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 Numerous remote sensing applications rely heavily on hyperspectral 

imagery, but it is frequently plagued by noise, which degrades the data 

quality and hinders subsequent analysis. In this research paper, we present 

an in-depth analysis of noise removal techniques for hyperspectral imagery, 

specifically for data acquired from the Hyperion EO-1 sensor. Setting off 

with obtaining Hyperion data and the pre-processing stages, the paper 

discusses the acquisition and denoising of Hyperion data. The hyperspectral 

data considered is in the high dynamic range (HDR) format, which maintains 

the original imagery's complete dynamic range. The study explores various 

noise reduction methods, such as minimum noise fraction (MNF), principal 

component analysis (PCA), wavelet denoising, non-local means (NLM), and 

denoising autoencoders, aimed at enhancing the signal-to-noise ratio. The 

effectiveness of these techniques is evaluated through visual quality, mean 

square error (MSE), and peak signal-to-noise ratio (PSNR), alongside their 

impact on mineral exploration. Furthermore, the paper investigates the 

application of machine learning algorithms on denoised data for mineral 

identification, highlighting the potential of integrating denoising techniques 

with machine learning for improved mineral exploration. This comparative 

analysis aims to identify the most efficient noise removal methods for 

hyperspectral imagery, facilitating higher quality data for subsequent 

analysis. 
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1. INTRODUCTION  

The exponential growth in remote sensing technologies has unlocked unprecedented capabilities for 

observing the Earth's surface. Among these technologies, hyperspectral imaging stands out for its ability to 

capture a wide spectrum of information across hundreds of contiguous spectral bands [1], [2]. This rich 

spectral resolution facilitates detailed analysis and identification of materials, making it invaluable for 

applications such as mineral exploration, agriculture, environmental monitoring, and military surveillance. 

The hyperspectral sensors can capture images in 100-250 contiguous spectral bands, each of which contains 

unique properties of elements on the Earth's surface thereby enabling the collecting of high-resolution data 

and improving the ability to differentiate between different types of materials. Because of its hyperspectral 

capacity, mineral prospectivity mapping and full geological studies are now much more precise [3], [4]. 

However, the potential of hyperspectral imagery is often compromised by the presence of noise—a pervasive 

issue that can significantly degrade data quality. Noise in hyperspectral images arises from various sources, 

https://creativecommons.org/licenses/by-sa/4.0/
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including sensor imperfections, atmospheric interference, and processing anomalies, leading to challenges in 

accurate data interpretation and analysis. 

The challenge of noise in hyperspectral data is multifaceted, affecting both the reliability and the 

interpretability of the imagery [5]. Traditional noise reduction techniques, while useful, often fall short in 

addressing the complexity and variability of noise across different spectral bands. Moreover, these methods 

may inadvertently remove important spectral features or fail to adapt to the unique characteristics of each 

band, resulting in suboptimal denoising outcomes. Consequently, there is a critical need for advanced 

denoising strategies that can effectively mitigate noise while preserving the integrity and richness of 

hyperspectral data. 

This paper introduces a comprehensive approach to denoising hyperspectral imagery, particularly 

focusing on data acquired from the Hyperion Earth Observation-1 (Hyperion EO-1) sensor. We propose a 

two-pronged strategy that combines the strengths of traditional statistical methods and cutting-edge machine 

learning (ML) techniques [6], specifically leveraging the capabilities of denoising autoencoders. our 

approach is designed to tackle the inherent challenges of hyperspectral data denoising by i) applying 

statistical denoising techniques: Initial preprocessing employs techniques such as minimum noise fraction 

(MNF), principal component analysis (PCA), and wavelet denoising to reduce noise levels and improve data 

quality. These methods target different types of noise and are carefully selected based on their compatibility 

with the specific characteristics of hyperspectral imagery and ii) implementing machine learning-based 

denoising: we introduce a denoising autoencoder—a sophisticated deep learning model tailored to 

hyperspectral data. This model is trained to learn the intricate patterns of noise across the spectrum, enabling 

it to effectively filter out noise while retaining critical spectral information. The denoising autoencoder 

represents a significant advancement in hyperspectral image processing, offering adaptability and superior 

denoising performance across all bands. The primary objective of this research is to enhance the quality of 

hyperspectral imagery by effectively reducing noise, thereby facilitating more accurate and reliable data 

analysis for various applications. By integrating statistical methods with ML algorithms, we aim to offer a 

robust solution that addresses the limitations of conventional denoising techniques.  

The application of machine learning and deep learning has been a significant trend in noise 

reduction for hyperspectral images. For instance, Huang et al. [7] and Lian et al. [8] have explored the use of 

attention-assisted convolutional neural networks (CNNs) and neural networks that combine spatial-spectral 

information for denoising, indicating a shift towards more sophisticated, data-driven approaches for capturing 

and reducing noise. Huang et al. [7] and Chan and Li [9] discussed spectral-spatial methods for image 

classification and denoising, highlighting the importance of considering both spectral and spatial dimensions 

of hyperspectral images for effective noise reduction. Feng et al. [10] and Zhu et al. [11] focused on image 

fusion techniques as a means to reduce noise and improve image quality, indicating the potential of 

integrating hyperspectral and multispectral imagery for enhanced performance. The works by Rani et al. [1] 

and Tagwai et al. [2] in the context of geological mapping and mineral exploration showcase the utility of 

noise-reduced hyperspectral images in identifying mineral deposits and geological features. Zhao et al. [12] 

and Deng et al. [13] presented methods that exploit spatial and spectral correlations within hyperspectral 

images for denoising, illustrating the effectiveness of integrating spatial information with spectral analysis. 

Yang et al. [14] and Xiaorui et al. [15] explored wavelet-based and PCA-based denoising methods, 

respectively, offering insights into the use of these mathematical techniques for noise reduction in 

hyperspectral images. 

The thesis by Granek [16] at the University of British Columbia in 2016 explores the use of machine 

learning algorithms for mineral prospectivity mapping. It highlights the challenge of effectively managing 

and integrating multi-parameter datasets within fixed exploration budgets. The study introduces two novel 

approaches: a modified support vector machine algorithm that accounts for uncertainties in data and labels, 

demonstrated with a copper-gold porphyry target mapping in British Columbia, and the use of CNNs for their 

spatial pattern recognition capabilities, tested on a subset of the quantum excited state database (QUEST) 

dataset. This work has been employed as a motivation and progressive step towards incorporating advanced 

computational techniques in mineral exploration applied on Iron rich land surfaces in India. The study by 

Wang et al. [17] utilized HySpex airborne hyperspectral data and the random forest algorithm to identify and 

map alteration minerals in the Yudai porphyry Cu (Au, Mo) mineralization area in Eastern Tianshan, 

Northwest China. This research demonstrates that airborne hyperspectral remote sensing can provide rapid, 

non-destructive, and high-quality reflectance spectra. These spectra are essential for accurate mineral 

mapping in complex geological environments. 

Future directions on the past work by research have been on the band set including the employment 

of sophisticated models that can better handle the high dimensionality and data volume of hyperspectral 

images, the exploration of unsupervised and semi-supervised learning methods for scenarios with limited 

labeled data, and the application of these advanced noise reduction techniques in new fields beyond those 
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traditionally associated with remote sensing. Our contributions are twofold employing Hyperion EO-1 sensor 

data: enhanced data quality: by significantly reducing noise across the hyperspectral dataset, taking 

individual band processing thereby improving the signal-to-noise ratio (SNR), preserving the fidelity of the 

original spectral signatures; advanced analytical capabilities: the improved data quality lays the groundwork 

for more sophisticated analyses, including material identification and classification, leading to better 

outcomes in mineral exploration, environmental monitoring, and other key applications. This paper details 

the methodology, implementation, and validation of our proposed denoising strategy, highlighting its 

effectiveness through quantitative metrics and qualitative assessments. Through this work, we demonstrate 

the potential of combining statistical and machine learning techniques to overcome the challenges of 

hyperspectral data denoising, paving the way for advancements in remote sensing analysis specifically in the 

realm of Geosciences.  

 

 

2. RESEARCH FRAMEWORK 

This paper presents a methodology for enhancing the quality of hyperspectral images obtained from 

the Hyperion EO-1 sensor by integrating conventional statistical approaches with advanced machine learning 

strategies for effective noise mitigation. The comprehensive procedure adopted is delineated in Figure 1, with 

the aspects discussed in this paper emphasized by the blue highlighted pathway. The subsequent crucial stage 

is endmember extraction, which identifies the purified spectra of materials present in the scene. Using the 

extracted endmembers, spectral unmixing is then carried out. This method estimates the fractional abundance 

of each endmember in each pixel, which provides valuable information about the distribution of various 

materials in the scene. In the preliminary phase of our framework, we prioritize the crucial process of 

accurately identifying mineral maps. This foundational step is paramount as it sets the groundwork for 

subsequent analysis and extraction strategies, ensuring precision in the identification and localization of 

valuable mineral deposits. 

 

 

 
 

Figure 1. Research framework for mineral prospectivity mapping with stages of pre-processing, processing 

and post-processing 
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2.1.  Dataset  

The Level 1R (L1R) data collected by the Hyperion sensor on the Earth Observing-1 (EO-1) 

satellite is called the EO-1 Hyperion L1R collection. Kiriburu is being considered as a place to map minerals 

because of its natural importance [18]. Valuable rocks or metals have been found in the area, which makes it 

interesting for mapping and exploring. The data imported comprises 242 spectral bands. Each pixel 

corresponds to a spectral band in a particular wavelength. Figure 2 shows the area under study. 

 

 

 
 

Figure 2. Kiriburu region: detailed analysis within coordinates [UL: 22.498708° N, 85.322800° E;  

UR: 22.486155° N, 85.393441° E; LL: 21.548074° N, 85.108266° E; LR: 21.535850° N, 85.178149° E], 

Bands: 242, dimensions: width 1041, height 3571, radiance scaling: VNIR 40, SWIR 80, grid cell size: 30.00 

 

 

3. DATA PREPROCESSING 

Remote sensing and image processing use several noise-reduction methods to improve data quality. 

Noise reduction methods improve data fidelity, enabling improved analysis and interpretation. These 

strategies improve data integrity in our research area, yielding more accurate results. 

 

3.1.  Bad band removal 

As a preliminary step we will remove all bands which contain no information. The primary goal of 

bad band removal is to eliminate spectral bands that do not contribute useful information to the dataset. These 

could be bands that are excessively noisy, contain artifacts, or simply do not capture relevant spectral 

information due to sensor limitations or atmospheric effects [19], [20]. 

For each pixel across all bands, the mean or median spectral signature is calculated. This statistical 

analysis helps in identifying the average behavior of the spectrum across the dataset. By comparing 

individual pixel values in each band to the calculated mean or median, bands that significantly deviate from 

these central tendencies are flagged. Significant deviation indicates that the band might be noisy or contain 

artifacts that could interfere with accurate data analysis. 

 

𝑆𝑁𝑅 (𝑆𝑖𝑔𝑛𝑎𝑙 − 𝑡𝑜 − 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜) = 
(𝑀𝑒𝑎𝑛 𝑆𝑖𝑔𝑛𝑎𝑙 − 𝑀𝑒𝑎𝑛 𝑁𝑜𝑖𝑠𝑒)/𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁𝑜𝑖𝑠𝑒 (1) 

 

The higher the SNR value (calculated by (1)), the better the signal quality in that spectral band. Lower SNR 

values may indicate higher noise levels relative to the signal and suggest that the band may be less 

informative or less reliable for analysis. Of the original 242 bands, 198 bands were retained after removing 

those identified as bad. This reduction is based on the premise that excluding these bands will lead to a more 

accurate and reliable analysis, focusing on the data that most accurately represents the observed scene. 

Figure 3(a) represents the mean spectral signatures across the entire hyperspectral dataset. Each 

band's average signal intensity is plotted, allowing for a visual assessment of which bands carry significant 
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information and which appear aberrant or flat (indicative of noise or lack of information). Figure 3(b) contrasts 

the profiles of bands considered “good” or useful for analysis against those deemed “bad” or unsuitable.  

 

 

 
(a) 

 

 
(b) 

 

Figure 3. Bad band removal for hyperspectral imagery (HSI) dataset (a) spectral mean representation of  

242 bands and (b) generated good and bad band profiles  

 

 

3.2.  Radiometric correction and atmospheric calibration  

Despite being radiometrically corrected, the L1R EO-1 Hyperion data undergoes Level-1 

processing, which includes calibration to convert the raw data numbers (DN) to at-sensor radiance values. 

We will employ the metadata of our area under study for radiometric calibration. Radiance conversion and 

reflectance conversion are carried to obtain the spectral mapping of radiometrically calibrated dataset.  

As a next crucial preprocessing phase in remote sensing and satellite image analysis is atmospheric 

correction. The atmosphere can introduce various types of noise and distortions to the recorded signal, 

compromising the data's precision and interpretability. These atmospheric effects are estimated and 

compensated for by atmospheric correction techniques, resulting in more accurate and reliable data for 

further analysis [21]. For the EO-1 radiometric calibrated data we apply atmospheric correction leading to the 

result and correction. Figure 4 shows the atmospherically corrected EO-1 data. fast line-of-sight atmospheric 

analysis of spectral hypercubes (FLAASH) is an implementation within the ENVI software package, which 

provides an interface for performing atmospheric correction on Hyperion data. The actual equations and 

details of the FLAASH algorithm are proprietary to the ENVI software. The FLAASH atmospheric 

correction results “𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 25.1607 𝑘𝑚” and “𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑎𝑡𝑒𝑟 𝑎𝑚𝑜𝑢𝑛𝑡 = 3.8937 𝑐𝑚” received, 

provide information about the scene's atmospheric conditions and water content. 
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Figure 4. Spectral profiles of atmospherically corrected EO-1 data 

 

 

3.3.  Destriping 

Destriping is a preprocessing technique employed to eliminate striping artefacts from hyperspectral 

images, such as those acquired by the Hyperion sensor [22]. The striping artefacts are undesirable linear 

patterns or bands. The destriping process attempts to correct these artefacts and enhance the image data's 

overall quality and precision.  

It will not be sufficient to remove the stripes from the HIS on the whole but need to be removed on 

individual band level. Various methods, such as interpolation, filtering, and statistical modelling, can be used 

to estimate the values of missing or corrupted pixels. We have employed mean filtering on corrupted pixels 

of the band. Figure 5 shows the destriping of band 21, wherein Figure 5(a) shows the band with vertical strip 

presence, Figure 5(b) shows the focused view of strip, and destriped band in Figure 5(c). Similar results of 

destriping are derived for all 198 bands. 

 

 

   
(a) (b) (c) 

 

Figure 5. Destriping of band 21 of area under study (a) Figure shows the band with vertical strip presence;  

(b) Figure shows the zoomed in view of the stripe; and (c) Figure shows the destriping effect with the 

removal of vertical stripe from Band 21 

 

 

3.4.  Median filtering 

A nonlinear filter known as the median filter modifies an image by replacing each pixel value with 

the picture's neighborhood’s median value [23]. This filter modifies an image in a nonlinear fashion. It does 

an excellent job of preventing the blurring of edges and details while also cutting down on noise. Figure 6 

shows the median filtered result for the first 10 bands. In Table 1, the variations in data are compared 

between the original and filtered datasets for a subset of randomly selected bands, each corresponding to 

specific wavelengths. 
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Figure 6. Median filtered band visualization: Band 1-10 (The top row depicts the original band and the 

bottom row depicts the median filtered band. Due to limitation of projecting all 198 band, only 10 band view 

has been laid) 

 

 

Table 1. The different techniques applied with the variability in outcome and noise reduction 
Technique Advantages Disadvantages PSNR improvement Applicability 

Non-local means Good for certain bands Inconsistent across bands Low to medium Selected bands 
Wavelet denoising Effective in some contexts Poor results on several bands Low to medium Selected bands 

PCA Reduces dimensionality, aids in 

noise reduction 

Limited denoising impact 

alone 

Medium In combination with 

other techniques 
MNF Enhances signal-to-noise ratio Not as effective for all bands Medium Selected scenarios 

Denoising autoencoder Superior denoising, adaptable 

to all bands 

Requires significant 

computational resources 

High (14 to 44 dB) Comprehensive 

denoising 

 

 

3.5.  Statistical denoising techniques  

 We will use multiple statistical denoising approaches using median-filtered EO-1 HSI data to 

illustrate the best strategy for the region of interest. This compares how well different denoising approaches 

preserve vital information while lowering noise. The findings will determine the best hyperspectral image 

quality enhancement method for this scenario. 

 

3.5.1. Non-local means  

Non-local means (NLM) is especially beneficial for hyperspectral high-dimensional data such as 

high dynamic range (HDR) surface images [13]. For each pixel in the image, a tiny local patch is extracted  

(a small neighborhood surrounding the pixel). This approach allows for more accurate noise reduction and 

better preservation of image details by considering the similarity between patches rather than individual 

pixels. 

Using a similarity metric such as the Euclidean distance between pixel values within the patches, the 

similarity between patches is calculated. Similar modifications to the target patch are distributed throughout 

the image. Similarity values are utilized to determine the weights for each of these similar regions. More 

comparable regions are assigned greater weights. The noisy pixel is then substituted with a weighted average 

of the pixel values in these similar regions, the weights of which are determined by the calculated 

similarities. 

The aforementioned procedure is repeated for each pixel in the 198 bands of the image. From the 

output generated by applying NLM, it was apparent that the mean square error (MSE) values for the majority 

of bands are relatively low, which is desirable and indicates that the denoising method is effective at reducing 

noise for few bands, while for others the noise prevails. Nevertheless, the peak signal-to-noise ratio (PSNR) 

values vary across various bands, indicating that the denoising performance may be superior for certain 

bands, unlikely for others. Some bands are even observed to have negative PSNR values, which can occur 

when the noise in the denoised image is larger than the original image, perhaps as a result of excessive 

flattening. Figure 7 illustrates the first 10 denoised bands, revealing a relatively subtle visual impact of the 

denoising process. 
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Figure 7. NLM denoised band visualization: Band 1-10 (due to limitation of projecting all 198-band result, 

only 10 band view has been laid) 

 

 

3.5.2. Wavelet Denoising 

This technique uses the mathematical concept of wavelets to decompose an image into multiple 

scales, separating noise from the underlying signal [14]. Haar wavelet transform-based wavelet denoising is 

applied to each band of median-filtered data. Figure 8 shows the first 10 denoised bands which in itself 

shows less visual denoising impact in comparison to even the NLM denoising method. Although a few bands 

were retrieved with effective denoising, other bands showed poor results. Noting that some bands have “nan” 

(not a number) values as observation for both MSE and PSNR is essential. This could be the result of 

division by zero or other mathematical faux pas during denoising. 

 

 

 
 

Figure 8. Wavelet denoising based band visualization (Denoised): Band 1-10 (Due to limitation of projecting 

all 198-band result, only 10 band view has been laid) 

 

 

3.5.3. Principle component analysis for noise removal  

Principal component analysis is a common technique for noise reduction in images, including 

median-filtered HDR images. PCA operates by transforming the data into a new coordinate system, where 

the first few principal components capture the most significant data variation [22]. By retaining only, the 

most important principal components, PCA can effectively reduce noise while preserving the essential 

features of the image [15]. 

Assume that the input image X has the dimensions M×N, where M is the number of pixels in each 

row and N is the number of pixels in each column. If the image has B bands, then the size of X will be 

M×N×B. First, we transform the image into a data matrix D with dimensions (M×N)×B, where each row 

represents a pixel and its associated band values. We compute the mean vector of the data matrix D, where D 

is a 1xP vector.  

In the mean cantering phase, the mean vector is subtracted from each row of D to center the data 

around the origin. Next, we calculate the covariance matrix C of the mean-centered data. The covariance 

matrix measures the relationships between different bands (features) in the data. 

 

𝐶 = (1/(𝑀 × 𝑁)) × 𝐷_𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑇 × 𝐷_𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑  (2) 

 

We next perform an eigen decomposition of the covariance matrix 𝐶. This involves finding the eigenvectors 

and eigenvalues of 𝐶. 

 

𝐶 × 𝑉 = 𝜆 × 𝑉 (3) 

 

where 𝑉 is a matrix containing the eigenvectors (principal components) as columns, and 𝜆 is a diagonal 

matrix containing the eigenvalues. The eigenvectors in 𝑉 are ranked by their corresponding eigenvalues in λ. 

The first principal component with the highest eigenvalue captures the most significant variation in the data. 

Following eigenvectors capture a diminishing quantity of variation. 
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We can choose the top k eigenvectors to form a transformation matrix W with dimensions 𝑃 × 𝑘. 

 

𝑊 = (𝑣_1, 𝑣_2, . . . , 𝑣_𝑘) (4) 

 

Finally, we perform dimensionality reduction by projecting the mean-centered data 𝐷_𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 onto the 

new coordinate system defined by the transformation matrix 𝑊. The resulting matrix 𝐷_𝑟𝑒𝑑𝑢𝑐𝑒𝑑 has 

dimensions (𝑀 × 𝑁) × 𝑘, and it contains the reduced representations of each pixel in the image. We can now 

reconstruct the denoised image by applying the inverse transformation.  

 

𝐷_𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 = 𝐷_𝑟𝑒𝑑𝑢𝑐𝑒𝑑 × 𝑊𝑇  (5) 

 

Then, we add back the mean vector μ to get the denoised data matrix 𝐷_𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑. 

 

𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑_𝑖𝑚𝑎𝑔𝑒 =  𝐷_𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 +  𝜇 (6) 

 

The reduced representation 𝐷_𝑟𝑒𝑑𝑢𝑐𝑒𝑑 contains the principal components that explain the most significant 

variations in the data. Figure 9 illustrates the original versus denoised band visualization. Figure 9(a) presents 

a 3D scatter plot comparing the original and denoised data, showing their overlap and highlighting minimal 

differences. Figure 9(b) depicts the spectral profile of PCA-denoised data across various wavelengths for  

198 bands. 

 

 

 
(a) 

 

 
(b) 

 

Figure 9. Original vs denoised band visualization (a) 3D Scatter plot view of original and denoised data and 

(b) Spectral profile of PCA denoised data over different wavelengths  
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By keeping only, a small number of principal components (𝑘 << 𝐵), we effectively reduce noise 

and remove irrelevant information from the image while retaining its essential features. The result however 

indicated that the denoising process has not resulted in a significant separation between the two datasets. 

Even after altering the PCA component no significant reduction was witnessed. Figure 7 indicate that the 

PCA technique standalone did not yield satisfactory. Figure 10 showcases the MSE and PSNR profile 

obtained by processing the bands applying standalone PCA technique. 

 

 

 
 

Figure 10. MSE and PSNR ratio for 198 bands processed with PCA  

 

 

3.5.4. Minimum noise factor  

Although PCA yields expected results in most of the cases, for our EO-1 HSI data, we did not get 

the satisfactory denoising. We will now employ MNF that complements PCA by addressing certain facets 

that PCA alone might not optimally manage. MNF when combined with PCA, can enhance the noise 

reduction process by emphasizing signal-capturing components and suppressing noise-representing 

components. MNF is a technique used for denoising and dimensionality reduction in remote sensing and 

image processing. It is particularly useful for enhancing the signal-to-noise ratio of multi/hyperspectral 

imagery [24].  

MNF works by transforming the data into a new space where the first few components capture most 

of the signal variance while the last components capture noise. By discarding the components that represent 

noise, the data can be denoised. Figure 11 depicts the spectral profile of MNF denoising which was found to 

be better than PCA but still does not yield the expected denoising. Figure 12 shows the denoising results of 

MNF.  

 

 

 
 

Figure 11. MSE and PSNR ratio for 198 bands processed with MNF (better results in comparison to 

standalone PCA)  
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(a) (b) 

 

Figure 12. MNF denoising based band visualization: Band 1-10 (The top row depicts the original band, the 

medium row depicts median filtered data, and bottom row depicts the MNF filtered band. Due to limitation 

of projecting all 198 band, only 10 band view has been laid) 

 

 

3.6.  Machine learning based denoising  

Even though we were able to denoise the 198 bands to a certain extent using statistical methods, we 

observed inconsistencies and anomalies in a great number of bands. To improve the quality of the data, we 

employed the median-filtered EO-1 HSI data with 198 bands as the foundation for further processing. 

Moving forward, we will implement machine learning-based denoising technique to address the unique 

challenges of the region of interest, enhancing the overall accuracy and reliability of the results.  

 

3.6.1. Denoising autoencoder 

A denoising autoencoder is a neural network architecture commonly employed to denoise data, 

encompassing high-dimensional datasets such as HDR hyperspectral images. Autoencoders have 

demonstrated their efficacy in successfully eliminating random noise that may be created during the process 

of image recuperation or broadcast. Autoencoders have the potential to mitigate diverse visual artefacts, 

contingent upon their specific architecture and training methodology.  

Autoencoders are a category of machine learning algorithms that fall under the unsupervised 

learning paradigm. This implies that they possess the capability to learn patterns and structures in data 

without the need for labelled examples during the training process [25], [26]. Individuals have the capacity to 

acquire the skills necessary to effectively represent and reconstruct input data through the acquisition of 

knowledge in efficient data compression and decompression methods. To denoise the EO-1 HDR HSI 

dataset, we have followed the flow of steps depicted in Figure 13. 

Denoising autoencoder (DAE) is trained to map erratic input data to clear and denoised 

representations. It has two major components: an encoder and a decoder. The encoder compresses the 

noisy HDR hyperspectral image into a lower-dimensional latent representation. Typically, the encoder 

network comprises multiple layers of neurons, with each layer deriving higher-level features from the input 

data. The final layer of the encoder generates the compressed representation, which is a bottleneck and has 

smaller dimensions than the original image. The decoder reconstructs the denoised HDR hyperspectral image 

from the encoder's compressed representation (latent space). The decoder consists of multiple layers, but in 

the opposite order as the encoder. The final layer of the decoder outputs the denoised image, which 

approximates the original pure image as closely as possible [27]. 

 

 

 
 

Figure 13. Denoising autoencoder denoising approach applied to EO-1 Hyperion dataset 
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During training, pairings of noisy HDR hyperspectral images and their clear counterparts are 

transmitted to the autoencoder. However, we add random noise to the clear images before using them for 

training. The noisy images serve as inputs, while the clear images function as ground truth targets. Figure 10 

depicts the denoising autoencoder mechanism applied to Band 1 of 198 HIS bands. The process is iteratively 

applied to each band to get reconstructed denoised image. PCA is effectively employed in the latent space 

code construct. The autoencoder's objective is to minimize the difference between the denoised outputs and 

the corresponding clean images. 

The training process involves the following steps: 

− Feed a noisy HDR hyperspectral image to the encoder (Add pre-processed data plus add noise) 

− The encoder compresses the noisy image into a lower-dimensional representation (latent space). 

− The decoder then takes this compressed representation and reconstructs the denoised image. 

− Compare the denoised image with the corresponding clean image and compute the reconstruction loss 

(typically using mean squared error or binary cross-entropy loss). 

− Backpropagate the reconstruction loss through the network and update the model's weights using  

an optimization algorithm (Adam optimizer) 𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ′𝑎𝑑𝑎𝑚′, 𝑙𝑜𝑠𝑠 =
′𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦′)). 

− Repeat steps 1 to 5 for a batch of noisy images and their corresponding clean images. 

− Iterate through multiple epochs, updating the model's weights with each iteration, until the loss converges 

or reaches a satisfactory level. (Refer Figure 14 for the flow of process). 

 

 

 
 

Figure 14. Denoising autoencoder based denoising applied on Band 1 replicated to all 198 bands 

 

 

In the employed algorithm for the denoising autoencoder, two activation functions are applied: 

rectified linear unit (ReLU) and 'sigmoid'. The ReLU activation function is used in the encoding layer of the 

autoencoder. 

 

𝑒𝑛𝑐𝑜𝑑𝑒𝑑 =  𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑙𝑎𝑦𝑒𝑟𝑠. 𝐷𝑒𝑛𝑠𝑒(𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔_𝑑𝑖𝑚, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′)(𝑖𝑛𝑝𝑢𝑡_𝑖𝑚𝑎𝑔𝑒)  (7) 

 

ReLU facilitates quicker learning and can result in sparse activations, which can be desirable in certain 

circumstances. The Sigmoid activation function is used in the decoding layer of the autoencoder: 

 

𝑑𝑒𝑐𝑜𝑑𝑒𝑑 =  𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑙𝑎𝑦𝑒𝑟𝑠. 𝐷𝑒𝑛𝑠𝑒(𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒[−1], 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑠𝑖𝑔𝑚𝑜𝑖𝑑′)(𝑒𝑛𝑐𝑜𝑑𝑒𝑑) (8) 

 

Once trained, the denoising autoencoder can effectively denoise new noisy HDR hyperspectral images. The 

denoising autoencoder is a potent technique for noise removal in high-dimensional data, such as 

hyperspectral images, because it learns meaningful representations in the compressed latent space, effectively 

filtering out undesirable noise and preserving essential features in the denoised output. Denoising 

autoencoder produced the greatest denoising results among all techniques utilized. Figure 15 depicts the 

denoising autoencoder based band 1-10 visualization. 
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Figure 15. Denoising autoencoder based band visualization: Band 1-10 (The top row depicts the original 

band, the medium row depicts added noise, and bottom row depicts the denoised data employing 

autoencoders. Due to limitation of projecting all 198 band, only 10 band view has been laid) 

 

 

A crucial aspect of training machine learning models, including autoencoders, is determining the 

number of training epochs and sample size. The selection of these hyperparameters can have a substantial 

effect on the training procedure and the resultant model performance. Here's how we ascertained the 

appropriate parameter values: 

− Start with a moderate number of epochs, such as 50 or 100, to evaluate the performance of the model at 

the outset. For our work 50 epochs yielded satisfactory results 

− For efficient computation on graphics processing unit (GPUs), we have selected the batch size of 128. 

− During training, we tracked the training loss and validation loss. If the validation loss ceases to decrease 

or begins to increase, the model may be overfit. You can discontinue training or employ techniques such 

as early ceasing. Figure 16 shows the decreasing loss values.  

− We started with 100 epochs which observably showed overfitting. 

− Determined the optimal sample size to strike a balance between training speed and model performance 

through experimentation. Larger group sizes may necessitate additional epochs for appropriate convergence. 

 

 

  
 

Figure 16. Decreasing loss value with epochs 1-50 

 

 

As training progresses, the autoencoder learns to extract meaningful features from the input data, 

effectively denoising it by reconstructing the original information. The decrease in loss indicates that the 

autoencoder is becoming more effective at achieving this objective. For the denoising autoencoder applied to 

our EO-1 HSI dataset, the peak signal-to-noise ratio (PSNR) increases from 14 to 44 dB, indicating an 

enhancement in image quality. The progression obtained demonstrates a range of effective PSNR values 

beginning at 14 dB and progressively increasing to 44 dB. This range represents the enhancement in image 
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quality brought about by the denoising process. A PSNR of 14 dB indicates that the signal-to-noise ratio is 

relatively low, signifying that the noise level is substantial in comparison to the signal. As the PSNR 

increases, the denoising process becomes more efficient, reducing image noise and improving its quality. A 

PSNR of 44 dB indicates that the noise has been significantly reduced, and the denoised image closely 

resembles the original, noise-free image. Figure 17 shows the PSNR progression for our model over the cycle 

which depicts effects denoising being achieved, wherein Figure 17(a) shows the PSNR progression for the 

EO-1 HSI dataset across 198 bands, and Figure 17(b) shows the progression for selected bands (1,6,11,16). 

 

 

 
(a) 

 

 
(b) 

 

Figure 17. PSNR progression of denoising autoencoder (a) PSNR progression for the EO-1 HSI dataset and 

(b) PSNR Progression for selected bands (1,6,11,16) 

 

 

4. RESULT  

Our comprehensive analysis evaluated the efficiency of various denoising methods, including 

statistical denoising techniques (NLM, wavelet denoising, PCA, MNF), and a machine learning-based 

technique (denoising autoencoder), across 198 spectral bands of Hyperion EO-1 sensor data. The DAE 

demonstrated superior performance in noise reduction, significantly enhancing the PSNR from 14 to 44 dB, 

indicative of substantial improvements in data quality and fidelity. This is in contrast to the mixed results 

observed with traditional statistical methods, where techniques like NLM, wavelet denoising, and MNF 

showed satisfactory denoising for some bands but were ineffective for others. PCA, while having limited 

impact when used alone, contributed to enhanced outcomes when integrated with other methods or within the 

DAE framework. 
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5. DISCUSSION 

The denoising autoencoder's efficacy underscores the potential of deep learning algorithms in 

processing hyperspectral imagery, offering substantial improvements over traditional statistical techniques. 

This aligns with the emerging trend of leveraging machine learning for remote sensing applications, 

acknowledging its ability to handle high-dimensional data and complex noise structures. The varied 

performance of statistical techniques across different bands highlights the challenge in applying a one-size-

fits-all approach to hyperspectral denoising. While these methods have their merits, particularly in specific 

contexts or as part of a hybrid approach, the adaptive nature of machine learning models, exemplified by the 

denoising autoencoder, presents a more robust solution to the intricate problem of hyperspectral image 

denoising. Table 1 summarizes the different technique employed for the EO-1 dataset with the outcome 

achieved for effective noise reduction 

 

 

6. CONCLUSION  

In this study, we investigated the crucial task of denoising hyperspectral data to improve the 

accuracy of mineral mapping. Multiple bands and iterations of data were used to evaluate various denoising 

techniques, including both traditional statistical approaches and modern machine learning methods. Our 

analysis reveals the efficacy of nuanced denoising, illuminating the limitations and strengths of each method. 

The final objective was to prepare the denoised dataset for subsequent endmember extraction, spectral 

unmixing, and exhaustive mineral mapping in the Kiriburu Region. Our analysis demonstrates the variable 

performance of traditional denoising methods across different bands. While methods like NLM, wavelet 

denoising, and MNF exhibit satisfactory denoising for certain bands, they faltered for others. PCA by itself 

had limited denoising effects. Nonetheless, when combined with statistical techniques such as MNF or 

incorporated into the architecture of denoising autoencoders using a machine learning approach, it 

contributed to more pronounced denoising effects. Our unsupervised machine learning method yielded 

remarkable results, demonstrating a significant improvement in PSNR and proving its effectiveness. 

Effective denoising arises as a crucial preliminary stage in the pursuit of accurate mineral mapping through 

hyperspectral data. Our research not only emphasizes the diverse performance of denoising techniques across 

spectral bands, but also the transformative potential of machine learning integration. This work not only 

contributes to the field of remote sensing, but it also provides a comprehensive instruction in the nuanced art 

of data preprocessing. The work serves as preparatory work towards mineral prospectivity mapping. 
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