simple equivalent shift in the DWT coefficients at all levels. This means that any change in the fault 

inception angle for the same fault type could be represented by various DWT coefficients at all levels. The 

shift-invariant property of WST could overcome this shortage, allowing the classifier's accuracy to improve. 

So, our proposed classifier has demonstrated promising results in increasing the prediction performance of 

LSTM. Our results demonstrated that the WST will be a promising tool for power system fault diagnosis, 

especially since the power system fault classification algorithms based on the WST feature matrix have yet to 

be introduced in the literature. In our study, a classifier model achieves 100% classification accuracy for ideal 

created power system signals. Even when the dynamic response of a real power system model is addressed, 

the accuracy will remain satisfactory; this is our future work. 

 

 

6. CONCLUSION  

The WST introduced by Mallat in 2012, applies a family of wavelet filters with various scales and 

translation to an input signal. The WST's main advantage is the use of wavelet filters, which preserve the 

signal's time and frequency localization. Thus, after applying consecutive convolutions and modulus 

operations to the time signal, its important features could be extracted. Importantly, the WST gives a well-

defined set of scattering coefficients, which can be employed in a robust classification analysis. It is similar 

to that of CNN; however, it eliminates the need for neural network tuning or training.  

Extracting a discriminative feature matrix is the most important stage in the power system fault 

diagnosis and classification with high accuracy. WST is introduced recently as a powerful feature extraction 

tool for classification purposes. Although spreading of its applications, the details of the WST feature matrix 

have not been addressed previously. In this paper, a detailed analysis of the characteristics of the WST 

feature matrix is introduced, and the factors required to be defined to create a suitable WS network for power 

system applications in the MATLAB toolbox are studied. The length of the signal, the sampling frequency, 

the Q-factor of the wavelet filters, and the invariance scale factor should be defined according to the nature of 

the input signal and its frequency components to implement the WS network capable of extracting the signal 

details. These four parameters greatly affect the dimension of the feature matrix (number of paths and 

coefficients of each path) and the coefficient magnitudes, so they should be carefully chosen.  

With all parameters held constant, the sampling rate variation substantially affects the number of 

paths generated by the WS network in the MATLAB toolbox since it adjusts the frequency span that the WS 

network will cover. If the decomposed signal has high frequencies, then large sample rates are necessary. 

While, for variation of signal length with the other parameters constants, the number of coefficients in each 

path is varied. In other words, as its value increased, so did the number of coefficients in each path, allowing 

the matrix dimension to be changed. 

In power system applications, carefully choose the value of the Q-factor of the wavelet filter banks 

to generate enough wavelets with center frequencies and bandwidth capable of covering all of the important 

frequency components of the input signal with sufficient energy. Also, the invariance scale value should be 

carefully chosen to ensure that the wavelet's time support for the dominant frequency does not exceed its 
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value. This value should be chosen in relation to the signal sampling rate for constant signal length; a higher 

sampling rate needs a low invariance scale value. According to its network implementation, low-frequency 

components can appear with high coefficient magnitudes in the WST zero-order scattering coefficients. As a 

result, high-amplitude zero-order WST coefficients could be used to discriminate the faults nearing the power 

source that are rich with DC components. Furthermore, faults associated with multiple harmonics and 

stationery and non-stationary signals, such as those seen in renewable energy-based microgrids, could be 

discriminated with reasonable amplitudes in the WST coefficients, simplifying the classification procedure. 

The WS network is recognized as a deep learning technology that is fast, well-understood, 

computationally inexpensive, and works with a small dataset of training samples to overcome the limitations 

of the CNN. To demonstrate the capabilities of WST feature matrices to be used as input for the classifier 

model, a well-structured classification approach based on WST and LSTM is proposed. The proposed 

algorithm is implemented, and the resulting data set is tested. It was able to classify various power system 

signals with excellent accuracy, achieving nearly 100% with a modest mathematical burden. 

Based on our results, we believe that using WST for feature extraction in power system protection 

applications will be a promising tool for fault detection and diagnosis, particularly for high impedance faults 

and the low current faults associated with the islanding operation of micro-grids. Also, the classification of 

transformer inrush and internal fault currents, and the transmission line fault prediction could be evaluated by 

WST. In future works, the WST feature matrix will be used for fault detection and diagnosis of the hybrid 

microgrids in both grid-connected and isolated modes, and the islanding detection applications. 
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