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 Radionuclide identification is an important task for nuclear safety and 

security aspects, especially to environmental radiation monitoring systems. 

This study aims to build an automatic radionuclide identification system that 

can be applied in environmental radiation monitoring stations. The gamma 

energy spectrum was obtained by varying radionuclide types, measurement 

time and source distance using a scintillation detector. The dataset was 

collected by converting gamma energy spectrum into images, data pre-

processing by removing background noise and normalizing the gamma 

spectrum. Automatic identification is demonstrated as a development 

method based on convolutional neural network (CNN) algorithm, where the 

images come from gamma-ray spectrum in the form of photoelectric peak 

characteristic. Three CNN architectures are used to train the model, which 

are VGG-16, AlexNet and Xception. The performance of each model is 

evaluated using accuracy, precision and recall to find the appropriate 

architecture. The most optimum results are shown by VGG-16 with an 

accuracy of 97.72%, a precision of 97.75% and a recall of 97.71%.  

The models are critically reviewed and it is concluded that the developed 

models can be further implemented on embedded devices utilizing the tiny 

machine learning (TinyML) platform in environmental radiation monitoring 

systems. 
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1. INTRODUCTION 

Environmental radiation monitoring system around nuclear installations is a major concern for 

safety systems, such as source tracking [1], counter-terrorism, and emergency response, therefore detecting 

and identifying radioactive materials is crucial [2]. Speed and accuracy in identifying radionuclides that 

produce gamma-ray are challenging tasks, especially in emergencies when data interpretation requires 

complex calculations and expertise to obtain rapid and correct decisions before fatalities occur [3]. The key 

to successfully identifying radionuclide is data extraction of strong discriminative features, which bring 

specific and unique information of each nuclides [4]. 

The energy of gamma-ray spectrum contains a specific information of radionuclides, and becomes 

widely used on the identification system to discriminate the type of radionuclide [5]–[7]. Radionuclide 

identification system has various feature extraction techniques which have been employed, such as principal 

component analysis (PCA) [8], fuzzy logic algorithm [9], [10], Bayesian [11], Karhunen-Loeve transform 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Radionuclide identification system using convolution neural network for environmental radiation … (Istofa) 

2283 

(K-L transform) [12], machine learning [13], [14], artificial neural network (ANN) [15]–[17], and convolution 

neural network (CNN) [18]–[22].  

Research development and effort to overcome the challenges of radionuclide identification is 

summarizing in Table 1. Recently, there has been an increase in the use of machine learning approaches to 

quickly and precisely identify radionuclide from gamma-ray spectrum. Several researchers have taken note 

and made the first attempts to apply spectra extraction techniques utilizing machine-learning approaches. An 

ANN model was built on top of Monte Carlo simulation-based dataset, to identify 14 types of radionuclides 

using a 3×3-inch NaI detector. The results indicate that ANN has good generalization performance with 

average identification accuracy can be as high as 98% for specific condition [2]. Automation and fast 

identification of Cs-137 gamma source based-on CNN also presented by using Geant4 simulation data, and 

preserve confidence level of 90% [4]. In real measurement conditions, the accuracy might be decrease due to 

performance variations of detector affected by temperature changes, power supply noise, front-end circuit 

noise, and quantization errors on analog to digital converter (ADC) [23], [24].  

 

 

Table 1. Research on the development of radionuclide identification system 
Dataset Method Algorithm Model Accuracy Year Ref 

Monte-Carlo simulation CNN Energy-weighted Cs-137: 84%; Co-60: 80% 2023 [14] 

Monte-Carlo simulation ANN Back propagation Cs-137: 96.5%; Co-60: 97.5% 2022 [2] 
MAESTRO software based 

on SDK 

R-L deconvolution and 

fuzzy 

Peak search Not mentioned, focused on 

confidence nuclide 

2019 [10] 

ANSI N42.34 library isotope 
peak energies 

Wavelet transform for 
peak extraction 

Bayesian statistic Not mentioned, focused on 
peak measurement 

2015 [11] 

 

 

Most CNN models are designed and trained using datasets based-on particle simulations, and only a 

few studies use experimental data taken in the laboratory. In this study, we collect data taken from laboratory 

experiments by measuring the radiation spectrum of several radiation sources at different dose rates. Three 

CNN models with different architectures were constructed from large number of experimental data, which is 

the main contribution of this study. The performance of each model is evaluated using accuracy, precision, 

and recall to find the optimal architecture. The resulting model can then be implemented in an embedded 

device utilizing the tiny machine learning (TinyML) platform. 

 

 

2. METHOD  

2.1.  Acquisition of gamma energy spectrum 

Gamma energy spectrum was collected through laboratory experiment using 2 inch R2D-NaI-2 

NaI(Tl) scintillation detector, coupled with up to 2K channels of Int-1K-NaI-50 PMT-1000 multi-channel 

analyzer (MCA) from Bridgeport Instruments. High voltage supply, performance-enhancing field-

programmable gate array (FPGA), and embedded ARM processor are integrated in the detector which is 

connected to computer through universal serial bus (USB). Radioactive sources used in this experiment are 

listed in Table 2. Figure 1 describes the configuration of the experiment. The detector is placed on a static 

detector stand, while the radionuclide source is placed on a radionuclide holder rod that can be adjusted back 

and forth driven by linear actuator. Arduino is used to control the movement of the linear actuator. 

 

 

Table 2. Radionuclides used for dataset in October 2022 
Radionuclides γ Energy (keV) Half-life 

(year) 

Manufacture date 

(mm/dd/yy) 

Initial activity 

(μCi) 

Estimated 

activity (μCi) 
137Cs 662 30.05 01/01/19 0.10 0.09 
60Co 1,173; 1,332 5.27 04/01/19 1.00 0.59 
134Cs 569, 605, 796 2.06 08/01/15 0.77 0.07 
152Eu 122; 344; 779; 964; 1,086; 1,112; 1,408 13.54 04/01/12 0.93 0.56 

 

 

A python-based application was developed to control the source movement and to collect the 

spectrum data through USB ports. In the experiment, variation of dose rate was obtained by acquisition of 

spectrum data at various distance starting from 20 to 100 cm with 10 cm interval, and measurement time 

from 5 to 60 seconds with 5 second increment. Spectrum data at each distance and time combination for 

certain radionuclide was taken 50 times to accommodate detector performance fluctuation. Variations of 

radionuclide sources are enumerated in the form of 4 radionuclides. Therefore, the collected spectrum for 

each radionuclide is 12×9×50=5,400 data, resulting total of spectrum was 21,600 data for 4 radionuclides. 
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(a) (b) 

  

Figure 1. Gamma energy spectrum data collection system, (a) hardware components of the data collection 

system, and (b) block diagram that shows the connection between each component 

 

 

2.2.  Dataset preparation and network architecture 

Spectrum images preparation is illustrated in Figure 2. The process begins with acquisition of 

gamma energy spectrum, using a scintillator detector which will produce radiation intensity data both for 

background and radionuclide stored into 1D vector. The average background and each radionuclide spectrum 

are normalized as shown by (1) in which  

 

𝐼𝑛
′ =

𝐼𝑛×255

𝐼𝑚𝑎𝑥
 (1) 

 

where 𝐼𝑛
′  is radiation intensity after normalized (count/second), 𝐼𝑚𝑎𝑥 is the highest radiation intensity,  

𝐼𝑛 is intensity of the certain channel, and 𝑛 is channel (keV). Each value in the histogram is multiplied by 255 

(the range of pixel values in the image) and divided by the highest intensity 𝐼𝑚𝑎𝑥. This normalization process 

will result in redistributed values in the range of 0 to 255. As such, this function is designed to take a 

histogram of spectrum data and return a histogram that has been normalized to within the range of 0 to 255 

values. Normalization is often applied to ensure that the data is within a range that subsequent algorithms or 

processes can effectively treat. Since the radiation spectrum data served the relation between energy and 

counts, no explanation regarding time measurement and distance correlation. The purpose of those treatment 

to increase the size of dataset, which can be reduced overfitting [19]. After obtaining the spectrum data 

distribution, it is mapped into 32×32 matrix, according to the number on the energy channel. There are 

several transformation methods from vector to matrix mapping, for instance Hilbert curve, z-order curve, 

vertical scanning and horizontal scanning [20]. Liang et al. [21] has been compared and analyzed based on 

those four transformation methods and found that Hilbert and z-order curve converged faster and smoother. 

Therefore, the z-order curved was used as a matrix transformation method for gamma-ray spectrum in this 

study.  

 

 

 
 

Figure 2. Block diagram of dataset preparation  
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The transformation program is designed to perform pre-processing of 1D spectrum vector. This 

function mainly aims to convert the 1D spectrum data into a two-dimensional array with a size of 32×32, 

which is saved as a 300×300 pixel PNG image file with Viridis color map. The 1D spectrum data contains 

1,024 channels with maximum energy at 2048 keV, which means that each channel is equal to 2 keV of 

gamma energy. These 1024 channels are divided by 32 for each row, resulting in 32 rows and 32 columns. 

The first row from 0 to 31 represents the first row of the section. The second row from 32 to 63 is filled with 

information from the second section, and so on, resulting in a 32×32 image. The degree of color degradation 

in Viridis color map indicates the high-intensity information from the enumeration at that position. The 

highest intensity is shown in yellow and the lowest in dark blue. This image representation was used as a 

dataset to train and test classification model. 

CNN is chosen to classify gamma radiation sources since it is a type of neural network well suited 

for processing structured arrays of data, employing multiple layers of linear and non-linear operations learned 

simultaneously in an end-to-end manner [25], [26]. We trained a CNN using prepared PNG image dataset as 

input layer to identify radionuclides. In this study, three CNN architectures are used to train the model, which 

are VGG-16, AlexNet and Xception as shown in Figure 3. In the context of deep learning, VGG-16, AlexNet, 

and Xception are prominent CNN architectures as shown in Figure 3(a)-(c), each representing distinct 

evolutionary stages in developing deep neural networks for image recognition tasks. These architectures vary 

significantly in their design principles, layer compositions, and computational complexities. As shown in 

Figure 3, Xception has more layers compared to VGG-16 and AlexNet primarily due to its architecture 

philosophy, which is centered around depth wise separable convolution. The choice between these 

architectures depends on the specific requirements of the task, including accuracy, computational efficiency, 

and resource availability.  

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 3. Illustration of three CNN architectures, (a) VGG-16, (b) AlexNet, and (c) Xception 

 

 

In this study, the image dataset was divided with a ratio of 70% for training data, 20% for testing 

data, and 10% for validation data. The input size is 300×300×3 images entering the first filter layer. In  

VGG-16, layers refer to the different operations performed on the input data. These operations include 

convolution, activation, pooling, and fully connected layers. The convolution layer is the layer responsible 

for extracting features from the image. This layer uses filters to filter the image and generate a feature map. 

This feature map is then passed on to the next layer for processing. The pooling layer is responsible for 
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reducing the size of the feature map. This construction is built to reduce the number of parameters that need 

to be learned by the network and to improve network performance. The kernel size or filter matrix is 3×3 

considering the complexity of learned features. Max pooling layer with size 2×2 and three fully connected 

(FC) layers using 4,096 neurons. The fully connected layer is the layer responsible for making the final 

decision. It receives the output from the pooling layer and uses an activation function to generate the final 

output. At the ends of layers, Xception using global average pooling (GAP) to reduce numbers of parameters, 

different with VGG-16 and AlexNet which used dropout layers, because of regularization, to reduce the 

likelihood of overfitting. 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Transformation into image dataset 

The transformation from radionuclide spectrum to image dataset is shown in Figure 4. This figure 

shows example of the transformation result of Cs-137, Co-60, Cs-134, and Eu-152 with source to detector 

distance of 20 cm and measurement time of 60 seconds. In the upper rows, original spectrum for each 

radionuclide and its peak for the corresponding energy as listed in Table 2 is shown. The second rows 

illustrate 1D normalized spectrum after correction using background spectrum as described in the method 

section. In the last rows, transformed images for each radionuclide is shown. 

 

 

    
(a) (b) (c) (d) 

 

Figure 4. Example of feature transferring from spectrum vector to image: (a) Cs-137, (b) Co-60,  

(c) Cs-134, and (d) Eu-152 

 

 

3.2.  Evaluation of training results 

According to literature reviews, deep learning algorithms are particularly useful and frequently 

applied when the dataset consists of a collection of photos since they can extract complicated characteristics 

and perform classification with a high degree of accuracy [27]–[30]. One of indicator result based on deep 

learning CNN (DLCNN) is the training and validation graph as the epoch increases [30]. The training and 

validation process is shown in Figure 5, which is represented by an accuracy and loss function graph. An 

accuracy curve that tends to rise closer to 1 indicates that the model is getting better at learning data patterns 

and there is no overfitting. This is also in line with the loss function, which tends to decrease during the 

training process. The accuracy rate is close to 100% after 100 epochs, and the loss value curve approaches 0. 

The research used Hilbert-Huang transform (HHT-CNN) with 1D-CNN [28] showing that to obtain an 

optimal and stable accuracy, a higher epoch number is required compared to this research. Figure 5 makes it 

abundantly evident that the model may achieve optimal accuracy at approximately 20 epochs. 
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(a) (b) 

 

Figure 5. The training and validation process of (a) accuracy and (b) loss  

 

 

3.3.  Model performance comparison 

Three criteria are used to evaluate the performance of the model: accuracy, precision and recall [27], 

[29], [30]. Models have utilized DLCNN architectures with different filter, padding size, kernel size at the 

activation layer, learning rate and window size. Figure 6 explains that the VGG-16 model has the best testing 

accuracy, precision and recall values compared to other models, at 97.72%, 97.75% and 97.71% respectively.  

 

 

 
 

Figure 6. Output values of CNN for different model architecture 

 

 

High accuracy results are proven in the confusion matrix, as shown in Table 3. The confusion matrix 

is a performance evaluation technique used in classification problems in machine learning and statistics. Its 

primary function is to provide a detailed breakdown of the performance of a classification model by 

presenting a matrix of actual versus predicted class labels. The table explains that the total of data correctly 

predicted by the model amounts to 1,025 data for the Co-60 class, 1,096 data for Cs-134 class, 1,053 data for 

Cs-137 class, and 1,063 data for Eu-152 class. Overall, the confusion matrix is a fundamental tool for 

evaluating, understanding, and improving the performance of classification models in various machine 

learning applications [20], [23]. It offers a granular view of classification results, enabling data scientists and 

practitioners to make informed decisions about model selection, optimization, and deployment. 

 

 

Table 3. Confusion matrix of VGG-16 architecture 
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Recent study on the detection of radionuclide classification based-on machine learning demonstrate 

that the method can be implemented in embedded device utilizing TinyML platform [25]. Since an embedded 

device has limited resources in term of memory size and computational power, a proper classification 

method, reduction of model size and pre-processing method to reduce the input will be important for 

successful implementation. Therefore, in the future, studies on optimization of architecture and model size of 

the proposed method, as well as evaluation of pre-processing method to reduce the dimensions of spectrum 

image will be performed. 

 

 

4. CONCLUSION 

Radionuclide identification method based-on experimental dataset was designed for monitoring the 

environment radiation system. This study proposes an automatic system based on converting gamma-ray 

intensity to spectrum image as the dataset. The model performance was evaluated, and the results proved that 

the algorithm was suitable for an identification or classification system. Training the model by using three 

CNN architectures and obtained that VGG-16 has optimal accuracy values, and the loss function is very low. 

The results achieved the optimum accuracy at 97.72%, precision of 97.75% and recall 97.71%. Future work 

will develop the TinyML with additional gamma-ray data and embedded system technology. The direction of 

these findings is to contribute for providing an appropriate model of TinyML which can be embedded into 

radiation detection device. 
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