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 The pixel unit is an essential component of many encryption schemes. In the 

beginning two substitution tables, separately constructed from chaotic maps 

namely, the logistic map, slanted tent map, and the AJ map, which has a very 

high Lyapunov exponent and is very sensitive to start factors, are used to 

make modifications at the pixel level. These S-Boxes have a maximum 

period and are produced from several linear congruential generators. This 

approach uses newly developed confusion and diffusion functions connected 

to the recently built substitution tables to perform a refined Vigenere 

strategy. The purpose of this chaining is to defend the system from 

differential assaults. Extensive simulations on a variety of image formats and 

sizes confirm our process’s robustness against identified dangers. 
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1. INTRODUCTION 

Information security investigations during network transmission are now a well-known field of 

study. One important participant in this context is encryption technology, which uses both symmetric and 

asymmetric encryption techniques in the field of cryptography [1]. Symmetric encryption, which is known 

for it is effectiveness, increased security, and quick encryption speed thanks to a big key, depends on the safe 

storage of the ciphering key. This algorithm entails minimal computation, ensuring a high level of protection 

and swift encryption when employing an extended key. This method’s data transfer security depends on 

keeping the encryption key safe. Conversely, asymmetric ciphering is appropriate for limited data encryption, 

such passwords, even if it offers great security due to it is large encryption and decryption time. In this 

instance, the key and the algorithm are both necessary for data transfer security. Kirchhoff’s principle states 

that the ciphering key, not the algorithm, has a major role in the key system’s security. Many image ciphering 

techniques use symmetry theory ideas to overcome these difficulties, and this study takes a similar approach 

based on similar kinds of algorithms. 

A number of picture encryption approaches have been successfully cracked, despite researchers’ 

ongoing efforts to strengthen the security of ciphering methods [2], [3]. Numerous academics have resorted 

to multi-round encryption techniques in order to increase security [4], [5]. But there is a major time penalty 

associated with this strategy. Certain authors have suggested encryption techniques that target particular 

aspects of the images [6], [7]. A ciphering architecture for medical images based on an optimal game theory 

method was introduced by Ping et al. [7], demonstrating flexibility and dependability in protecting medical 

https://creativecommons.org/licenses/by-sa/4.0/
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images from attacks. A hybrid image encryption architecture using affine and substitution algorithms with an 

expanded logistic map was proposed in [8], [9], and it showed good security performance in experiments. 

Based on these discoveries, we suggest using current technology to recognize the area of the face contour 

while encrypting photographs of people, enabling the specific encryption of these areas. An extra layer of 

encryption is applied to the complete image once the face portion has been encrypted. This method 

demonstrates higher encryption effectiveness as compared to conventional one-round encryption. Private 

features like the face are unrecognizable and unrecoverable even in the face of algorithmic attacks. These 

methods entail faster and shorter times for both data encryption and decryption than multi-round encryption 

approaches. 

Researchers have methodically examined the properties of pseudo randomness and sensitivity to 

beginning values as chaos theory develops [10], [11]. Diverse domains, including genetic algorithms  

[12]–[16], 3D chaotic maps [16], one-time keys [17], compressive sensing [18], [19], and perceptron-like 

networks [20], have given rise to a variety of chaotic picture encryption schemes. In order to handle problems 

with dynamic degradation, Qobbi et al. [21] created an encryption architecture in their work that uses 

replacement-diffusion processes with standard and logistic maps. Akraam et al. [22] showed how algorithmic 

security could be jeopardized by using Arnold’s chaotic sequences as keys. Wang and Liu [23] addressed 

worries regarding dynamic degradation in chaotic cryptography by presenting theoretical proof of the 

security of chaotic flowchart cipher systems, demonstrating that algorithmic security is not endangered by 

chaotic sequences. Additionally, by integrating space, domains, and time, Kang et al. [24] suggested an 

encryption architecture that enhances security by combining a logistic map with a novel reality-preserving 

parameter of fractional transform. Zhang and Wei [25] proposed a novel architecture in their paper for 

encrypting color images. This architecture combines the Lorenz chaotic system with DNA computing, 

creating a chaotic system with spatial and temporal parameters [26], [27]. 

Most traditional systems are still susceptible to statistical and frequency attacks. Additionally, if 

there is no chaining between the cipher and the subsequent plain blocks, most systems are also susceptible to 

differential attacks. Moreover, this method works especially well for encrypting big datasets with a lot of 

redundancy and significant correlations. Our contribution is to elaborate a procedure for creating fresh 

substitution tables with varying sizes, achieved through the utilization of multiple (LCG). Furthermore, it will 

introduce a genetic crossover method tailored for encrypting extensive datasets. This method incorporates an 

enhanced Vigenere technique version, integrating the newly generated substitution tables to bolster the 

preservation of the plain image’s integrity. The recommended encryption architecture significantly reduces 

encryption time compared to those suggested by other scholars. The control parameters and keys are 

generated rapidly from numerous linear congruent generators based on chaotic maps. The algorithm exhibits 

outstanding security, as evidenced by the simulation, security, and comparative results with other algorithms, 

showcasing its ability to withstand typical attacks. 

The present paper is divided into separate pieces for the remainder of it. These comprise an 

introduction to the theoretical background, introducing the basis of chaotic sequences and genetic operators 

procedures; an outline of the suggested methodology, explaining the details of the ciphering and their reverse 

procedures; an experimental results section, presenting research results, comparisons, and discussions with 

their counterpart methods; and a conclusion section recapitulating the results. 

 

 

2. METHOD  

Our technique consists of developing two large substitution tables. These two tables will be used to 

implement a new enhancement of the traditional Vigenere algorithm. This technique applies confusion 

functions attached to SBoxes and is composed from the following axes. 

 

2.1.  Selected chaotic sequences 

The three chaotic maps that we have selected to guarantee the effective operation of our system are 

the skew tent map, the AJ map, and the logistics cards. These are the cards that are used the most in the 

cryptography domain. This choice was made because of their outstanding reactivity to beginning conditions 

and ease of configuration. 

 

2.1.1. The logistic map 

This map (𝑈𝑛) [28] is a sequence expressed by a simple second-degree polynomial defined 

recurrently by (1). I it has high sensitivity to initial conditions and is easy to configure in any cryptosystem. 

This characteristic is confirmed by the calculated value of the Lyapunov exponent. 
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{
  𝑢0 ∈ ]0,5  1[      ,   𝜇 ∈ [3,75  4]

  𝑢𝑛+1 = 𝜇𝑢𝑛(1 − 𝑢𝑛)
 (1) 

 

2.1.2. The skewed tent map (SKTM) 

This map ( 𝑉𝒏) [29] is a sequence expressed by a simple second-degree polynomial defined 

recurrently by (2). I it has high sensitivity to initial conditions and is easy to configure in any cryptosystem. 

This characteristic is confirmed by the calculated value of the Lyapunov exponent. 

 

{

v0 ∈ ]0   1[       p ∈ ]0.5   1[

vn+1 = {
 (𝑝)−1vn             if  0 < vn < p

 (1 − 𝑝)−1  (1 − vn)   if p < vn < 1

 (2) 

 

2.1.3. A.J. map 

This map (𝑊𝑛) [28] is a sequence expressed by a first-degree polynomial defined recurrently by (3). 

I it has high sensitivity to initial conditions and is easy to configure in any cryptosystem. This characteristic 

is confirmed by the calculated value of the Lyapunov exponent. 

 

{

𝑤0 ∈ [ (1 + 𝑝)
−1     𝑝 (1 + 𝑝)−1]        𝑝 ∈ [1.47       𝜑]

 𝑓(𝑤𝑛) = 𝑤𝑛+1 {
𝑝2𝑤𝑛     𝑖𝑓   0 ≤ 𝑤𝑛 ≤  (1 + 𝑝)−1

𝑝 − 𝑝𝑤𝑛   𝑖𝑓  (1 + 𝑝)
−1 ≤ 𝑤𝑛 ≤ 1

 (3) 

 

The hybridization employment of three chaotic maps has the advantage of deriving all essential parameters 

required for our innovative architecture efficiency and effectiveness. Based on the construction of multiple 

substitution tables using pseudorandom linear congruential generators and a genetic crossover acting at the 

bit level under the control of a crossover table constructed from the chaotic maps used. Our method is 

described in the next sub-sections. 

 

2.2.  Subkeys design 

It is necessary to generate many pseudo-random vectors in order for the encryption and decryption 

process to function properly. Utilizing these vectors, an algorithm is created that can handle any known 

assault. The following stages are taken in this construction. 

 

2.2.1. Constructing ciphering parameters 

In this phase, an advanced Vigenere cipher is applied at the pixel level, requiring the creation of 

specific parameters to ensure robust encryption. These include i) XT confusion and diffusion process tables to 

manipulate pixel data and enhance security, ii) BT binary tables for controlling and guiding the encryption 

process, and iii) WS1 and WS2 substitution tables for effective data substitution and transformation. Together, 

these components work in concert to bolster the cipher’s effectiveness and improve overall data protection. 

 

2.2.2. (XT) Table creation  

The purpose of the table (XT) of size (3 nm; 5) with coefficients in (G256) is to function as diffusion 

and aliasing on the level of the original image pixels. Algorithm 1 describes how to build such a table. Every 

individual column within the table (XT) signifies an independent pseudo-random vector distinct from the 

remaining vectors. 

 

Algorithm 1. (XT) design 
1. 𝐹𝑜𝑟  𝑖 = 1 𝑡𝑜 3 𝑛𝑚 

2. 𝑋𝑇(𝑖; 1) =  𝑚𝑜𝑑(𝐸(|𝑢(𝑖) − 𝑣(𝑖) ∗ 𝑤(𝑖)| ∗ 1012), 252)) + 3 

3. 𝑋𝑇(𝑖; 2) =  𝑚𝑜𝑑(𝐸((𝑢(𝑖) + 𝑤(𝑖)) ∗ 1010), 254)) + 1 
4. 𝑋𝑇(𝑖; 3) = 𝑚𝑜𝑑(𝐸(𝑆𝑢𝑝(𝑢(𝑖); 𝑣(𝑖)) ∗ 1011), 254) + 1 

5. 𝑋𝑇(𝑖; 4) = 𝑚𝑜𝑑(𝐸 ((
𝑢(𝑖)+2∗𝑣(𝑖)+𝑤(𝑖)

4
∗ 1011) , 253) + 2 

6. 𝑋𝑇(𝑖; 5) = 𝑚𝑜𝑑(𝐸((𝑣(𝑖) ∗ 106 +𝑤(𝑖) ∗ 107), 253) + 2 : 𝑁𝑒𝑥𝑡 𝑖  
 

2.2.3. (BT) Binary tables design  

The table (XT), sized (3 nm; 5) and composed of coefficients in G256G{256}G256, is designed to 

facilitate diffusion and aliasing at the pixel level of the original image, enhancing the encryption process. 

Algorithm 1 outlines the method for constructing this table, ensuring that each column within (XT) represents 

a unique pseudo-random vector, distinct from the others. This approach guarantees that the diffusion and 

aliasing effects are applied effectively, contributing to the overall security of image encryption. 
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Algorithm 2. (BT) design 
1. 𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 3𝑛𝑚 

// 𝐹𝑖𝑟𝑠𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 

2. 𝑖𝑓 𝑢(𝑖) > 𝐼𝑛𝑓(𝑣(𝑖);𝑤(𝑖)) 𝑇ℎ𝑒𝑛  

3. 𝐵𝑇(𝑖; 1) = 0 𝐸𝑙𝑠𝑒 𝐵𝑇(𝑖; 1) = 1 : 𝐸𝑛𝑑 𝑖𝑓 

// 𝑆𝑒𝑐𝑜𝑛𝑑  𝑐𝑜𝑙𝑢𝑚𝑛 

4. 𝑖𝑓 𝑋𝑇(𝑖; 1) ≥ 𝑋T(i; 5)𝑇ℎ𝑒𝑛  
5. 𝐵𝑇(𝑖; 2) = 0 𝐸𝑙𝑠𝑒 𝐵𝑇(𝑖; 2) = 1 
6. 𝑒𝑛𝑑 𝑖𝑓: 𝑁𝑒𝑥𝑡 𝑖 

 

2.2.4. Substitution matrix computation  

To enhance the design of new Boxes, we will offer key mathematical reminders that leverage 

various linear congruence generators. These generators play a crucial role in producing pseudo-random 

sequences that can be utilized for constructing effective cryptographic tables. By applying these reminders, 

the design process will benefit from improved randomness and security in the generated boxes. 

 

2.2.5. Mathematics reminder 

A linear congruence generator is a real sequence defined by three initial parameters and given by (4): 

 

𝐿𝐶𝐺(𝑠0; 𝑎; 𝑏;𝑚) {
𝑠0 = 𝑢 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

𝑠𝑛+1 = 𝑚𝑜𝑑(𝑎𝑠𝑛 + 𝑏;𝑚)
 (4) 

 

(𝑠0; 𝑎; 𝑏;𝑚) is called a linear congruential generator. A good (LCG) is a periodic sequence, with a maximum 

period equal to (m). This period is reached under the conditions of the theorem of Hull and Dobell which 

offers a necessary and sufficient condition for a (LCG) to present the pseudo-random attribute. 

a. Hull-Dobell theorem (1962) 

All linear congruence generators (LCGs) that adhere to the previously outlined theorem demonstrate 

maximum periodicity, as established by Algorithm 3. This algorithm details the conditions under which 

LCGs achieve their longest possible sequence length before repeating. By following these guidelines, one can 

ensure that the LCGs used will provide optimal pseudo-randomness and period duration for cryptographic 

applications. 

 

Algorithm 3. Hull and Dobell terms 
1. 𝑠0   𝑢𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖𝑛 ⟦0    ;   𝑚 − 1⟧  
2. 𝑏 ∧ 𝑚 = 1;  𝑎 ∧ 𝑚 = 1 
3. 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑝 𝑜𝑓 𝑚, 𝑡ℎ𝑒𝑛  

a. 𝑝 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑡ℎ𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑎 − 1. 
b. 𝑖𝑓 4/𝑚  𝑡ℎ𝑒𝑛 4/𝑎 − 1 

 

b. Particular case (𝑚 = 2𝑘) 

A very interesting particular case in the field of color image cryptography is m = 2k. 

 

𝐿𝐶𝐺(𝑠0; 𝑎; 𝑏; 2
𝑘): {

𝑠0 = 𝑢𝜖 𝐺2𝑘

𝑠𝑛+1 = 𝑚𝑜𝑑(𝑎𝑠𝑛 + 𝑏; 2
𝑘)

 (5) 

 

This generator has a period of   2𝑘 − 1 , if and only if: 

 

𝐿𝐶𝐺(𝑠0; 𝑎; 𝑏; 2
𝑘): {

𝑠0 = 𝑢 𝜖 𝐺2𝑘

𝑏 = 𝑚𝑜𝑑(2ℎ + 1; 2𝑘)

𝑎 = 𝑚𝑜𝑑(4𝑘 + 1; 2𝑘)

 (6) 

 

These generators are used to create two substitution tables (WS1) and (WS2), whose sizes (256; 256). 

 

2.2.6. (LG1) Parameter table design 

An (LCG) is recurrently determined by the system (7), satisfying the criteria outlined in the Hull and 

Dobell theorem. 

 

(𝐿𝐶𝐺):

{
 
 

 
 

𝑠0 = 𝑢
𝑠𝑛+1 = 𝑚𝑜𝑑(𝑎𝑠𝑛 + 𝑏; 256)

𝑠0 ∈  ⟦0  ;  255, ⟧  

𝑏 ≡ 1 [2]    𝑏 = 2𝑘 + 1

𝑎 ≡ 1  [4],   𝑎 = 4𝑘 + 1

 (7) 
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The three parameters (s0, a, b) of (LCG) used in our algorithm for the development of two substitution tables 

(SW1) and (SW2) will be retained in the array (LG1) of size (3;3 nm), by the subsequent steps: i) the initial 

value of the generator in (G256), denoted as (s0), will be present in the first line as a pseudo-random seed;  

ii) the second line will store the multiplier parameter values (𝑎 = 4𝑘 + 1); and iii) the third one will store the 

bias parameter values (𝑏 = 2𝑘 + 1). Figure 1 depict an example to clarify the distribution of the (LCG). 

 

 

 
 

Figure 1. Example of the (LCG) distribution 

 

 

These generators, which satisfy the Hull and Dobell theorem, produce non-linear permutations of 

size 256, stored in two tables (WS1) and (WS2) each of size (256×256), and used as S-boxes. First, we will 

place the parameters of each (LCG) in a table (LG1) of size (3×256). 

− The first row contains the values of the parameters (s) which constitute the seed of the generator. 

− The second row contains the values of the multiplier (a). 

− The third row stores the values of the parameter (b).  

− The table (LG1) utilized for the development of the S-box is given by the Algorithm 4. 

 

Algorithm 4. (LG1) Table design 
1. 𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 3𝑛𝑚 
2. 𝐼𝑓 𝐵𝑇(𝑗; 2) = 0 𝑇ℎ𝑒𝑛 
3. 𝐿𝐺1(1, 𝑗) = 𝑋𝑇(𝑗; 3) 
4. 𝐿𝐺1(2, 𝑗) = 𝑚𝑜𝑑(1 + 4 ∗ 𝑋𝑇(𝑗; 2), 256) 
5. 𝐿𝐺1(3, 𝑗) = 𝑚𝑜𝑑(1 + 2 ∗ 𝑋𝑇(𝑗; 3), 256) 

6. 𝐸𝑙𝑠𝑒 
7. 𝐿𝐺1(1, 𝑗) = 𝑋𝑇(𝑗; 2) 
8. 𝐿𝐺1(2, 𝑗) = 𝑚𝑜𝑑(1 + 4 ∗ 𝑋𝑇(𝑗; 1), 256) 
9. 𝐿𝐺1(3, 𝑗) = 𝑚𝑜𝑑(1 + 2 ∗ 𝑋𝑇(𝑗; 4), 256) 
10. Next j 

 

The guided structure by pseudorandom vectors, exhibits high sensitivity to alterations in any 

constituent of a private key; this reinforces the robustness of a system. To give the pseudo-random aspect to 

the S-Boxes construction; we are going to use the tables (TC1) of size (256;4). The S-Box (WS1) is entirely 

governed by (G256) rearrangements of the table (TC1) of size (256,4). An example is given in Figure 2. 

 

 

 
 

Figure 2. Example of (LG1) in G16 

 

 

a. (TC1) Table creation  

The table (TC1) of size (4×256), is constructed for the selection of generators for the development 

of the two S-Boxes (SW1). 
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− The first row of table (TC1) is the permutation (P1) obtained by a descending sort of the first 256 values 

of the vector (XT (:4)), used to select the row where the chosen generator will be placed. 

− The second line of the table (TC1) is the permutation (P2) obtained by an ascending sorting of the first 

256 values of the vector (XT (:2)), used to select the index of the value of the (𝑠). 
− The third line of the table (𝑇𝐶1) is the permutation (P3) obtained by an ascending sorting of the first 256 

values of the vector (XT (:2)), used to select the index of the value of the multiplier (𝑎). 
− The fourth line of the table (TC1) is the permutation (P4) obtained by an increasing sorting of the first 

256 values of the vector (XT (:3)), used to select the index of the value of the parameter (𝑏). 
An example of (TC1) table in G16 is depicted in Figure 3. 

 

 

 
 

Figure 3. Example of (TC1) table in G16 

 

 

b. (WS1) Table computation  

The construction of the substitution matrix (WS1) is guided by tables (TC1) and (LG1), with the 

process meticulously detailed in Algorithm 5. These tables provide the necessary parameters and controls for 

generating WS1, ensuring its effectiveness in cryptographic applications. By following the steps outlined in 

Algorithm 5, one can accurately construct WS1 to enhance the overall security and functionality of the 

encryption scheme. An example about how to compute the (WS1) table is depicted in Figure 4. 

 

Algorithm 5. (WS1) S-Boxes computation 
1. 𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 256 
2. 𝑎 =  𝐿𝐺1(𝑇𝐶1(𝑗, 2);  
3. 𝑠 = 𝐿𝐺1(𝑇𝐶1(𝑗, 1);  
4. 𝑏 =  𝐿𝐺1(𝑇𝐶1(𝑗, 3) 

5. 𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 256 
6. 𝑥 = 𝑚𝑜𝑑(𝑎 ∗ 𝑠 + 𝑏; 256);  
7. 𝑊𝑆1(𝑇𝐶1(𝑗, 4), 𝑖) = 𝑥;    
8. 𝑠 = 𝑥:𝑁𝑒𝑥𝑡 𝑖, 𝑗 

 

 

 
 

Figure 4. Example of (WS1) computation 

 

 

c. (TC2) Design  

The table (TC2) of size (4×256), is constructed for the selection of generators for the development 

of the two S-Boxes (SW2).  

− The first row of table (TC2) is the permutation (Q1) obtained by a descending sort of the first 256 values 

of the vector (XT (:3)), used to select the row where the chosen generator will be placed. 

− The second line of the table (TC2) is the permutation (Q2) obtained by an ascending sorting of the first 

256 values of the vector (XT (:1)), used to select the index of the value of the (). 
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− The third line of the table (TC2) is the permutation (Q3) obtained by an ascending sorting of the first 256 

values of the vector (XT (:4)), used to select the index of the value of the multiplier (𝑎). 
− The fourth line of the table (TC2) is the permutation (Q4) obtained by an increasing sorting of the first 

256 values of the vector (XT (:5)), used to select the index of the value of the parameter (𝑏). 
 

Algorithm 6. (TC2) Computation 
1. 𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 256 
2. 𝑇𝐶2(𝑖, 1) = 𝑄1(𝑖)  
3. 𝑇𝐶2(𝑖, 2) = 𝑄2(𝑖) 

4. 𝑇𝐶2(𝑖, 3) = 𝑄3(𝑖) 
5. 𝑇𝐶2(𝑖, 4) = 𝑄4(𝑖) 
6. 𝑁𝑒𝑥𝑡 𝑖 

 

d. (WS2) Computation  

Under the control of tables (TC2) and (LG1) the construction of the substitution matrix (WS2) is 

given by Algorithm 7. The construction of the table (WS2) is similar to that of (WS1) by considering the 

tables (TC) and (LG1). 

 

Algorithm 7. (WS2) S-Box design 
1. 𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 256 
2. ℎ = 𝐿𝐺1(𝑇𝐶2(𝑖, 1));  
3. 𝑐 =  𝐿𝐺1(𝑇𝐶2(𝑖, 2));  
4. 𝑑 =  𝐿𝐺1(𝑇𝐶1(𝑖, 3)) 

5. 𝑜𝑟 𝑗 = 1 𝑡𝑜 256 
6. 𝑦 = 𝑚𝑜𝑑(𝑐 ∗ ℎ + 𝑑; 256) 
7. 𝑊𝑆2(𝑇𝐶2(𝑖, 4), 𝑗) = 𝑦 + 1 
8. ℎ = 𝑦; : 𝑁𝑒𝑥𝑡 𝑗, 𝑖 

 

e. Pixel transcription based on S-boxes 

The two substitution tables will be employed together to transform the pixel values of the original 

image using the (VG) function. This transformation process, which converts the ith pixel 𝑋(𝑖)𝑋(𝑖) into 

𝑌(𝑖)𝑌(𝑖), is precisely defined by Algorithm 8. By applying Algorithm 8, the (VG) function ensures that each 

pixel's value is accurately and securely altered, leveraging the combined effects of the substitution tables. 

 

Algorithm 8. 𝑋(𝑖) pixel encryption 
𝑉𝐺(𝑋(𝑖)) = 𝑌(𝑖) 

𝑖𝑓 𝐵𝑇(𝑖; 2) = 0 𝑡ℎ𝑒𝑛 

: 

 

𝑌(𝑖) =  𝑊𝑆1 (𝑋𝑇(𝑖; 2),𝑊𝑆2(𝑋𝑇(𝑖; 3), 𝑋(𝑖) ⊕ 𝑋𝑇(𝑖; 4)))⊕ 𝑋𝑇(𝑖; 1)  

𝑒𝑙𝑠𝑒 

:   𝑌(𝑖) = 𝑊𝑆2(𝑋𝑇(𝑖; 3),𝑊𝑆1(𝑋𝑇(𝑖; 1), 𝑋(𝑖) ⊕ 𝑋𝑇(𝑖; 5)) ⊕ 𝑋𝑇(𝑖; 2)  :  

𝑒𝑛𝑑 𝑖𝑓 
 

This stage of the encryption process uses two nested S-Boxes and the decision vector 𝐵𝑇(𝑖) to 

increase the complexity of the substitution and confusion functions. A unique ciphering and distribution 

expression will arise from even a little modification to a private key parameter, producing a unique cipher 

picture. While 𝑌(𝑖) returns the transformation of the pixel 𝑋(𝑖). 
 

2.3.  Preparation of the image for ciphering 

Prior to encryption, it is necessary to prepare any initial image using the following steps as the 

foundation for this technique. The steps are plain image vectorization and initialization constant design. The 

following are the details of each step. 

 

2.3.1. Plain image vectorization 

After extraction of the three red, green, and (RGB) color channels and their transformation into size 

vectors (𝑉𝑟), (𝑉𝑔), (𝑉𝑏), each of dimension (1, nm), a concatenation is performed, leading to confusion with 

the vector (V3). This process generates then vector X(x1, x2, . . . . . . . . , x3nm), as outlined in Algorithm 9. 

 

Algorithm 9. Transitioning to vector (X) 
a. 𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 𝑛𝑚 
b. 𝐼𝑓 𝐵𝑇(𝑖; 1) = 0 𝑇ℎ𝑒𝑛 
c. 𝑋(3𝑖 − 2) = 𝑉𝑏(𝑖) ⊕ 𝑋𝑇((3𝑖 − 2); 4) 
d. 𝑋(3𝑖 − 1) = 𝑉𝑟(𝑖) ⊕ 𝑋𝑇((3𝑖 − 1); 3) 
e. 𝑋(3𝑖) = 𝑉𝑔(𝑖) ⊕ 𝑋𝑇((3𝑖); 1) 

f. 𝐸𝑙𝑠𝑒 
g. 𝑋(3𝑖 − 2) = 𝑉𝑏(𝑖) ⊕ 𝑋𝑇((3𝑖 − 2); 1) 
h. 𝑋(3𝑖 − 1) = 𝑉𝑟(𝑖) ⊕ 𝑋𝑇((3𝑖 − 1); 4) 
i. 𝑋(3𝑖) = 𝑉𝑔(𝑖) ⊕ 𝑋𝑇((3𝑖); 3) 
j. 𝐸𝑛𝑑 𝑖𝑓: 𝑁𝑒𝑥𝑡 𝑖 

 

The decision vector (CR) governs this transition to vector notation. While the high correlation 

between pixels is somewhat lessened in this stage, the encryption is still strong enough to withstand statistical 

and brute force attacks as depicted in Table 1. This is demonstrated by the figure that follows. To defend our 

system from differential assaults, we will employ the encryption functions, the broadcast functions, and the 

two S-Boxes. 
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Table 1. First stage of image ciphering process 

Image 
Histograms Entropy 

Plain Cipher Plain Cipher 

 

  

4.5687 7.9996 

 

 

2.3.2. Initialization constant design 

Using Algorithm 10, a constant (IV) is computed from the plain image in order to change the value 

of the seed pixel and start the ciphering process. It is noteworthy to note that the calculated constant is closely 

related to the vector (BT (:2)) and the unprocessed image. Any small change to the plain image or any of the 

private key’s parameters will produce a unique constant and, in turn, a new cipher picture. This demonstrates 

how sensitively and entirely dependent the encryption procedure is on the input variables. 

 

Algorithm 10. First initialization value calculation 
1. 𝐼𝑉 = 0 
2. 𝐹𝑜𝑟 𝑖 = 2 𝑡𝑜 3𝑛𝑚 
3. 𝐼𝑓 𝐵𝑇(𝑖; 2) = 0 𝑇ℎ𝑒𝑛 

4. 𝐼𝑉 = 𝑋(𝑖)⨁𝐼𝑉⨁XT(i; 3) 
5. 𝐸𝑙𝑠𝑒: 𝐼𝑉 = 𝑋(𝑖)⨁𝐼𝑉⨁XT(i; 5) 
6. 𝑁𝑒𝑥𝑡 𝑖 

 

2.4.  Encryption system process 

The computed constant serves solely to alter the seed pixel’s value and initiate the ciphering 

process. Figure 5 depicts the improved encryption procedure involving S-boxes and P-boxes. In (8) provides 

the advanced broadcasting function 𝛱(𝑌(𝑖)) for this encryption stage, which is based on nested S-Boxes 

(WS1) and (WS2). 

 

𝛱(𝑌(𝑖)) = 𝑊𝑆1(XT(i; 1),𝑊𝑆2(XT(i; 2); 𝑌(𝑖)⨁𝑋(𝑖 + 1))) (8) 

 

 

 
 

Figure 5. First stage of image ciphering process 

 

 

This operation can be given by Algorithm 11. The obtained vector (Y) that signifies the encrypted 

image is a set of coordinates corresponding to nucleotides. The first-round encryption time is given in  

Table 1. This operation can be given by Algorithm 12. The resulting vector (Y) representing the encrypted 

image is a set of nucleotide coordinates. 
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Algorithm 11. First stage of image ciphering algorithm 
𝐹𝑖𝑟𝑠𝑡 𝑝𝑖𝑥𝑒𝑙 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 

1. 𝑌(1) = 𝑉𝐺(𝑋𝑇(1; 1) ⊕ 𝑋(1))⊕ 𝑉𝐺(𝐼𝑉) 

𝐹𝑜𝑟 𝑖 = 2 𝑡𝑜 3𝑛𝑚 // Next Pixel Encryption 

2. 𝛱(𝑋(𝑖)) = 𝑉𝐺(𝑋𝑇(𝑖; 1) ⊕ 𝑌(𝑖 − 1))⨁𝑋(𝑖) 

3. 𝐼𝑓𝐵𝑇(𝑖; 2) = 0 𝑇ℎ𝑒𝑛 

4. 𝑌(𝑖)  = 𝑉𝐺(𝛱(𝑋(𝑖)) ) ⊕ 𝑋𝑇(𝑖; 3) 

5. 𝑒𝑙𝑠𝑒 

6. 𝑌(𝑖)  = 𝑉𝐺(𝛱(𝑋(𝑖)) ) ⊕ 𝑋𝑇(𝑖; 2): 𝑁𝑒𝑥𝑡 𝑖 

 

Algorithm 12. First stage of image ciphering algorithm 
𝐹𝑖𝑟𝑠𝑡 𝑝𝑖𝑥𝑒𝑙 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 

1. 𝑌(1) = 𝑉𝐺(𝑋𝑇(1; 1) ⊕ 𝑋(1))⊕ 𝑉𝐺(𝐼𝑉) 

2. 𝐹𝑜𝑟 𝑖 = 2 𝑡𝑜 3𝑛𝑚 // Next Pixel Encryption 

3. 𝛱(𝑋(𝑖)) = 𝑉𝐺(𝑋𝑇(𝑖; 1) ⊕ 𝑌(𝑖 − 1))⨁𝑋(𝑖) 

4. 𝐼𝑓𝐵𝑇(𝑖; 2) = 0 𝑇ℎ𝑒𝑛 

5. 𝑌(𝑖)  = 𝑉𝐺(𝛱(𝑋(𝑖)) ) ⊕ 𝑋𝑇(𝑖; 3) 

6. 𝑒𝑙𝑠𝑒 

7. 𝑌(𝑖)  = 𝑉𝐺(𝛱(𝑋(𝑖)) ) ⊕ 𝑋𝑇(𝑖; 2): n𝑒𝑥𝑡 𝑖 

 

2.5.  Decryption procedure 

In our method, we use a broadcast implementation as part of a symmetric encryption system. 

Consequently, as part of the decryption process, decryption functions are used, starting with the last block. 

Every operation used in our method is reversible, which ensures that a decryption function is available. The 

various stages in the decryption procedure are described: i) vectorization of the encrypted image; ii) initial 

round of decryption for the reciprocal generation of the Vigenere matrix; and iii) reciprocal of Vigenere 

matrix construction.  

 

2.5.1. Vigenere matrix reciprocal 

The inverse Vigenere transformation needs to be applied using Algorithm 13. We can derive the 

substitution traditional function reciprocal shown in (9), by applying the same logic as Vigenere’s 

conventional technique. 

 
𝑖𝑓 𝑧 = 𝑉𝐺(𝑦, 𝑥) 𝑇ℎ𝑒𝑛  𝑥 = 𝐺𝑉(𝑦, 𝑧) (9) 

 

Algorithm 13. Vigenere reciprocal 
𝑓𝑜𝑟  𝑖 = 1  𝑡𝑜  256 
𝑓𝑜𝑟  𝑖 = 1  𝑡𝑜  256 

𝐺𝑉(𝑖, 𝑉𝐺(𝑖, 𝑗)) = 𝑗  ;   𝐷𝑉((𝑖, 𝑉𝐷(𝑖, 𝑗)) = 𝑗;  

𝑁𝑒𝑥𝑡 𝑗, 𝑖 
 

2.5.2. Vigenere’s reverse formula 

Algorithm 14 outlines the Vigenere transformation, a method used to encode plaintext into 

ciphertext using a designated key. Conversely, it provides the means to reverse this transformation, 

decrypting ciphertext back into its original plaintext form. This inverse process is integral for securely 

recovering plaintext from encrypted data, ensuring confidentiality and data integrity in cryptographic 

applications. This algorithm is fundamental in comprehending the bidirectional nature of the Vigenere cipher, 

facilitating both encryption and decryption operations effectively. 

 

Algorithm 14. Vigenere reciprocal 
𝐺𝑉(𝑌(𝑖)) = 𝑋(𝑖) 

𝑖𝑓 𝐵𝑇(𝑖; 2) = 0 𝑡ℎ𝑒𝑛: 

 𝑋(𝑖) = 𝑆𝑊2(𝑋𝑇(𝑖; 3), 𝑆𝑊1(𝑋𝑇(𝑖; 2), 𝑌(𝑖) ⊕ 𝑋𝑇(𝑖; 1)))  ⊕ 𝑋𝑇(𝑖; 4): 

𝑒𝑙𝑠𝑒:  

𝑋(𝑖) = 𝑆𝑊1(𝑋𝑇(𝑖; 1), 𝑆𝑊2(𝑋𝑇(𝑖; 3), 𝑌(𝑖) ⊕ 𝑋𝑇(𝑖; 2))) ⊕ 𝑋𝑇(𝑖; 5):  

𝑒𝑛𝑑 𝑖𝑓 

 

2.5.3. Reverse diffusion 

The equation (10) specifies the inverse of the diffusion function used in our scheme, which plays a 

central role in spreading the input data to enhance security. This function ensures that changes in any part of 

the input are propagated throughout the output, which is crucial for maintaining robustness against 

cryptographic attacks. Understanding and implementing (10) is essential for efficiently reconstructing the 

original data from its diffused form, thereby completing the encryption-decryption cycle with accuracy. 

Integrating the inverse of the diffusion function is essential for achieving reliable data recovery and 

maintaining the integrity of sensitive information in our cryptographic framework. 

 

𝛱−1(𝑋′(𝑘)) = 𝐺𝑉(𝐶𝐿(𝑘), 𝐷𝑉(𝐾𝑅(𝑘), 𝑋′(𝑘))⨁𝑋(𝑘 − 1) (10) 
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3. RESULTS AND DISCUSSION 

In this section, a significant number of randomly selected images from a large database will be the 

subject of an evaluation of our innovative algorithm. We will compare the performance results obtained with 

those of alternative algorithms to highlight the effectiveness and superiority of our approach. This evaluation 

aims to demonstrate the effectiveness of the algorithm in handling diverse image data and to show its 

competitive advantage over existing methods. 

 

3.1.  Key-space analysis 

In cryptanalysis, a brute force attack involves systematically testing every possible combination in 

order to uncover the encryption key. The feasibility of such attacks decreases significantly for larger 

encryption keys, as the sheer number of possible combinations makes exhaustive testing impractical. In our 

algorithm, the secret key is designed to be larger than 2128, ensuring robust resistance to brute force attacks, 

as noted in references [29]. In this cryptographic approach, a secret key is generated from the combined 

parameters of three widely used chaotic maps, with a total of six parameters encoded in 32 bits each, 

resulting in a robust key size of (26∗32) = (2192) ≫ (2100). 
 

3.2.  Analysis of the sensitivity of a secret key 

Within our approach, each chaotic map exhibits a high sensitivity to initial conditions, ensuring that 

even small changes in parameters during key regeneration result in completely different keys and divergent 

chaotic vectors. This sensitivity plays a crucial role in our novel technology, which is visually illustrated in 

Figure 6, which shows the distinct and different results produced by different initial conditions and parameter 

perturbations within the chaotic maps. This feature underscores the robustness and unpredictability of our 

cryptographic approach, enhancing security by generating unique keys that are resistant to replication or 

prediction. We observe that a disturbance of a single variable of the order of (10-7) is not sufficient to 

precisely reconstruct the plaintext image. 

 

 

 
 

Figure 6. Sensitivity of ciphering key 

 

 

3.3.  Statistical attack security 

To validate the resilience of our novel encryption technique for medical and color images against 

statistical attacks, extensive testing has been conducted, focusing on several notable experiments. These tests 

were designed to assess the algorithm’s ability to withstand various statistical analyses commonly used in 

cryptanalysis and image processing. The results highlight key findings that demonstrate the effectiveness of 

our encryption method in maintaining image security and integrity under rigorous examination. 

 

3.3.1. Analysis of histograms 

The flowchart illustrates the frequency distribution of pixels sharing identical grey levels, where 

each vertical bar along the x-axis represents occurrences ranging from zero to 255 levels within the image. 

From a cryptographic standpoint, analyzing the color distribution in encrypted images is critical as it can 

unveil insights into the original content. Conversely, a uniformly distributed histogram in encrypted images 

suggests a robust encryption process that obscures any identifiable patterns from the original data. Table 2 

displays the simulation outcomes of our system, providing empirical evidence of its performance and 

effectiveness in protecting image integrity and confidentiality. This study demonstrates that our method 

consistently generates encrypted images with smoothed histograms across various test scenarios. The 

uniformity observed in these histograms provides strong defense against potential attacks that aim to exploit 

histogram characteristics for decryption or analysis purposes. 
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Table 2. Histogram analysis 
Image Original Cipher 

 

 

 

 

 

 

 

 

3.3.2. Entropy analysis 

In (11) defines the entropy linked to the pixel distribution within an image, capturing the degree of 

uncertainty or randomness present in its data. Table 3 showcases the entropy measurements obtained from 

images processed using our encryption technique, highlighting how our approach affects the information 

content and distribution uniformity within encrypted images. These entropy values serve as quantitative 

indicators of the cryptographic strength and effectiveness of our method in preserving image confidentiality 

while minimizing predictability and vulnerability to statistical attacks. 

 

{
𝐻(𝑀𝐶) =

1

𝑡
∑ −𝜋(𝑖) 𝑙𝑜𝑔2(𝜋(𝑖))
𝑡
𝑖=1                                  

𝜋(𝑖) represents the probability of the occurrence of level (i) in the original image.
 (11) 

 

 

Table 3. Correlation, normalized pixel changes rate (NPCR), uniformity of average change intensity (UACI), 

and entropy analysis for Lena and Peppers encrypted images 
Image N° Correlation NPCR UACI Entropy 

Horizontal Vertical Diagonal 
 

  

0.0087 -0.0068 7.7766e-04 99.61 33.42 7.9997 

  

0.0034 -1.0498e-06 0.0026 99.60 33.43 7.9996 

 

 

3.3.3. Analysis of correlation  

In scientific contexts, correlation is used to measure pixel displacements between an image and a 

reference image, formulated by (12). Table 2 illustrates the correlation among pixels in a selection of 

encrypted images across three directional axes. Notably, these correlation values approach zero, indicating 

heightened resistance against correlation-based attacks. In an original image, pixels typically exhibit 

significant correlation with their neighbors along horizontal, vertical, or diagonal directions, revealing 

patterns exploitable by attackers to reconstruct the image. Effective encryption systems aim to minimize this 

correlation as much as possible, ideally approaching zero, to safeguard against such vulnerabilities. This 

metric of correlation serves as a critical benchmark for assessing the efficacy of the encryption system in 

maintaining image confidentiality and security. 

 

𝑟 =
𝑐𝑜𝑣(𝑥,𝑦)

√𝑉(𝑥)√𝑉(𝑦)
 (12) 

 

3.4.  Analysis of differential constants 

In (13) defines the mathematical analysis of normalized pixel change rate (NPCR) for an image, 

while (14) specifies the uniformity of average change intensity (UACI). The differential values computed for 
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reference images using our innovative technology conform to established standards, as depicted in Table 3. 

Specifically, the NPCR value approaches 99.99%, and the UACI value exceeds 34.65%. These findings 

validate the robustness of our encryption system against differential attacks, underscoring the efficacy of our 

initial round implementation. Table 4 presents a comparative analysis with alternative methodologies, further 

substantiating the effectiveness and reliability of our approach. 

 

{
  
 

  
 
𝑁𝑃𝐶𝑅 = (

1

𝑛𝑚
∑ 𝐷(𝑖, 𝑗)

𝑛𝑚

𝑖,𝑗=1

) ∗ 100  𝑊𝑖𝑡ℎ     𝐷(𝑖, 𝑗) = {
1    𝑖𝑓      𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗)

0    𝑖𝑓       𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗)
          (13)

𝑈𝐴𝐶𝐼 = (
1

𝑛𝑚
∑ 𝐴𝑏𝑠(𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗))

𝑛𝑚

𝑖,𝑗=1

) ∗ 100           (14)

 

 

 

Table 4. Examination of correlation and differential constants 
Image N° Lena Peppers 

Ours [30] [31] Ours [30] [31] 

Correlation 0.00032 -0.0016 0.0036 -0.0025 -0.0125 0.0040 

NPCR 99.97 99.6017 99.617 99.87 99.618 99.61 

UACI 34.68 28.137 29.932 34.96 29.168 29.049 

 

 

4. CONCLUSION 

The efficient implementation and updating of Vigenere functions were demonstrated using two 

newly generated substitution tables created via linear congruence pseudo-random generators. These 

generators allowed us to develop non-linear replacement tables for confusion and diffusion functions, 

enhancing the system’s protection against known attacks. This technique shows great promise in advancing 

image encryption methods. Additionally, the efficiency and encryption speed of this process suggest the 

feasibility of extending this method to video and audio encryption. 
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