
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 15, No. 1, February 2025, pp. 1079~1088

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i1.pp1079-1088  1079

Journal homepage: http://ijece.iaescore.com

Optimal task partitioning to minimize failure in heterogeneous

computational platform

Divyaprabha Kabbal Narayana, Sudarshan Tekal Subramanyam Babu
Department of Computer Science and Engineering, PES University, Bangalore, India

Article Info ABSTRACT

Article history:

Received Mar 8, 2024

Revised Aug 17, 2024

Accepted Sep 3, 2024

 The increased energy consumption by heterogeneous cloud platforms surges

the carbon emissions and reduces system reliability, thus, making workload

scheduling an extremely challenging process. The dynamic voltage-

frequency scaling (DVFS) technique provides an efficient mechanism in

improving the energy efficiency of cloud platform; however, employing

DVFS reduces reliability and increases the failure rate of resource

scheduling. Most of the current workload scheduling methods have failed to

optimize the energy and reliability together under a central processing unit-

graphical processing unit (CPU-GPU) heterogeneous computing platform;

As a result, reducing energy consumption and task failure are prime issues

this work aims to address. This work introduces task failure minimization

(TFM) through optimal task partitioning (OTP) for workload scheduling in

the CPU-GPU cloud computational platform. The TFM-OTP introduces a

task partitioning model for the CPU-GPU pair; then, it provides a DVFS-

based energy consumption model. Finally, the energy-load optimization

problem is defined, and the optimal resource allocation design is presented.

The experiment is conducted on two standard workloads namely SIPHT and

CyberShake workload. The result shows that the proposed TFA-OTP model

reduces energy consumption by 30.35%, reduces makespan by 70.78% and

reduces task failure energy overhead by 83.7% in comparison with energy

minimized scheduling (EMS) approach.

Keywords:

Deadline

Energy

Heterogeneous computing

Parallel workflow application

Task failure

Workload scheduling

This is an open access article under the CC BY-SA license.

Corresponding Author:

Divyaprabha Kabbal Narayana

Department of Computer Science and Engineering, PES University

Bangalore, India

Email: divyaprabhamadhu@gmail.com

1. INTRODUCTION

Cloud computing platforms offer scalable computational resources of both software and hardware

resources to its users on the go over the internet. In recent time, the cloud computing platform has started to

use high-performance computing (HPC) like Apache Spark and Hadoop. to execute the data-intensive task in

parallel [1]. The HPC allows the cloud provider to improve its resource utilization and also reduces the

overall cost of workload execution of the client, thus, aiding in improving workload execution efficiency and

users experience. The HPC platform must include a large cluster of central processing units (CPUs), and

graphical processing units (GPUs) [2] and hardware to support different kinds of workload applications such

as image processing and genome sequencing. for computation requirements. Each submitted task of the

aforementioned application might request for different heterogeneous CPU-GPU resources; which makes

workload scheduling a challenging task.

Efficient scheduling workloads are a crucial challenge in distributed computational platforms such as

cloud computing, which often comprise diverse computational resources [3]. The objective of workload

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 1079-1088

1080

scheduling is to allocate resources to the task while meeting specific constraints to minimize the makespan, as

well as determining the initialization and completion times for each task. An effective design of workload

scheduling techniques plays a critical role in achieving enhanced performance on heterogeneous HPC systems.

The selection of a suitable scheduling technique can significantly reduce overall execution time, particularly

when executing directed acyclic graph (DAG) applications that may have task dependencies. These systems use

multiple types of computing resources with varying architecture, memory, processing, and speed, resulting in a

nonpolynomial deterministic problem when scheduling workload for dependent tasks of respective DAG on the

HPC environment in establishing the minimum cumulative makespan [4]. To address this issue in

heterogeneous cloud computational environments, various methods have been developed, such as workload

partitioning, optimal load balancing, and task migration across physical machines or multiple clouds, all of

which aim to minimize the makespan of DAG applications running on virtual machines (VMs) [5].

The state-of-the-art HPC [6] are predominantly focused on achieving enhanced performance; thus,

providing higher cluster size with higher processor frequency and multicore capability. Alongside, GPUs are

used to improve parallel computational efficiency at the cost of higher energy consumption measured in

performance/watt [7]. Thus, the current HPC systems are focused on designing energy-efficient HPC systems

[8]. Additionally, the increasing electricity cost further motivated the researcher to develop a performance-

oriented and energy-efficient design [7], [8]. Concerning these developments, this work aims to investigate

the optimization of energy-aware scheduling and workload partitioning in the field of high-performance

computing. To achieve this, we analyze several aspects, including energy-aware metrics [8], [9], system

types about their heterogeneity, and compute device types, such as multi-core CPUs and many-core CPUs

and accelerators such as GPUs. Additionally, we will examine the algorithmic methodologies used to address

energy-aware [8], as well as energy-reliability scheduling problems [9], [10]. This work introduces task

failure minimization (TFM) through an optimal task partitioning (OTP) scheme in a heterogeneous cloud

computing platform. The model is energy efficient as well as performance-oriented leveraging CPU-GPU

task partitioning and optimal scheduling design meeting energy-performance tradeoffs constraint.

The significance of the proposed work is as follows. First, a task partitioning model for execution

tasks in both CPU and GPU is discussed. Then a dynamic voltage-frequency scaling (DVFS) scheme and

energy consumption model for CPU-GPU system are employed. Introduced a tradeoff optimization problem

between task traffic partitioning and speed scaling. Later, the optimal scheduling design of processor

frequency-scaling optimization and energy-load optimization is modeled. The experiment result shows the

TFM-OTP is very effective in executing the task within a given deadline meeting energy-load constraint.

The paper is organized as follows. In section 2, an extensive survey has been conducted to identify

the significance of limitations of existing workload scheduling methods. In section 3 research methodology

of task failure minimization using optimal task partitioning model is presented. In section 4 the results

achieved in terms of makespan and energy consumption have been studied and comparative study has been

provided with state-of-art workload scheduling techniques. The last section provides the significance in terms

of percentage enhancement over state-of-the-art workload scheduling techniques.

2. LITERATURE SURVEY

In this section, different state-of-the-art methodologies related to task partitioning, workload

prioritization, optimal scheduling and evolutionary models for scheduling workload in heterogeneous

computational platforms are surveyed. Konjaang and Xu [11] introduced a multi-objective workload

optimizer strategy (MOWOS) by focusing on reducing the cost [12] with a decent makespan and meeting

complex scientific workload deadline prerequisites. The authors proposed a new virtual machine selection

technique that works well for larger workloads; however, the model is tested only for homogenous

computational models. Tang [13] introduced a reliability-aware cost-efficient scheduler (RACES) for

executing scientific workflow in a multi-cloud platform. Then, studied the importance of reducing failure and

providing a fault tolerant scheduling mechanism; In providing fault tolerance they proposed a multi-cloud-

based resource scheduling design [14]. A probability density function for failure rate is used to provide

reliability with minimal cost. However, because of poor load-balancing the model exhibits higher cost.

Kumar et al. [15] proposed autonomic resource provisioning and scheduler (ARPS) using a cloud

platform by enabling an automatic decision-making model through the spider monkey optimization

technique. The model focused on optimizing both cost and time meeting task deadline spider monkey

optimization technique. The model reduced energy, cost, and time. The performance of such a model for

scheduling complex scientific workflow execution is not explored. Calzarossa et al. [16] proposed a deadline

and budget-awareness workload scheduler (DBAWS) by employing a multi-objective parameter optimization

for a cloud environment with high uncertainty. They optimized both budgets and met task deadlines. The

optimization problem is solved through Monte Carlo and the genetic algorithm. Qin et al. [17] introduced

Int J Elec & Comp Eng ISSN: 2088-8708 

Optimal task partitioning to minimize failure in heterogeneous … (Divyaprabha Kabbal Narayana)

1081

knowledge adaptive discrete water wave optimizer (KADWWO) to investigate how cost can be kept low

considering larger workflow application deadlines. They introduced a discrete water wave optimization

strategy to adaptively reduce idle time with better load optimization attaining better convergence; thereby

enhancing scheduling performance considering a highly dynamic cloud platform. Qin et al. [18] proposed a

reliable-aware multiple parameter optimized memetic algorithm (RAMPOMA) by introducing a multi-

objective optimization mechanism using parameters such as cost, reliability, and makespan for workflow

execution in a multi-cloud heterogeneous platform. A memetic algorithm with a new genetic operator is

introduced to provide better resource differentiation and backup strategies and these strategies are used to

provide reliability; thereby enhancing the resource utilization of the network. Wang et al. [19] showed that

workflow heterogeneity and resource heterogeneity will make scheduling a very challenging task. The

authors proposed resource provision for multi-workflow for vertical and horizontal resource scaling using a

reinforcement learning (RL) algorithm. Depth-first search-based coalition RL (DFSCRL) was used for better

resource scaling optimization dynamically. Hu et al. [20] employed an energy-minimized scheduler (EMS)

by employing dynamic voltage frequency scaling to provide energy-efficient resource scheduling [21]; a

heuristic optimization is designed to assure reliability through mixed-integer programming. Though the

model reduced energy consumption it did not consider energy-makespan optimization.

In Table 1, a comparative study of various existing and proposed models has been provided. The

survey shows that extensive work has been reported on addressing the cost-makespan problem whereas very

limited work has been reported on workload scheduling in a heterogeneous environment considering

CPU-GPU optimization [22], [23]. Further, in comparison to cost-makespan very limited work has been done

energy-makespan assuring reliability i.e., minimal task failures leveraging CPU-GPU computing platform

[24], [25]. In the next section, a new technique is proposed for energy-makespan with minimal task failure in

meeting task deadline requirements.

Table 1. Comparative study
 MOWOS

(2021) [11]
ARPS

(2021) [15]
DBAWS

(2021) [16]
EMS

(2022) [20]
KADWWO

(2023) [17]
RAMPOMA

(2023) [18]
DFSCRL

(2023) [19]
TFM-OTP

[proposed]

Heterogeneous

computing
       

Workload type Complex Simple Complex Complex Complex Complex Complex Complex

Workload size Small to

large
Small to

medium
Small to

medium-large
Small to

large
Small to

large
Small to

large
Small to

large
Small to

large

QoS metrics Time,

budget

and
deadlines

Cost,

time, and

energy

Deadline

and budget
Energy Cost-

makespan
Makespan,

cost, and

reliability

Makespan Energy,

deadline,

resource
utilization

Optimization

strategy
Heuristic Spider

monkey
optimization

Monte Carlo

& Genetic
Algorithm

Heuristic Discrete water

wave
optimization

Memetic

genetic
algorithm

Q-learning Optimal

Task

Partitioning
no no no no no no no yes

Reliability no no no yes no yes no yes

3. PROPOSED METHOD

This section introduces task failure minimization through optimal task partitioning schemes for

heterogeneous platforms. First provides details of workload and task Partion model. Second, provides details

of the energy consumption model using DVFS. Finally, the tradeoff problem model is presented to attain

optimal scheduling performance for the execution of parallel workflow applications.

3.1. Workload and task partition model

The data-intensive workload 𝐺 is represented as a directed acyclic graph (DAG) composed of 𝑋

sub-task with task-interdependencies 𝐸 is expressed as (1).

𝐺 = {𝑋, 𝐸} (1)

The sub-task 𝑋 can be defined by (2),

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} (2)

The sub-task 𝑥𝑗 requests for operational frequency 𝔽𝑗 based on floating-point operations for executing sub-

task 𝑥𝑗 with a certain size 𝕂𝑗. The task interdependencies are expressed as in (3),

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 1079-1088

1082

𝐸 = {𝑒𝑗𝑙(𝑠𝑘 , 𝑠𝑚)} (3)

The communication efficiency relies on the processing capability of CPU-enabled VMs and GPU-enabled

virtual machines (VMs), 𝑒𝑗𝑙(𝑠𝑘, 𝑠𝑚) defines the function associated with 𝑥𝑗′𝑠 processor 𝑠𝑘 and 𝑥𝑙′𝑠 processor

𝑠𝑚. A sub-task without any prior task and a forthcoming task are defined as 𝑥𝑖𝑛 and 𝑥𝑜𝑢𝑡, respectively. The

workload 𝐺 overall time can be measured using (4),

𝐺 = 𝔽𝑗 × 𝕂𝑗 (4)

In this work heterogeneous (i.e., CPU-GPU) computational platform has been considered; thus, the clock

frequency measured in cycles per second of CPU 𝑓𝑗
(𝑐)

 and GPU 𝑓′𝑗
(𝑐)

 is represented as (5),

𝑓𝑗 = 𝑓𝑗
(𝑐)

× 𝕗𝑗 (5)

where 𝕗𝑗 defines the number of CPU floating point operations per cycle. Similarly, the clock frequency

measured in cycles per second of CPU 𝑓𝑗
(𝑐)

 and GPU 𝑓′𝑗
(𝑐)

 is represented by (6),

𝑓𝑗
′ = 𝑓′𝑗

(𝑐)
× 𝕗𝑗

′ (6)

where 𝕗𝑗
′ defines the number of GPU floating point operations per cycle. Using a local gradient process to

achieve data parallelism the input workload 𝐺 is usually partitioned and executed in GPU or CPU. The

partitioned workload executed in CPU considering node 𝑗 is defined by the parameter 𝐺𝑗 and for GPU is

defined through parameter 𝐺𝑗
′ with constraint can be defined as in (7),

𝐺𝑗 + 𝐺𝑗
′ = 𝐺, ∀𝑗 ∈ 𝐽. (7)

Using the above partitioning scheme according to available frequencies of CPU and GPU, the local

makespan for executing the workload 𝐺 is given as (8).

𝑢𝑗
′ = max {

𝐺𝑗

𝑓𝑗
,

𝐺𝑗
′

𝑓𝑗
′} , ∀𝑗 ∈ 𝐽. (8)

3.2. Dynamic voltage frequency and energy consumption model

Using the clock cycles of the processor the energy consumption can be measured as (9),

𝑄 = 𝛽[𝑓(𝑐)]
3
 (9)

where 𝛽 is dependent on chip architecture and is measured in Watt (cycle/s)3⁄ and 𝑓(𝑐) defines the

processor clock frequency. The energy consumption of the CPU at node 𝐽 is obtained in (10)

𝑄𝑗
𝐶𝑃𝑈 = 𝛽𝑗

𝐶𝑃𝑈(𝑓𝑗
(𝑐)

)
3

= 𝒞𝑗𝑓𝑗
3 (10)

where the parameter 𝒞𝑗 is obtained in (11),

𝒞𝑗 =
𝛽𝑗

𝐶𝑃𝑈

𝕗𝑗
3 (11)

Similarly, the energy consumption of GPU at node 𝐽 is obtained by (12).

𝑄𝑗
𝐺𝑃𝑈 = 𝛽𝑗

𝐺𝑃𝑈(𝑓𝑗
′(𝑐)

)
3

= 𝒢𝑗𝑓𝑗
′3, (12)

where the parameter 𝒢𝑗 is obtained in (13),

𝒢𝑗 =
𝛽𝑗

𝐺𝑃𝑈

𝕗𝑗
′3 . (13)

Int J Elec & Comp Eng ISSN: 2088-8708 

Optimal task partitioning to minimize failure in heterogeneous … (Divyaprabha Kabbal Narayana)

1083

The equations (9) to (13) are used for controlling the voltage-frequency scaling in a dynamic manner by

optimizing the power of CPU and GPU through processing frequency speed 𝑓𝑗and 𝑓𝑗
′ control, respectively.

The parameter 𝒞𝑗 and 𝒢𝑗 in (11) to (13) defines the computational efficiency with minimal task failures of

heterogeneous platforms defined through the power-speed trade-off optimization function. In general,

GPU-based communication plays significant computational benefits and CPU-based provides a supporting

computational resource. The makespan 𝐺𝑗 𝑓𝑗⁄ for CPU for completing the tasks of workload 𝐺𝑗 within the

given deadline and its energy consumption of respective node 𝑗 is measured as in (14),

ℰ𝑗
𝐶𝑃𝑈 = 𝒞𝑗𝐺𝑗𝑓𝑗

2 (14)

Similarly, the makespan 𝐺𝑗
′ 𝑓𝑗

′⁄ for GPU for completing the tasks of workload 𝐺𝑗 within a given deadline and

its energy consumption of respective node 𝑗 is measured using (15),

ℰ𝑗
𝐺𝑃𝑈 = 𝒢𝑗𝐺𝑗

′𝑓𝑗
′2. (15)

Therefore, combining both CPU and GPU energy consumption the total energy consumption of corresponding

node 𝑗 is measured as (16),

ℰ𝑗
𝑐𝑚𝑝

= 𝒞𝑗𝐺𝑗𝑓𝑗
2 + 𝒢𝑗𝐺𝑗

′𝑓𝑗
′2, ∀𝑗 ∈ 𝐽. (16)

3.3. Tradeoff problem definition

Designing effective task traffic partitioning and processing frequency speed scaling optimization

which can aid in better management of distributed computational resources with minimal task failures and

minimal overall energy consumption, the tradeoff functions are defined as (17),

min
{𝐺𝑗,𝑓𝑗,𝑓𝑗

′}
∑ (𝒞𝑗𝐺𝑗𝑓𝑗

2 + 𝒢𝑗𝐺𝑗
′𝑓𝑗

′2)𝐽
𝑗=1 (17)

such that,

𝐺𝑗 + 𝐺𝑗
′ = ℰ, 𝐺𝑗 ≥ 0, 𝐺′𝑗 ≥ 0, ∀𝑗 ∈ 𝐽, (18)

𝑢𝑙
′ = max {

𝐺𝑗

𝑓𝑗
,

𝐺𝑗
′

𝑓𝑗
′} , ∀𝑗 ∈ 𝐽, (19)

0 ≤ 𝑢𝑗
′ ≤ 𝑈𝑗

′, ∀𝑗 ∈ 𝐽. (20)

The constraint defined from (18), (19), and (20) satisfies (7), (8), and the time constraint defined through

parameter 𝑈𝑗
′ defines the permissible maximum makespan of corresponding computational node 𝑗.

3.4. Optimal scheduling design

In providing better resource optimization design this section presents two optimization processes

namely processor frequency-scaling optimization and energy-load optimization design. The work first

introduces condition 1, for processor frequency-scaling optimization. Condition 1, focuses on reducing

overall energy consumption, the processing speed of CPU-based 𝑓𝑗 and GPU-based 𝑓𝑗
′, the platform must be

scaled as defined in (21),

𝐺𝑗

𝑓𝑗
=

𝐺𝑗
′

𝑓𝑗
′ , ∀𝑗 ∈ 𝐽, (21)

considering respective random workload pair (𝐺𝑗 , 𝐺𝑗
′) with 𝐺 = 𝐺𝐽 + 𝐺𝑗

′. In obtaining optimal performance

considering processor frequency-scaling according to the workload defined in condition 1 is instinctive and

the outcome of equalizing GPU and CPU makespan to avoid non-performing one may end up with a

bottleneck during computation process. Thus, the (17) is modified to follow the optimization problem.

min
{𝐺𝑗,𝑢𝑗

′}
∑

𝒞𝑗𝐺𝑗
3+𝒢𝑗𝐺𝑗

′3

𝑢𝑗
′2

𝐽
𝑗=1 (22)

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 1079-1088

1084

such that it satisfies the constraint of (23) and (24),

𝐺𝑗 + 𝐺𝑗
′ = 𝐺, ∀𝐺𝑗 ≥ 0, 𝐺𝑗

′ ≥ 0, ∀𝑗 ∈ 𝐽, (23)

0 ≤ 𝑢𝑗
′ ≤ 𝑈𝑗

′, ∀𝑗 ∈ 𝐽 (24)

The work further shows the optimal performance can be attained between CPU-GPU in terms of

energy-load optimization by following condition 2 in (25),

𝜕ℰ𝑗

𝐶𝑃𝑈

𝜕𝐺𝑗
=

3𝒞𝑗𝐺𝑗
2

𝑢𝑗
′2 , ∀𝑗 ∈ 𝐽 (25)

where ℰ𝑗
 𝐶𝑃𝑈 defines the energy consumption of the CPU and is obtained as (26),

ℰ𝑗
𝐶𝑃𝑈 =

𝒞𝑗𝐺𝑗
3

𝑢𝑗
′2 (26)

and

𝜕ℰ𝑗

𝐺𝑃𝑈

𝜕𝐺𝑗
′ =

3𝒢𝑗𝐺𝑗
′2

𝑢𝑗
′2 , ∀𝑗 ∈ 𝐽, (27)

where ℰ𝑗
𝐺𝑃𝑈 defines energy consumption of GPU and is obtained as described in (28),

ℰ𝑗
𝐺𝑃𝑈 =

𝒢𝑗𝐺′𝑗
3

𝑢𝑗
′2 (28)

Therefore, using the above equation, the optimal resource allocation is obtained through (29),

𝜕ℰ𝑗

𝐶𝑃𝑈

𝜕𝐺𝑗
=

𝜕ℰ𝑗
𝐺𝑃𝑈

𝜕𝐺𝑗
′ , ∀𝑗 ∈ 𝐽, (29)

with 𝐺𝑗 + 𝐺𝑗
′ = 𝐺. The equation (22) requires maximizing the makespan of each computational node to

achieve optimal performance as (22) represents a non-increasing function in 𝑢𝑗
′, ∀𝑗 ∈ 𝐽; thus, it makes

𝑢𝑙
′∗ = 𝑈𝑗

′, ∀𝑗 ∈ 𝐽, not dependent on workload partitioning. Therefore, using both condition 1 and condition 2,

the optimal workload resource optimization can be obtained through (30),

𝐺𝑗
∗ =

√𝒞𝑗𝐺

√𝒞𝑗+√𝒢𝑗
, 𝑎𝑛𝑑 𝐺𝑗

′∗ =
√𝒢𝑗𝐺

√𝒞𝑗+√𝒢𝑗
, 𝑗 ∈ 𝐽, (30)

where 𝒞𝑗 defines the computational factor of CPU and 𝒢𝑗 defines the computational factor of GPU.

Alongside, the optimal processor frequency-scaling of the CPU-GPU platform is obtained through (31),

𝑓𝑗
∗ =

𝐺𝑗
∗

𝑈𝑗
′ , 𝑓𝑗

′∗ =
𝐺′𝑗

∗

𝑈𝑗
′ , 𝑗 ∈ 𝐽, (31)

where parameter 𝑈𝑗
′ defines the permissible maximum makespan of corresponding node 𝑗. The complete

working of the proposed TFM-OTP model is explained in Algorithm 1.

3.5. Algorithm of proposed approach

The complete working process of task failure aware optimal task partitioning model is given in

Algorithm 1. First, in step 2, the heterogenous cloud platform is configured with the required number of

physical machines (PMs) and virtual machines (VMs). For easiness, the work considered identical CPU-GPU

configuration in all VMs. In step 3, the users start submitting the workload to a heterogeneous cloud platform

with strict deadlines. Then, in step 4, the work partitions the data using (7) based on task dependencies levels

and available CPUs and GPUs. In step 5, using (8) it computes the expected makespan, and in step 6, using

(16) the model measures expected energy consumption for executing tasks in CPU-GPU. In step 7, using (22)

Int J Elec & Comp Eng ISSN: 2088-8708 

Optimal task partitioning to minimize failure in heterogeneous … (Divyaprabha Kabbal Narayana)

1085

and meeting constraints (23) and (24) the work starts scheduling task 𝑋 within workload 𝐺. In step 8, once all

the tasks 𝑋 with 𝐺 are done the model measures the performance of the TFM-OTP scheduling model. The

proposed model reduces task failures and is energy efficient by allocating to processors with minimal

makespan aiding minimal energy consumption and better computational efficiency.

Algorithm 1. TFM-OTP

Step 1. Start

Step 2. Deploy heterogeneous CPU-GPU enabled cloud platform composed of a set of physical machines

(PMs) and virtual machines (VMs) composed of CPU and GPUs.

Step 3. User submits workload 𝐺 to a heterogenous cloud platform with a deadline prerequisite.

Step 4. The cloud platform first partitions the workload 𝐺 according to task 𝑋 dependencies level using (7).

Step 5. The cloud platform then computes the approximate local makespan 𝑢𝑗
′ using (8).

Step 6. The heterogenous cloud platform computes energy consumption ℰ𝑗
𝑐𝑚𝑝

 of all VMs using (16).

Step 7. The cloud platform schedules all the tasks 𝑋 of workload 𝐺 using (22) with meeting constraints (23)

and (24) to reduce task failures with minimal makespan and energy consumption.

Step 8. Measure the performance of the TFM-OTP scheduler in terms of makespan, energy consumption, and

task failure energy overhead.

Step 9. Stop

4. RESULTS AND DISCUSSION

This section studies the performance of TFM-OTP over existing workload scheduling, namely EMS

[20]. The workload scheduling models are implemented using CloudSim. The energy consumption,

makespan, and task failure energy overhead are metrics used for validating the performance of workload

scheduling models. CyberShake and SIPHT are benchmark workloads that are used for experiment analysis

which is available from [26].

4.1. Energy consumption

In this section, the energy efficiency of EMS and TFM-OTP is studied. Energy efficiency is

measured concerning total energy consumed measured in watts for the execution of the scientific workload.

Figure 1 shows the energy consumed for the execution of a SIPHT workload of a varying size where 30

represents a smaller workload and 1000 represents a larger workload. The result shows the TFM-OTP

reduces energy usage by 39.35% in comparison with EMS for the execution of SIPHT workload. Similarly,

Figure 2 shows the energy consumed for the execution of a CyberShake workload of varying size where 30

represents a smaller workload and 1000 represents a larger workload. The result shows the TFM-OTP

reduces energy usage by 39.35% in comparison with EMS for execution of CyberShake workload. The

energy efficiency improvement observed using TFM-OTP over EMS is due to the adoption of the energy

optimization mechanism presented in (17) meeting performance constraints. However, EMS just optimizes

the energy as per application reliability; thus, exhibits higher makespan and energy consumption which is

observed in Figures 1 and 2.

Figure 1. Energy consumption vs SIPHT

workload size

Figure 2. Energy consumption vs CyberShake

workload size

4.2. Makespan

In this section, the makespan efficiency of EMS and TFM-OTP is studied. The makespan efficiency

is measured concerning the total time taken measured in seconds for the execution of the scientific workload.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 1079-1088

1086

Figure 3 shows the makespan efficiency for the execution of a SIPHT workload of varying sizes. The result

shows the TFM-OTP reduces makespan induced by 44.23% in comparison with EMS for the execution of

SIPHT workload. Similarly, Table 2 shows the makespan efficiency for the execution of CyberShake

workloads of varying sizes. The result shows the TFM-OTP reduces makespan induced by 97.33% in

comparison with EMS for execution of CyberShake workload. The EMS schedules the task to VMs that

minimize energy and meet task reliability; however, makespan minimization is not considered to lead to

higher makespan at the cost of energy as seen in Figure 3 and Table 2. However, the makespan efficiency

improvement achieved using TFM-OTP over EMS is because of the task being executed optimally in CPU-

GPU pair as shown in (17); further, the performance efficiency with better load optimization meeting

performance constraint is obtained using (22). Thus, a significant reduction of makespan in comparison with

EMS can be observed in Figure 3 and Table 2.

Figure 3. Makespan vs SIPHT workload size

Table 2. Makespan performance measured in seconds for CyberShake workflow
Methodology CyberShake_30 CyberShake_50 CyberShake_100 CyberShake_1000

EMS 6359.41 12380.99 24712.57 43685.27

TFM-OTP 262.73 283.68 323.35 1276.1

4.3. Task failure energy overhead

In this section, the task failure energy overhead performance of EMS and TFM-OTP is studied. The

overhead is measured concerning the total energy consumed measured in watts for the execution of the failed

task. Figure 4 shows the energy overhead for the execution of a SIPHT workload of varying size. The result

shows the TFM-OTP reduces energy overhead by 69.14% in comparison with EMS for the execution of

SIPHT workload. Similarly, Table 3 shows the energy overhead for the execution of CyberShake workloads

of varying sizes. The result shows the TFM-OTP reduces energy overhead by 98.26% in comparison with

EMS for execution of CyberShake workload. The task failure energy overhead reduction observed using

TFM-OTP over EMS is due to the adoption of effective task partition at CPU-GPU pair-based resource

availability meeting constraint defined in (17) and (22) meeting performance and load optimization

constraint. However, EMS just optimizes the energy as per application reliability; thus, exhibits higher

makespan and energy consumption which is observed in Figure 4 and Table 3.

Figure 4. Average energy consumption vs SIPHT workload size

Int J Elec & Comp Eng ISSN: 2088-8708 

Optimal task partitioning to minimize failure in heterogeneous … (Divyaprabha Kabbal Narayana)

1087

Table 3. Task failure energy overhead measured in watts for CyberShake workflow
Methodology CyberShake_30 CyberShake_50 CyberShake_100

EMS 6418.98 12720.34 26476.74
TFM-OTP 171.07 196.81 263.71

5. CONCLUSION

The study identified that most of the current methods to reduce energy leveraged DVFS; however, it

affects the reliability of the computation platform; Especially, for executing workload applications the current

method increases the failure rate. In addressing this paper introduces task partitioning into CPU-GPU pairs

based on the local gradient computation process. Then DVFS-based energy consumption model for the

execution of tasks in the CPU-GPU platform is presented; the model introduces an energy-performance

tradeoff problem; further, the tradeoff model is extended to an energy-load optimization problem to provide

reliability i.e., reduce task failure energy overhead of heterogeneous CPU-GPU platform. Finally, an optimal

scheduling scheme is presented. The experiment outcome shows TFA-OTP model reduces energy

consumption by 39.35%, reduces makespan by 44.23%, and task failure energy overhead by 69.14% in

comparison with EMS for SIPHT workload. Similarly, the experiment outcome shows TFA-OTP model

reduces energy consumption by 39.35%, reduces makespan by 97.33%, and task failure energy overhead by

98.26% in comparison with EMS for CyberShake workload. The TFA-OTP is efficient in executing both

large and small workloads with more energy and makespan efficiency meeting application reliability.

However, in the future, the TFA-OTP will be tested considering different data-intensive scientific workloads.

REFERENCES
[1] A. A. Nasr, N. A. El-Bahnasawy, G. Attiya, and A. El- ayed, “ os -effective algorithm for workflow scheduling in cloud

com u ng under deadl ne cons ra n ,” Arabian Journal for Science and Engineering, vol. 44, no. 4, pp. 3765–3780, 2019, doi:

10.1007/s13369-018-3664-6.

[2] X ang and Z u, “ U-GPU utilization aware energy-eff c en sc edul ng algor m on e erogeneous com u ng sys ems,”
IEEE Access, vol. 8, pp. 58948–58958, 2020, doi: 10.1109/ACCESS.2020.2982956.

[3] ajewsk , awl k, and alawsk , “ lgor ms for sc edul ng sc en f c workflows on serverless arc ec ure,” n 2021

IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), May 2021, pp. 782–789, doi:

10.1109/CCGrid51090.2021.00095.

[4] akrouk and N l arbe, “Qo -aware algor m based on ask flow sc edul ng n cloud com u ng env ronmen ,” Sensors,

vol. 22, no. 7, 2022, doi: 10.3390/s22072632.
[5] A. Taghinezhad-N ar, as azade , and J a er , “Qo -aware online scheduling of multiple workflows under task execution

 me uncer a n y n clouds,” Cluster Computing, vol. 25, no. 6, pp. 3767–3784, 2022, doi: 10.1007/s10586-022-03600-8.

[6] oco , zarnul, and J rof cz, “ nergy-aware scheduling for high- erformance com u ng sys ems: survey,” Energies,
vol. 16, no. 2, 2023, doi: 10.3390/en16020890.

[7] aragard , ale edg our, azl a mad , a r nger, and N asoul , “G -HEFT: a budget-constrained

resource rov s on ng sc eme for workflow sc edul ng n Iaa clouds,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 6, pp. 1239–1254, Jun. 2020, doi: 10.1109/TPDS.2019.2961098.

[8] edara, ng , and m , “ nergy-aware workflow task scheduling in clouds with virtual machine consolidation using

d scre e wa er wave o m za on,” Simulation Modelling Practice and Theory, vol. 110, Jul. 2021, doi:
10.1016/j.simpat.2021.102323.

[9] ussa n, L We , e man, bbas, ussa n, and l , “Deadl ne-constrained energy-aware workflow scheduling
 n geogra cally d s r bu ed cloud da a cen ers,” Future Generation Computer Systems, vol. 132, pp. 211–222, 2022, doi:

10.1016/j.future.2022.02.018.

[10] lb ous , unus, lm ’an , and N Noor, “ ruc ure-aware sc edul ng me ods for sc en f c workflows n cloud,”
Applied Sciences, vol. 13, no. 3, 2023, doi: 10.3390/app13031980.

[11] J onjaang and L Xu, “ ul -objec ve workflow o m za on s ra egy (W) for cloud com u ng,” Journal of Cloud

Computing, vol. 10, no. 1, 2021, doi: 10.1186/s13677-020-00219-1.
[12] X. Tang et al., “ os -eff c en workflow sc edul ng algor m for a l ca ons w deadl ne cons ra n on e erogeneous clouds,”

IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 9, pp. 2079–2092, 2022, doi: 10.1109/TPDS.2021.3134247.

[13] X ang, “ el ab l y-aware cost-efficient scientific workflows scheduling strategy on multi-cloud sys ems,” IEEE Transactions
on Cloud Computing, vol. 10, no. 4, pp. 2909–2919, 2022, doi: 10.1109/TCC.2021.3057422.

[14] ar ka, Garg, an, and N al e ros, “ c edul ng algor ms for eff c en execu on of s ream workflow a l ca ons

 n mul cloud env ronmen s,” IEEE Transactions on Services Computing, vol. 15, no. 2, pp. 860–875, 2022, doi:
10.1109/TSC.2019.2963382.

[15] umar, s or, J bawajy, garwal, ng , and Zomaya, “ : Sn autonomic resource provisioning and

sc edul ng framework for cloud la forms,” IEEE Transactions on Sustainable Computing, vol. 7, no. 2, pp. 386–399, 2022, doi:
10.1109/TSUSC.2021.3110245.

[16] alzarossa, L D Vedova, L assar , G Nebb one, and D essera, “ ul -objective optimization of deadline and

budget-aware workflow sc edul ng n uncer a n clouds,” IEEE Access, vol. 9, pp. 89891–89905, 2021, doi:
10.1109/ACCESS.2021.3091310.

[17] Q n, D , Z ao, and Xu, “ knowledge-based adaptive discrete water wave optimization for solving cloud workflow

sc edul ng,” IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp. 200–216, 2023, doi: 10.1109/TCC.2021.3087642.
[18] Q n, D , Z ao, Xu, and en, “ el ab l y-aware multi-objective memetic algorithm for workflow scheduling

problem in multi-cloud sys em,” IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 4, pp. 1343–1361, 2023,

doi: 10.1109/TPDS.2023.3245089.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 1079-1088

1088

[19] X Wang, J ao, and uyya, “ da ve cloud bundle rov s on ng and mul -workflow scheduling via coalition reinforcement

learn ng,” IEEE Transactions on Computers, vol. 72, no. 4, pp. 1041–1054, 2023, doi: 10.1109/TC.2022.3191733.
[20] u, Z ao, and Z ou, “ nergy-minimized scheduling of real-time parallel workflows on heterogeneous distributed

com u ng sys ems,” IEEE Transactions on Services Computing, vol. 15, no. 5, pp. 2766–2779, 2022, doi:

10.1109/TSC.2021.3054754.
[21] N Garg, Neeraj, aj, I Gu a, V umar, and G n a, “ nergy-efficient scientific workflow scheduling algorithm in

cloud env ronmen ,” Wireless Communications and Mobile Computing, vol. 2022, 2022, doi: 10.1155/2022/1637614.

[22] J ang and u, “G G U ask sc edul ng ec n que for reduc ng e erformance dev a on of mul le G G U asks n -
based G U v r ual za on env ronmen s,” Symmetry, vol. 13, no. 3, 2021, doi: 10.3390/sym13030508.

[23] Za af, I anudo lmedo, J ng , N a od ec , and aucou, “ on en on-aware GPU partitioning and task-to-

partition allocation for real- me workloads,” n ACM International Conference Proceeding Series, 2021, pp. 226–236, doi:
10.1145/3453417.3453439.

[24] Zou, J L , D G ll, and X Z ang, “ G U: real-time GPU scheduling of hard deadline parallel tasks with fine-grain

u l za on,” IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 5, pp. 1450–1465, 2023, doi:
10.1109/TPDS.2023.3235439.

[25] L Wan, W Z eng, and X uan, “ ff c en n er-device task scheduling schemes for multi-device co-processing of data-parallel

kernels on e erogeneous sys ems,” IEEE Access, vol. 9, pp. 59968–59978, 2021, doi: 10.1109/ACCESS.2021.3073955.
[26] G Juve, ervenak, Deelman, ara , G e a, and Va , “ arac er z ng and rof l ng sc en f c workflows,”

Future Generation Computer Systems, vol. 29, no. 3, pp. 682–692, 2013, doi: 10.1016/j.future.2012.08.015.

BIOGRAPHIES OF AUTHORS

Divyaprabha Kabbal Narayana received the B.E. degree in computer science

from the University of Mysore, India, the M.Tech. degree in computer Science from the

Visvesvaraya Technological University, Bangalore, India, and currently pursuing Ph.D. PES

University Bangalore India. Her area of interest includes compilers and high-performance

computation on homogeneous and heterogeneous platforms using machine learning and deep

learning frameworks. She has authored or coauthored more than 10 publications. She can be

contacted at email: divyaprabhamadhu@gmail.com.

Sudarshan Tekal Subramanyam Babu is professor and dean of research at PES

University, Bangalore India with 26 years of teaching experience. He Holds a PhD degree in

computer networks and computer architecture from BITS, Pilani. He holds specialization in

Heterogeneous computer architecture and computing, embedded systems and robotics, mobile

networks and IoT. He is a senior member IEEE, member IET, member ACM, founder

chairman of IEEE RAS Bangalore Chapter. He has more than 80+ publications in conference

and 20+ journals. He also authored many book chapters. He can be contacted at email:

sudarshan.tsb@gmail.com.

https://orcid.org/0009-0004-2026-5644
https://scholar.google.com/citations?user=1njlc2sAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57218626906
https://orcid.org/0000-0001-9032-7389
https://scholar.google.co.in/citations?user=fohsPnMAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=36893577200

