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 The increased energy consumption by heterogeneous cloud platforms surges 

the carbon emissions and reduces system reliability, thus, making workload 

scheduling an extremely challenging process. The dynamic voltage-

frequency scaling (DVFS) technique provides an efficient mechanism in 

improving the energy efficiency of cloud platform; however, employing 

DVFS reduces reliability and increases the failure rate of resource 

scheduling. Most of the current workload scheduling methods have failed to 

optimize the energy and reliability together under a central processing unit-

graphical processing unit (CPU-GPU) heterogeneous computing platform; 

As a result, reducing energy consumption and task failure are prime issues 

this work aims to address. This work introduces task failure minimization 

(TFM) through optimal task partitioning (OTP) for workload scheduling in 

the CPU-GPU cloud computational platform. The TFM-OTP introduces a 

task partitioning model for the CPU-GPU pair; then, it provides a DVFS-

based energy consumption model. Finally, the energy-load optimization 

problem is defined, and the optimal resource allocation design is presented. 

The experiment is conducted on two standard workloads namely SIPHT and 

CyberShake workload. The result shows that the proposed TFA-OTP model 

reduces energy consumption by 30.35%, reduces makespan by 70.78% and 

reduces task failure energy overhead by 83.7% in comparison with energy 

minimized scheduling (EMS) approach. 
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1. INTRODUCTION 

Cloud computing platforms offer scalable computational resources of both software and hardware 

resources to its users on the go over the internet. In recent time, the cloud computing platform has started to 

use high-performance computing (HPC) like Apache Spark and Hadoop. to execute the data-intensive task in 

parallel [1]. The HPC allows the cloud provider to improve its resource utilization and also reduces the 

overall cost of workload execution of the client, thus, aiding in improving workload execution efficiency and 

users experience. The HPC platform must include a large cluster of central processing units (CPUs), and 

graphical processing units (GPUs) [2] and hardware to support different kinds of workload applications such 

as image processing and genome sequencing. for computation requirements. Each submitted task of the 

aforementioned application might request for different heterogeneous CPU-GPU resources; which makes 

workload scheduling a challenging task.  

Efficient scheduling workloads are a crucial challenge in distributed computational platforms such as 

cloud computing, which often comprise diverse computational resources [3]. The objective of workload 

https://creativecommons.org/licenses/by-sa/4.0/
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scheduling is to allocate resources to the task while meeting specific constraints to minimize the makespan, as 

well as determining the initialization and completion times for each task. An effective design of workload 

scheduling techniques plays a critical role in achieving enhanced performance on heterogeneous HPC systems. 

The selection of a suitable scheduling technique can significantly reduce overall execution time, particularly 

when executing directed acyclic graph (DAG) applications that may have task dependencies. These systems use 

multiple types of computing resources with varying architecture, memory, processing, and speed, resulting in a 

nonpolynomial deterministic problem when scheduling workload for dependent tasks of respective DAG on the 

HPC environment in establishing the minimum cumulative makespan [4]. To address this issue in 

heterogeneous cloud computational environments, various methods have been developed, such as workload 

partitioning, optimal load balancing, and task migration across physical machines or multiple clouds, all of 

which aim to minimize the makespan of DAG applications running on virtual machines (VMs) [5]. 

The state-of-the-art HPC [6] are predominantly focused on achieving enhanced performance; thus, 

providing higher cluster size with higher processor frequency and multicore capability. Alongside, GPUs are 

used to improve parallel computational efficiency at the cost of higher energy consumption measured in 

performance/watt [7]. Thus, the current HPC systems are focused on designing energy-efficient HPC systems 

[8]. Additionally, the increasing electricity cost further motivated the researcher to develop a performance-

oriented and energy-efficient design [7], [8]. Concerning these developments, this work aims to investigate 

the optimization of energy-aware scheduling and workload partitioning in the field of high-performance 

computing. To achieve this, we analyze several aspects, including energy-aware metrics [8], [9], system 

types about their heterogeneity, and compute device types, such as multi-core CPUs and many-core CPUs 

and accelerators such as GPUs. Additionally, we will examine the algorithmic methodologies used to address 

energy-aware [8], as well as energy-reliability scheduling problems [9], [10]. This work introduces task 

failure minimization (TFM) through an optimal task partitioning (OTP) scheme in a heterogeneous cloud 

computing platform. The model is energy efficient as well as performance-oriented leveraging CPU-GPU 

task partitioning and optimal scheduling design meeting energy-performance tradeoffs constraint. 

The significance of the proposed work is as follows. First, a task partitioning model for execution 

tasks in both CPU and GPU is discussed. Then a dynamic voltage-frequency scaling (DVFS) scheme and 

energy consumption model for CPU-GPU system are employed. Introduced a tradeoff optimization problem 

between task traffic partitioning and speed scaling. Later, the optimal scheduling design of processor 

frequency-scaling optimization and energy-load optimization is modeled. The experiment result shows the 

TFM-OTP is very effective in executing the task within a given deadline meeting energy-load constraint. 

The paper is organized as follows. In section 2, an extensive survey has been conducted to identify 

the significance of limitations of existing workload scheduling methods. In section 3 research methodology 

of task failure minimization using optimal task partitioning model is presented. In section 4 the results 

achieved in terms of makespan and energy consumption have been studied and comparative study has been 

provided with state-of-art workload scheduling techniques. The last section provides the significance in terms 

of percentage enhancement over state-of-the-art workload scheduling techniques. 

 

 

2. LITERATURE SURVEY 

In this section, different state-of-the-art methodologies related to task partitioning, workload 

prioritization, optimal scheduling and evolutionary models for scheduling workload in heterogeneous 

computational platforms are surveyed. Konjaang and Xu [11] introduced a multi-objective workload 

optimizer strategy (MOWOS) by focusing on reducing the cost [12] with a decent makespan and meeting 

complex scientific workload deadline prerequisites. The authors proposed a new virtual machine selection 

technique that works well for larger workloads; however, the model is tested only for homogenous 

computational models. Tang [13] introduced a reliability-aware cost-efficient scheduler (RACES) for 

executing scientific workflow in a multi-cloud platform. Then, studied the importance of reducing failure and 

providing a fault tolerant scheduling mechanism; In providing fault tolerance they proposed a multi-cloud-

based resource scheduling design [14]. A probability density function for failure rate is used to provide 

reliability with minimal cost. However, because of poor load-balancing the model exhibits higher cost. 

Kumar et al. [15] proposed autonomic resource provisioning and scheduler (ARPS) using a cloud 

platform by enabling an automatic decision-making model through the spider monkey optimization 

technique. The model focused on optimizing both cost and time meeting task deadline spider monkey 

optimization technique. The model reduced energy, cost, and time. The performance of such a model for 

scheduling complex scientific workflow execution is not explored. Calzarossa et al. [16] proposed a deadline 

and budget-awareness workload scheduler (DBAWS) by employing a multi-objective parameter optimization 

for a cloud environment with high uncertainty. They optimized both budgets and met task deadlines. The 

optimization problem is solved through Monte Carlo and the genetic algorithm. Qin et al. [17] introduced 
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knowledge adaptive discrete water wave optimizer (KADWWO) to investigate how cost can be kept low 

considering larger workflow application deadlines. They introduced a discrete water wave optimization 

strategy to adaptively reduce idle time with better load optimization attaining better convergence; thereby 

enhancing scheduling performance considering a highly dynamic cloud platform. Qin et al. [18] proposed a 

reliable-aware multiple parameter optimized memetic algorithm (RAMPOMA) by introducing a multi-

objective optimization mechanism using parameters such as cost, reliability, and makespan for workflow 

execution in a multi-cloud heterogeneous platform. A memetic algorithm with a new genetic operator is 

introduced to provide better resource differentiation and backup strategies and these strategies are used to 

provide reliability; thereby enhancing the resource utilization of the network. Wang et al. [19] showed that 

workflow heterogeneity and resource heterogeneity will make scheduling a very challenging task. The 

authors proposed resource provision for multi-workflow for vertical and horizontal resource scaling using a 

reinforcement learning (RL) algorithm. Depth-first search-based coalition RL (DFSCRL) was used for better 

resource scaling optimization dynamically. Hu et al. [20] employed an energy-minimized scheduler (EMS) 

by employing dynamic voltage frequency scaling to provide energy-efficient resource scheduling [21]; a 

heuristic optimization is designed to assure reliability through mixed-integer programming. Though the 

model reduced energy consumption it did not consider energy-makespan optimization.  

In Table 1, a comparative study of various existing and proposed models has been provided. The 

survey shows that extensive work has been reported on addressing the cost-makespan problem whereas very 

limited work has been reported on workload scheduling in a heterogeneous environment considering  

CPU-GPU optimization [22], [23]. Further, in comparison to cost-makespan very limited work has been done 

energy-makespan assuring reliability i.e., minimal task failures leveraging CPU-GPU computing platform 

[24], [25]. In the next section, a new technique is proposed for energy-makespan with minimal task failure in 

meeting task deadline requirements. 

 

 

Table 1. Comparative study 
 MOWOS 

(2021) [11] 
ARPS 

(2021) [15] 
DBAWS 

(2021) [16] 
EMS 

(2022) [20] 
KADWWO 

(2023) [17] 
RAMPOMA 

(2023) [18] 
DFSCRL 

(2023) [19] 
TFM-OTP 

[proposed] 

Heterogeneous 

computing 
        

Workload type Complex Simple Complex Complex Complex Complex Complex Complex 

Workload size Small to 

large 
Small to 

medium  
Small to 

medium-large 
Small to 

large 
Small to 

large 
Small to 

large 
Small to 

large 
Small to 

large 

QoS metrics Time, 

budget 

and 
deadlines 

Cost, 

time, and 

energy 

Deadline 

and budget 
Energy Cost-

makespan 
Makespan, 

cost, and 

reliability 

Makespan Energy, 

deadline, 

resource 
utilization 

Optimization 

strategy 
Heuristic Spider 

monkey 
optimization 

Monte Carlo 

& Genetic 
Algorithm 

Heuristic Discrete water 

wave 
optimization 

Memetic 

genetic 
algorithm 

Q-learning Optimal 

Task 

Partitioning 
no no no no no no no yes 

Reliability no no no yes no yes no yes 

 

 

3. PROPOSED METHOD 

This section introduces task failure minimization through optimal task partitioning schemes for 

heterogeneous platforms. First provides details of workload and task Partion model. Second, provides details 

of the energy consumption model using DVFS. Finally, the tradeoff problem model is presented to attain 

optimal scheduling performance for the execution of parallel workflow applications. 

 

3.1.  Workload and task partition model 

The data-intensive workload 𝐺 is represented as a directed acyclic graph (DAG) composed of 𝑋 

sub-task with task-interdependencies 𝐸 is expressed as (1).  

 

𝐺 = {𝑋, 𝐸} (1) 

 

The sub-task 𝑋 can be defined by (2), 

 

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} (2) 

 

The sub-task 𝑥𝑗 requests for operational frequency 𝔽𝑗 based on floating-point operations for executing sub-

task 𝑥𝑗 with a certain size 𝕂𝑗. The task interdependencies are expressed as in (3), 
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𝐸 = {𝑒𝑗𝑙(𝑠𝑘 , 𝑠𝑚)} (3) 

 

The communication efficiency relies on the processing capability of CPU-enabled VMs and GPU-enabled 

virtual machines (VMs), 𝑒𝑗𝑙(𝑠𝑘,  𝑠𝑚) defines the function associated with 𝑥𝑗′𝑠 processor 𝑠𝑘 and 𝑥𝑙′𝑠 processor 

𝑠𝑚. A sub-task without any prior task and a forthcoming task are defined as 𝑥𝑖𝑛 and 𝑥𝑜𝑢𝑡, respectively. The 

workload 𝐺 overall time can be measured using (4), 

 

𝐺 =  𝔽𝑗 × 𝕂𝑗 (4) 

 

In this work heterogeneous (i.e., CPU-GPU) computational platform has been considered; thus, the clock 

frequency measured in cycles per second of CPU 𝑓𝑗
(𝑐)

 and GPU 𝑓′𝑗
(𝑐)

 is represented as (5), 

 

𝑓𝑗 = 𝑓𝑗
(𝑐)

× 𝕗𝑗 (5) 

 

where 𝕗𝑗 defines the number of CPU floating point operations per cycle. Similarly, the clock frequency 

measured in cycles per second of CPU 𝑓𝑗
(𝑐)

 and GPU 𝑓′𝑗
(𝑐)

 is represented by (6), 

 

𝑓𝑗
′ = 𝑓′𝑗

(𝑐)
× 𝕗𝑗

′ (6) 

 

where 𝕗𝑗
′ defines the number of GPU floating point operations per cycle. Using a local gradient process to 

achieve data parallelism the input workload 𝐺 is usually partitioned and executed in GPU or CPU. The 

partitioned workload executed in CPU considering node 𝑗 is defined by the parameter 𝐺𝑗 and for GPU is 

defined through parameter 𝐺𝑗
′ with constraint can be defined as in (7), 

 

𝐺𝑗 + 𝐺𝑗
′ = 𝐺, ∀𝑗 ∈ 𝐽. (7) 

 

Using the above partitioning scheme according to available frequencies of CPU and GPU, the local 

makespan for executing the workload 𝐺 is given as (8). 
 

𝑢𝑗
′ = max {

𝐺𝑗

𝑓𝑗
,

𝐺𝑗
′

𝑓𝑗
′} , ∀𝑗 ∈ 𝐽. (8) 

 

3.2. Dynamic voltage frequency and energy consumption model 

Using the clock cycles of the processor the energy consumption can be measured as (9), 

 

𝑄 = 𝛽[𝑓(𝑐)]
3
 (9) 

 

where 𝛽 is dependent on chip architecture and is measured in Watt (cycle/s)3⁄  and 𝑓(𝑐) defines the 

processor clock frequency. The energy consumption of the CPU at node 𝐽 is obtained in (10) 

 

𝑄𝑗
𝐶𝑃𝑈 = 𝛽𝑗

𝐶𝑃𝑈(𝑓𝑗
(𝑐)

)
3

= 𝒞𝑗𝑓𝑗
3 (10) 

 

where the parameter 𝒞𝑗 is obtained in (11), 

 

𝒞𝑗 =
𝛽𝑗

𝐶𝑃𝑈

𝕗𝑗
3  (11) 

 

Similarly, the energy consumption of GPU at node 𝐽 is obtained by (12). 
 

𝑄𝑗
𝐺𝑃𝑈 = 𝛽𝑗

𝐺𝑃𝑈(𝑓𝑗
′(𝑐)

)
3

= 𝒢𝑗𝑓𝑗
′3, (12) 

 

where the parameter 𝒢𝑗 is obtained in (13), 

 

𝒢𝑗 =
𝛽𝑗

𝐺𝑃𝑈

𝕗𝑗
′3 . (13) 
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The equations (9) to (13) are used for controlling the voltage-frequency scaling in a dynamic manner by 

optimizing the power of CPU and GPU through processing frequency speed 𝑓𝑗and 𝑓𝑗
′ control, respectively. 

The parameter 𝒞𝑗 and 𝒢𝑗 in (11) to (13) defines the computational efficiency with minimal task failures of 

heterogeneous platforms defined through the power-speed trade-off optimization function. In general,  

GPU-based communication plays significant computational benefits and CPU-based provides a supporting 

computational resource. The makespan 𝐺𝑗 𝑓𝑗⁄  for CPU for completing the tasks of workload 𝐺𝑗 within the 

given deadline and its energy consumption of respective node 𝑗 is measured as in (14), 

 

ℰ𝑗
𝐶𝑃𝑈 = 𝒞𝑗𝐺𝑗𝑓𝑗

2 (14) 

 

Similarly, the makespan 𝐺𝑗
′ 𝑓𝑗

′⁄  for GPU for completing the tasks of workload 𝐺𝑗 within a given deadline and 

its energy consumption of respective node 𝑗 is measured using (15), 

 

ℰ𝑗
𝐺𝑃𝑈 = 𝒢𝑗𝐺𝑗

′𝑓𝑗
′2. (15) 

 

Therefore, combining both CPU and GPU energy consumption the total energy consumption of corresponding 

node 𝑗 is measured as (16), 

 

ℰ𝑗
𝑐𝑚𝑝

= 𝒞𝑗𝐺𝑗𝑓𝑗
2 + 𝒢𝑗𝐺𝑗

′𝑓𝑗
′2, ∀𝑗 ∈ 𝐽. (16) 

 

3.3.  Tradeoff problem definition 

Designing effective task traffic partitioning and processing frequency speed scaling optimization 

which can aid in better management of distributed computational resources with minimal task failures and 

minimal overall energy consumption, the tradeoff functions are defined as (17), 

 

min
{𝐺𝑗,𝑓𝑗,𝑓𝑗

′}
∑ (𝒞𝑗𝐺𝑗𝑓𝑗

2 + 𝒢𝑗𝐺𝑗
′𝑓𝑗

′2)𝐽
𝑗=1  (17) 

 

such that, 

 

𝐺𝑗 + 𝐺𝑗
′ = ℰ, 𝐺𝑗 ≥ 0, 𝐺′𝑗 ≥ 0, ∀𝑗 ∈ 𝐽, (18) 

 

𝑢𝑙
′ = max {

𝐺𝑗

𝑓𝑗
,

𝐺𝑗
′

𝑓𝑗
′} , ∀𝑗 ∈ 𝐽, (19) 

 

0 ≤ 𝑢𝑗
′ ≤ 𝑈𝑗

′, ∀𝑗 ∈ 𝐽. (20) 

 

The constraint defined from (18), (19), and (20) satisfies (7), (8), and the time constraint defined through 

parameter 𝑈𝑗
′ defines the permissible maximum makespan of corresponding computational node 𝑗. 

 

3.4.  Optimal scheduling design 

In providing better resource optimization design this section presents two optimization processes 

namely processor frequency-scaling optimization and energy-load optimization design. The work first 

introduces condition 1, for processor frequency-scaling optimization. Condition 1, focuses on reducing 

overall energy consumption, the processing speed of CPU-based 𝑓𝑗 and GPU-based 𝑓𝑗
′, the platform must be 

scaled as defined in (21), 

 
𝐺𝑗

𝑓𝑗
=

𝐺𝑗
′

𝑓𝑗
′ , ∀𝑗 ∈ 𝐽, (21) 

 

considering respective random workload pair (𝐺𝑗 ,  𝐺𝑗
′) with 𝐺 = 𝐺𝐽 + 𝐺𝑗

′. In obtaining optimal performance 

considering processor frequency-scaling according to the workload defined in condition 1 is instinctive and 

the outcome of equalizing GPU and CPU makespan to avoid non-performing one may end up with a 

bottleneck during computation process. Thus, the (17) is modified to follow the optimization problem. 

 

min
{𝐺𝑗,𝑢𝑗

′}
∑

𝒞𝑗𝐺𝑗
3+𝒢𝑗𝐺𝑗

′3

𝑢𝑗
′2

𝐽
𝑗=1  (22) 
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such that it satisfies the constraint of (23) and (24), 

 

𝐺𝑗 + 𝐺𝑗
′ = 𝐺,   ∀𝐺𝑗 ≥ 0,   𝐺𝑗

′ ≥ 0,   ∀𝑗 ∈ 𝐽, (23) 

 

0 ≤ 𝑢𝑗
′ ≤ 𝑈𝑗

′,   ∀𝑗 ∈ 𝐽 (24) 

 

The work further shows the optimal performance can be attained between CPU-GPU in terms of 

energy-load optimization by following condition 2 in (25), 

 
𝜕ℰ𝑗

𝐶𝑃𝑈

𝜕𝐺𝑗
=

3𝒞𝑗𝐺𝑗
2

𝑢𝑗
′2 ,   ∀𝑗 ∈ 𝐽 (25) 

 

where ℰ𝑗
 𝐶𝑃𝑈 defines the energy consumption of the CPU and is obtained as (26), 

 

ℰ𝑗
𝐶𝑃𝑈 =

𝒞𝑗𝐺𝑗
3

𝑢𝑗
′2  (26) 

 

and 

 
𝜕ℰ𝑗

𝐺𝑃𝑈

𝜕𝐺𝑗
′ =

3𝒢𝑗𝐺𝑗
′2

𝑢𝑗
′2 ,   ∀𝑗 ∈ 𝐽, (27) 

 

where ℰ𝑗
𝐺𝑃𝑈 defines energy consumption of GPU and is obtained as described in (28), 

 

ℰ𝑗
𝐺𝑃𝑈 =

𝒢𝑗𝐺′𝑗
3

𝑢𝑗
′2  (28) 

 

Therefore, using the above equation, the optimal resource allocation is obtained through (29), 

 
𝜕ℰ𝑗

𝐶𝑃𝑈

𝜕𝐺𝑗
=

𝜕ℰ𝑗
𝐺𝑃𝑈

𝜕𝐺𝑗
′ ,   ∀𝑗 ∈ 𝐽, (29) 

 

with 𝐺𝑗 + 𝐺𝑗
′ = 𝐺. The equation (22) requires maximizing the makespan of each computational node to 

achieve optimal performance as (22) represents a non-increasing function in 𝑢𝑗
′, ∀𝑗 ∈ 𝐽; thus, it makes  

𝑢𝑙
′∗ = 𝑈𝑗

′, ∀𝑗 ∈ 𝐽, not dependent on workload partitioning. Therefore, using both condition 1 and condition 2, 

the optimal workload resource optimization can be obtained through (30), 

 

𝐺𝑗
∗ =  

√𝒞𝑗𝐺

√𝒞𝑗+√𝒢𝑗
, 𝑎𝑛𝑑  𝐺𝑗

′∗ =
√𝒢𝑗𝐺

√𝒞𝑗+√𝒢𝑗
, 𝑗 ∈ 𝐽,  (30) 

 

where 𝒞𝑗  defines the computational factor of CPU and 𝒢𝑗 defines the computational factor of GPU. 

Alongside, the optimal processor frequency-scaling of the CPU-GPU platform is obtained through (31), 

 

𝑓𝑗
∗ =

𝐺𝑗
∗

𝑈𝑗
′ ,   𝑓𝑗

′∗ =
𝐺′𝑗

∗

𝑈𝑗
′ ,   𝑗 ∈ 𝐽, (31) 

 

where parameter 𝑈𝑗
′ defines the permissible maximum makespan of corresponding node 𝑗. The complete 

working of the proposed TFM-OTP model is explained in Algorithm 1. 

 

3.5.  Algorithm of proposed approach 

The complete working process of task failure aware optimal task partitioning model is given in 

Algorithm 1. First, in step 2, the heterogenous cloud platform is configured with the required number of 

physical machines (PMs) and virtual machines (VMs). For easiness, the work considered identical CPU-GPU 

configuration in all VMs. In step 3, the users start submitting the workload to a heterogeneous cloud platform 

with strict deadlines. Then, in step 4, the work partitions the data using (7) based on task dependencies levels 

and available CPUs and GPUs. In step 5, using (8) it computes the expected makespan, and in step 6, using 

(16) the model measures expected energy consumption for executing tasks in CPU-GPU. In step 7, using (22) 
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and meeting constraints (23) and (24) the work starts scheduling task 𝑋 within workload 𝐺. In step 8, once all 

the tasks 𝑋 with 𝐺 are done the model measures the performance of the TFM-OTP scheduling model. The 

proposed model reduces task failures and is energy efficient by allocating to processors with minimal 

makespan aiding minimal energy consumption and better computational efficiency. 

 

Algorithm 1. TFM-OTP 

Step 1. Start 

Step 2. Deploy heterogeneous CPU-GPU enabled cloud platform composed of a set of physical machines 

(PMs) and virtual machines (VMs) composed of CPU and GPUs. 

Step 3. User submits workload 𝐺 to a heterogenous cloud platform with a deadline prerequisite. 

Step 4. The cloud platform first partitions the workload 𝐺 according to task 𝑋 dependencies level using (7). 

Step 5. The cloud platform then computes the approximate local makespan 𝑢𝑗
′ using (8). 

Step 6. The heterogenous cloud platform computes energy consumption ℰ𝑗
𝑐𝑚𝑝

 of all VMs using (16). 

Step 7. The cloud platform schedules all the tasks 𝑋 of workload 𝐺 using (22) with meeting constraints (23) 

and (24) to reduce task failures with minimal makespan and energy consumption. 

Step 8. Measure the performance of the TFM-OTP scheduler in terms of makespan, energy consumption, and 

task failure energy overhead. 

Step 9. Stop 

 

 

4. RESULTS AND DISCUSSION 

This section studies the performance of TFM-OTP over existing workload scheduling, namely EMS 

[20]. The workload scheduling models are implemented using CloudSim. The energy consumption, 

makespan, and task failure energy overhead are metrics used for validating the performance of workload 

scheduling models. CyberShake and SIPHT are benchmark workloads that are used for experiment analysis 

which is available from [26]. 

 

4.1.  Energy consumption 

In this section, the energy efficiency of EMS and TFM-OTP is studied. Energy efficiency is 

measured concerning total energy consumed measured in watts for the execution of the scientific workload. 

Figure 1 shows the energy consumed for the execution of a SIPHT workload of a varying size where 30 

represents a smaller workload and 1000 represents a larger workload. The result shows the TFM-OTP 

reduces energy usage by 39.35% in comparison with EMS for the execution of SIPHT workload. Similarly, 

Figure 2 shows the energy consumed for the execution of a CyberShake workload of varying size where 30 

represents a smaller workload and 1000 represents a larger workload. The result shows the TFM-OTP 

reduces energy usage by 39.35% in comparison with EMS for execution of CyberShake workload. The 

energy efficiency improvement observed using TFM-OTP over EMS is due to the adoption of the energy 

optimization mechanism presented in (17) meeting performance constraints. However, EMS just optimizes 

the energy as per application reliability; thus, exhibits higher makespan and energy consumption which is 

observed in Figures 1 and 2.  

 

 

  

 

Figure 1. Energy consumption vs SIPHT 

workload size 

 

Figure 2. Energy consumption vs CyberShake 

workload size 

 

 

4.2.  Makespan 

In this section, the makespan efficiency of EMS and TFM-OTP is studied. The makespan efficiency 

is measured concerning the total time taken measured in seconds for the execution of the scientific workload. 
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Figure 3 shows the makespan efficiency for the execution of a SIPHT workload of varying sizes. The result 

shows the TFM-OTP reduces makespan induced by 44.23% in comparison with EMS for the execution of 

SIPHT workload. Similarly, Table 2 shows the makespan efficiency for the execution of CyberShake 

workloads of varying sizes. The result shows the TFM-OTP reduces makespan induced by 97.33% in 

comparison with EMS for execution of CyberShake workload. The EMS schedules the task to VMs that 

minimize energy and meet task reliability; however, makespan minimization is not considered to lead to 

higher makespan at the cost of energy as seen in Figure 3 and Table 2. However, the makespan efficiency 

improvement achieved using TFM-OTP over EMS is because of the task being executed optimally in CPU-

GPU pair as shown in (17); further, the performance efficiency with better load optimization meeting 

performance constraint is obtained using (22). Thus, a significant reduction of makespan in comparison with 

EMS can be observed in Figure 3 and Table 2.  
 

 

 
 

Figure 3. Makespan vs SIPHT workload size 
 

 

Table 2. Makespan performance measured in seconds for CyberShake workflow 
Methodology CyberShake_30 CyberShake_50 CyberShake_100 CyberShake_1000 

EMS 6359.41 12380.99 24712.57 43685.27 

TFM-OTP 262.73 283.68 323.35 1276.1 

 

 

4.3.  Task failure energy overhead 

In this section, the task failure energy overhead performance of EMS and TFM-OTP is studied. The 

overhead is measured concerning the total energy consumed measured in watts for the execution of the failed 

task. Figure 4 shows the energy overhead for the execution of a SIPHT workload of varying size. The result 

shows the TFM-OTP reduces energy overhead by 69.14% in comparison with EMS for the execution of 

SIPHT workload. Similarly, Table 3 shows the energy overhead for the execution of CyberShake workloads 

of varying sizes. The result shows the TFM-OTP reduces energy overhead by 98.26% in comparison with 

EMS for execution of CyberShake workload. The task failure energy overhead reduction observed using 

TFM-OTP over EMS is due to the adoption of effective task partition at CPU-GPU pair-based resource 

availability meeting constraint defined in (17) and (22) meeting performance and load optimization 

constraint. However, EMS just optimizes the energy as per application reliability; thus, exhibits higher 

makespan and energy consumption which is observed in Figure 4 and Table 3.  

 

 

 
 

Figure 4. Average energy consumption vs SIPHT workload size 
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Table 3. Task failure energy overhead measured in watts for CyberShake workflow 
Methodology CyberShake_30 CyberShake_50 CyberShake_100 

EMS 6418.98 12720.34 26476.74 
TFM-OTP 171.07 196.81 263.71 

 

 

5. CONCLUSION 

The study identified that most of the current methods to reduce energy leveraged DVFS; however, it 

affects the reliability of the computation platform; Especially, for executing workload applications the current 

method increases the failure rate. In addressing this paper introduces task partitioning into CPU-GPU pairs 

based on the local gradient computation process. Then DVFS-based energy consumption model for the 

execution of tasks in the CPU-GPU platform is presented; the model introduces an energy-performance 

tradeoff problem; further, the tradeoff model is extended to an energy-load optimization problem to provide 

reliability i.e., reduce task failure energy overhead of heterogeneous CPU-GPU platform. Finally, an optimal 

scheduling scheme is presented. The experiment outcome shows TFA-OTP model reduces energy 

consumption by 39.35%, reduces makespan by 44.23%, and task failure energy overhead by 69.14% in 

comparison with EMS for SIPHT workload. Similarly, the experiment outcome shows TFA-OTP model 

reduces energy consumption by 39.35%, reduces makespan by 97.33%, and task failure energy overhead by 

98.26% in comparison with EMS for CyberShake workload. The TFA-OTP is efficient in executing both 

large and small workloads with more energy and makespan efficiency meeting application reliability. 

However, in the future, the TFA-OTP will be tested considering different data-intensive scientific workloads. 
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