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 Even though medical reports have been digitized, they are generally text data 

and have not been used optimally. Extracting information from these reports 

is challenging due to their high volume and unstructured nature. Analyzing 

the extraction of relevant and high-quality information can be achieved by 

measuring semantic textual similarity (STS). Consequently, the primary aim 

of this study is to develop and evaluate the performance of four models: 

Siamese Manhattan convolution neural network (CNN), Siamese Manhattan 

long short-term memory (LSTM), Siamese Manhattan hybrid CNN-LSTM, 

and Siamese Manhattan hybrid LSTM-CNN, in determining STS between 

sentence pairs in medical reports. Performance comparisons were conducted 

using Cosine Similarity and word mover's distance (WMD) methods. The 

results indicate that the Siamese Manhattan hybrid LSTM-CNN model 

outperforms the other models, with a similarity score of 1 for each sentence 

pair, signifying identical semantic meaning. 
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1. INTRODUCTION  

Over the past decade, there has been abundant textual data across various fields, including biomedical 

research [1]. However, these valuable resources have often gone underutilized. For instance, much medical 

report text data remains archived and unexplored, even after digitization. This data's sheer volume and 

unstructured nature make extracting relevant, high-quality information difficult. 

 One practical approach to extracting relevant, high-quality information from medical report texts 

involves measuring semantic textual similarity (STS). STS is a foundational natural language processing (NLP) 

task that assesses how closely two sentences convey the same meaning [2]. In biomedical NLP (BioNLP), STS 

plays a pivotal role in ensuring the accurate interpretation and retrieval of information from biomedical 

documents [3]. That is due to its numerous direct applications in information extraction, such as in biomedical 

sentence search and classification, as well as indirect applications like biomedical question answering and 

document labelling [4]. The significance of STS in these applications is heightened by the fact that many 

biomedical terms can have different meanings depending on the text's context [5]. 

Researchers typically employ three main approaches to calculate STS: Corpus-based, knowledge-

based, and string-based methods. Research by Sunilkumar and Shaji [6] indicates that the Corpus-based 

approach, in particular, is widely adopted and shows promising results. The Corpus-based method comprises 

two statistically distinct approaches. The first approach utilizes traditional statistical analysis techniques like 

latent semantic analysis (LSA), which counts word frequencies in the text but does not delve deeply into 

https://creativecommons.org/licenses/by-sa/4.0/
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semantic information extraction. On the other hand, the second approach employs deep learning (DL) to 

generate word embeddings that capture contextual meanings in text, assessing similarity using multilayer 

perceptrons (MLPs) to determine label similarities [7]. 

Well-known word embedding models like Word2Vec, GloVe, and FastText are commonly employed 

for STS and trained on general-domain corpora. However, applying Corpus-based STS methods in BioNLP 

research necessitates specialized approaches, such as using domain-specific biomedical corpora or biomedical 

knowledge sources. Despite these efforts, their adoption within the biomedical domain remains limited [8]. 

Furthermore, the annotation process in biomedical research demands the expertise of medical professionals 

[7], [8], leading to a scarcity of labelled datasets and hindering progress in biomedical STS. 

Measuring the Cosine similarity (CS) and word mover's distance (WMD) between two sentences is 

widely recognized as the simplest and most frequently applied method for evaluating STS in unlabeled data. 

However, CS often exhibits lower performance levels [9]–[12]. Conversely, WMD methods struggle to 

differentiate sentences that share identical terms but possess distinct semantic meanings, primarily due to their 

disregard for word order [13]. 

Another widely adopted and highly regarded approach in this domain is the DL model utilizing the 

Siamese neural network architecture introduced by Mueller and Thyagarajan [14]. The Siamese model 

architecture involves two identical neural networks operating in parallel, extracting word representations from 

input vectors. The final output is typically compared using Cosine distance to determine STS [15], [16]. 

Subsequent research by Shi et al. [17] indicated that the Manhattan similarity metric offers faster convergence 

and higher accuracy than other metrics, including Cosine distance. Henceforth, this model is referred to as the 

Siamese Manhattan. 

The issue tackled in this paper is the underutilization and difficulty of transforming large volumes of 

unstructured medical report text data into actionable information. The proposed solution in this paper is to 

implement the Siamese Manhattan architecture in DL to assess Biomedical STS using unlabeled leukemia 

medical report data and a Corpus-based strategy with biomedical domain-specific corpora known as 

BioWordVec. The model incorporates two distinct labelling processes utilizing the CS and WMD methods. 

The paper aims to demonstrate the effectiveness of the Siamese Manhattan model in accurately interpreting 

and retrieving information from biomedical documents, addressing the problem of underutilized textual data 

in the biomedical field.  

The structure of this paper is as follows: section 2 will review related work on STS. Section 3 will 

detail the methodology employed in this study, while section 4 will present the results and discussion. Finally, 

section 5 will summarize the conclusions drawn from the research findings. 

 

 

2. PROPOSED METHOD 

According to de Souza [18], the Siamese Manhattan architecture enables the customization of 

networks for specific tasks, leveraging deep learning models like convolutional neural networks (CNN) and 

long short-term memory (LSTM). Recent advancements in STS tasks using DL have been achieved through 

CNN and LSTM models, which analyze words and sentences to capture both meaning and structural aspects 

for STS calculation [19]. Several studies have explored the implementation of Siamese Manhattan architecture 

in DL models, such as the research by Ranasinghe et al. [15], which proposes the implementation of Siamese 

Manhattan on several recurrent neuron network (RNN)-based models, including LSTM to calculate STS 

between text pairs in SemEval data. Their results showed that their model performed better than the Siamese 

neural network model first proposed by Mueller and Thyagarajan [14]. 

Zheng et al. [20] introduced a CNN-based model to detect semantic similarities in medical imaging 

reports (e.g., ultrasound, MRI) and pathology. They enhanced the model's semantic understanding through 

embedding techniques, outperforming traditional approaches like keyword mapping, LSA, latent Dirichlet 

allocation (LDA), and Siamese LSTM. Similarly, Shi et al. [17] employed Siamese CNN to evaluate sentence 

similarity in Chinese, comparing Cosine and Manhattan similarity metrics. Their findings indicate that the 

Manhattan similarity metric outperforms other metrics, highlighting its effectiveness in this context. 

Tran et al. [21] utilized a Siamese neural network architecture augmented with semantic features 

extracted from a knowledge graph, termed Siamese KG-LSTM, in conjunction with BioWordVec embeddings, 

to predict synonymous and non-synonymous pairs of biomedical terms within The unified medical language 

system (UMLS). The UMLS, developed by the U.S. National Library of Medicine, enhances computer systems' 

biomedical and health language comprehension. Their study demonstrated impressive performance metrics: 

98.23% accuracy, 98.37% recall, 97.40% precision, and an F1-score of 96.41% for synonym and non-synonym 

prediction. Li and He [22] constructed an RNN model using a Siamese neural network architecture with 

Word2Vec for processing word vectors. They evaluated semantic similarity on a dataset of 22,655 pairs of 

ethnic medical questions using Euclidean, Cosine, and Manhattan distances. The study found that the 
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Manhattan distance achieved the highest similarity (F1-score of 97.34%), followed by Cosine (96.93%) and 

Euclidean distances (94.13%). 

A recent study by Yang et al. [23] employed a Siamese neural network–CNN to predict drug-drug 

interaction (DDI) events by treating each drug separately with two CNN sub-networks sharing parameters to 

learn multimodal drug information. Merged feature representations were fed into a multilayer perceptron, 

enabling accurate categorization of DDI events from multimodal data. 

Previous studies on the Siamese Manhattan model have focused on its implementation within single-

model architectures such as CNN or LSTM. In contrast, our research explores its application in hybrid CNN-

LSTM and LSTM-CNN models. This integration represents a novel contribution to our study. Furthermore, 

we introduce the adaptation of the Siamese Manhattan architecture with BioWordVec and a dual labelling 

process using CS and WMD, specifically for the biomedical domain, which addresses the challenges of 

contextual meaning and word order in biomedical texts. 

 

 

3. METHOD 

This study introduces CNN and LSTM models using the Siamese Manhattan architecture. Furthermore, 

we suggest combining these models CNN-LSTM and LSTM-CNN by integrating the Siamese Manhattan 

approach to model STS in medical reports. Several studies [24]–[26] show that this hybrid approach harnesses 

CNN and LSTM strengths to enhance STS accuracy and precision. 

The dataset used in this research is the GENIA Biomedical event train data, which comprises 

unlabeled medical reports detailing the effects of drug use on individuals aimed at identifying specific medical 

conditions. This dataset includes 4,957 records with four variables: sentence, TriggerWord, TriggerWordLoc, 

and EventType. However, this study focuses on three variables: sentence (biomedical text), TriggerWord 

(trigger word in a sentence), and EventType (type of biomedical event related to the TriggerWord). Each pair: 

sentence-TriggerWord, sentence-EventType, and TriggerWord-EventType, will be analyzed for semantic 

similarity, resulting in 4,957 pairs for each combination. Figure 1 illustrates the research methodology. 

 

 

 
 

Figure 1. Research methodology 

 

 

3.1. Preprocessing 

A medical report is an official document authored by medical professionals that contains 

comprehensive details about a patient's diagnosis, treatment, and therapy. However, many medical reports 

suffer from poor sentence grammar [27], unstructured formatting [28], and large file sizes. Consequently, 

preprocessing is essential to facilitate more efficient analysis. The text preprocessing steps applied to these 

medical reports include: 

a. Lowercasing: Converting all uppercase letters to lowercase is crucial because computer programs interpret 

variations in capitalization (e.g., Leukemia vs leukemia) as distinct word vectors, leading to different results 

[29]. 

b. Remove punctuation: Punctuation marks such as periods, commas, exclamation marks, and question marks 

are removed because computer programs do not comprehend punctuation, and their presence in the text is 

treated as noise. 

c. Stop word removal: This step eliminates meaningless words, biomedical domain-specific words, or 

commonplace words in the text. Additionally, rare words are removed as they are too numerous and do not 

contribute significantly to STS tasks. 

d. Lemmatization: This crucial step transforms words into their base morphological forms (lemmas), 

enhancing the consistency and accuracy of text analysis [30]. 
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After undergoing various steps and transformations to ensure its cleanliness, structure, and readiness for further 

analysis, the initially 4,957 sentence pairs of textual data have now been reduced to only 1,409 pairs for each 

combination.  

 

3.2. Labelling 

STS tasks necessitate labelled data, thereby requiring the annotation of this data. The annotation 

process involves utilizing CS and WMD methods. CS calculates the similarity between two objects, 

represented by vectors of document keywords. The similarity score in CS ranges from 0 to 1: 0 signifies 

complete dissimilarity between the objects, whereas 1 indicates their identity or exact similarity [31]. As shown 

in (1) is employed to compute the similarity score using CS. 

 

𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑝, 𝑞) =
(𝑝.𝑞)

‖𝑝‖.‖𝑞‖
 (1) 

 

where ‖𝑝‖ is length of vector 𝑝 and ‖𝑞‖ is length of vector 𝑞 

In contrast, WMD is a metric for quantifying the dissimilarity between two documents by computing 

the minimum distance required to convert one document's vocabulary into another [32]. The specific 

formulation of WMD is detailed in (2). 

 

𝑊𝑀𝐷(𝑖, 𝑗) = ‖𝑥𝑖 − 𝑥𝑗‖
2
 (2) 

 

where 𝑊𝑀𝐷 is word mover's distance and 𝑥𝑖 is document weight. 

The CS and WMD methods successfully labelled 1,409 sentence-TriggerWord pairs, 1,409 sentence-

EventType pairs, and 1,409 TriggerWord-EventType pairs. An example demonstrating the results of this 

labelling process, explicitly using the CS method, can be found in Table 1. This table showcases how the CS 

method categorizes sentence-TriggerWord pairs, highlighting its effectiveness in labelling. 

 

 

Table 1. Labelling using CS 
Sentence TriggerWord Label 

downregulation interferon regulatory factor 4 gene leukemic cell due hypermethylation CpG motif 

promoter region 
downregulation 

1 

first treatment IRF4 negative lymphoid myeloid monocytic cell line methylation inhibitor deoxycytidine 

result time concentration dependent increase IRF4 mRNA protein level 
negative 

1 

second use restriction PCR assay bisulfite sequencing identify specifically methylated CpG sit IRF4 
negative IRF4 positive cell 

negative 
1 

third clearly determine promoter methylation mechanism IRF4 downregulation via reporter gene assay 

detect association methylational status mRNA DNA methyltransferases Methyl-CpG-binding protein 
downregulation  

1 

together data suggest CpG site specific irf4 promoter methylation putative mechanism downregulated 

IRF4 leukemia 
downregulated 

1 

 

 

3.3. Data splitting 

At this stage, the data is divided into training and testing sets, a process known as data splitting. The 

training data is used to build learning models, while the testing data is used to evaluate model performance 

[33]. Consequently, the proportion of training data must be more significant than that of testing data to prevent 

overfitting. The data splitting stage also includes the data division into the 'left' and 'right' input sides to align 

with the input requirements of the Siamese network. 

This study's data is divided, with 75% allocated for training and 25% for testing. This 75/25 split is a 

standard approach in machine learning. It is balancing the need for comprehensive training with enough data 

to test and validate the model's performance rigorously. 

 

3.4. BioWordVec 

BioWordVec, developed by Zhang et al. [34], is integrated into our model as input embedding layers 

to analyze the specific and local context of words within medical reports. This word embedding is trained using 

biomedical corpora from biomedical literature and medical subject headings (MeSH) domain knowledge. 

Zhang et al. [34] utilized a subword embedding model to improve understanding of text sequences and medical 

terminology in MeSH, enhancing biomedical word representations and semantic comprehension. 

BioWordVec is categorized into intrinsic and extrinsic types. Intrinsic BioWordVec is commonly 

used to predict semantic similarity among words, terms, or sentences. Conversely, extrinsic BioWordVec 

serves as feature input in various NLP tasks, such as relation extraction and text classification. This dual 
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functionality makes BioWordVec a versatile tool for boosting the performance of NLP applications in the 

biomedical field. 

 

3.5.  Semantic similarity models 

3.5.1. Convolutional neural networks (CNN) and long short-term memory (LSTM) 

A CNN DL algorithm identifies sentence patterns and semantic relationships through a convolutional 

layer linked to local features. Typically, a CNN consists of multiple layers: input, convolutional, pooling, fully 

connected, and output layers [35]. CNN has succeeded in various NLP tasks, such as sentence representation, 

search query retrieval, and semantic parsing. They are particularly effective in identifying semantic similarities 

between text pairs, excelling in tasks related to STS [20]. However, CNNs have a limitation: their architecture 

does not account for word order relationships in sentences, which means they cannot analyze the sequence of 

words. 

 

3.5.2. Long short-term memory (LSTM) 

Unlike CNN, the LSTM architecture is specifically designed for processing sequence data. LSTM 

efficiently discard irrelevant information and retains only essential information, sequentially capturing the 

essence of sentences through cell states and gates [36]. This capability makes LSTM particularly well-suited 

for tasks involving semantic similarity, as they can understand the context and meaning of words in sentences 

sequentially. 

 

3.5.3. Hybrid model  

The hybrid model analyzes words from both general and local contexts. Terms are interpreted using 

word embedding for general context and specific semantic and syntactic features for local context. There are 

two hybrid models: CNN-LSTM and LSTM-CNN. Hybrid CNN-LSTM and LSTM-CNN models process data 

in different sequences. In the hybrid CNN-LSTM model, CNN first extracts the local context of each word in 

a sentence, followed by LSTM to check word order. Conversely, in the hybrid LSTM-CNN model, LSTM 

initially checks the word order, and then CNN extracts the local context [19]. 

 

3.5.4. Hidden layer 

Hidden layers are crucial for improving accuracy and managing time complexity in learning models. 

Research by Uzair and Jamil [37] indicates that three hidden layers offer optimal performance. However, using 

more than three hidden layers directly affects the model's accuracy negatively. 

 

3.6. Evaluation 

Model performance is evaluated using the confusion matrix [38], where accurate STS calculations 

appear along the diagonal. Errors in STS calculations are represented outside this diagonal line. This method 

provides a clear and structured evaluation of how well the model predicts textual similarities. 

 

 

4. RESULTS AND DISCUSSION 

This section presents the results achieved through the proposed method. Various pairs of sentences 

were evaluated for STS, including sentence-TriggerWord, sentence-EventType, and TriggerWord-EventType. 

The comparison of each model's runtime is illustrated in Figures 2(a) to 2(c) respectively. 

Applying the Siamese Manhattan architecture to four different DL methods yielded identical results 

with 100% accuracy and validation accuracy. However, each model varies in the time required for STS 

calculations. CNN emerges as the most time-efficient model for training compared to others. Models like CNN-

LSTM and LSTM-CNN hybrids also exhibit good efficiency. In contrast, the single LSTM model proves less 

efficient due to longer processing times. Determining the optimal model is challenging when considering 

accuracy, validation accuracy, and training duration alone. 

An alternative method to evaluate model performance involves analyzing the loss graph. Loss graphs 

indicate whether a model is underfitting, well-fitted, or overfitting. Underfitting signifies poor performance 

during training or testing. A well-fitted model displays consistent performance across training and testing 

phases, whereas overfitting manifests as a significant gap between training and testing results. The initial  

model examined through loss graphs was the CNN model applied to sentence-TriggerWord pairs. Detailed 

comparisons of these graphs are depicted in Figures 3(a) to 3(d). 

Overall, among CNN models evaluated for STS in sentence-TriggerWord pairs, the model using three 

hidden layers with the WMD labelling method stands out as the most suitable. This conclusion is drawn from 

the loss graph analysis, where both loss and validation loss values converge effectively. In contrast, other CNN 

models, as depicted in Figure 3, show signs of underfitting as they fail to converge. Integrating the WMD 

method with three hidden layers proves beneficial, enhancing overall model performance significantly. 
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The next model under evaluation in the loss graph is the CNN-LSTM hybrid model, illustrated in 

Figures 4(a) to 4(d). The loss graphs in Figures 4(a) and 4(b) illustrate that the CNN-LSTM hybrid model, 

utilizing two hidden layers with different labelling methods, experiences a decreasing loss value accompanied 

by an increasing validation loss value, indicating overfitting. Consequently, this model may not generalize well 

to new data for determining STS. Conversely, the CNN-LSTM hybrid models depicted in Figures 4(c) and 4(d) 

exhibit more balanced loss graphs, where the loss and validation loss values are closely aligned. However, even 

with these improvements, these models still fail to determine STS accurately. The last model analyzed through 

the loss graph is the LSTM-CNN hybrid model, displayed in Figures 5(a) to 5(d). Based on Figures 5(a) to 5(d), 

the loss and validation loss values of the LSTM-CNN hybrid model converge consistently across various labelling 

methods and hidden layer configurations. This convergence signifies that the model demonstrates robust 

performance and generalizability during training and when applied to new data. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 2. Comparison of running time sentence pairs on (a) sentence-TriggerWord, (b) sentence-EventType, 

and (c) TriggerWord-EventType 
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(a) (b) 

  

  
(c) (d) 

 

Figure 3. CNN model loss graph on sentence-TriggerWord using (a) 2 Layer+CS, (b) 2 Layer+WMD,  

(c) 3 Layer+CS, and (d) 3 Layer+WMD 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 4. CNN-LSTM hybrid model loss graph on sentence-TriggerWord using (a) 2 Layer+CS,  

(b) 2 Layer+WMD, (c) 3 Layer+CS, and (d) 3 Layer+WMD 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6969-6980 

6976 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 5. LSTM-CNN hybrid model loss graph on sentence-TriggerWord using (a) 2 Layer+CS,  

(b) 2 Layer+WMD, (c) 3 Layer+CS, and (d) 3 Layer+WMD 

 

 

Based on the analysis of the loss graph, it is evident that more complex models with more than two 

hidden layers outperform those with only two layers. Furthermore, the choice of the labelling method 

significantly impacts the training time, with the WMD method proving superior to CS due to its faster 

convergence. In the LSTM-CNN hybrid model, the loss graph remains stable across different labelling methods 

and hidden layer configurations. Thus, the LSTM-CNN hybrid model is optimal for determining STS in 

sentence-TriggerWord, sentence-EventType, and EventType-TriggerWord pairs. These findings underscore 

the model's consistency and effectiveness across varied sentence pairings. 

The STS calculation results from the LSTM-CNN hybrid model, identified as the most effective model 

for determining semantic similarities across the three sentence pairs, are presented in the confusion matrices 

shown in Figures 6(a) to 6(c). These matrices illustrate the performance of the LSTM-CNN hybrid model, 

which features a sophisticated architecture and utilizes the optimal labelling method, WMD. Figure 6(a) 

illustrates that the sentence-TriggerWord pair achieves a similarity score of 1, indicating identical semantic 

meaning between the sentence and TriggerWord variables. The sentence variable comprises sentences related 

to leukemia, encompassing genetic regulation, inter-protein interactions, genes or proteins, and associated 

biological processes. In contrast, the TriggerWord variable contains descriptive terms as indicators or keywords 

to identify specific biomedical events within the sentence and estimate their timing. Therefore, based on the 

STS calculations for the sentence-TriggerWord pair, the model effectively extracts meaningful information 

and crucial elements from biomedical texts pertinent to leukemia research. 

 Similarly, Figure 6(b) reveals that the sentence-EventType pair achieves a similarity score of 1, 

indicating identical semantic meaning between these variables. Alongside matching the TriggerWord's 

semantic meaning, the sentence variable aligns closely with the EventType variable, which denotes specific 

biological activities within the context of leukemia. STS calculations in these pairs facilitate the identification 

of correlations between various biomedical events and leukemia, aiding researchers and medical professionals. 

Furthermore, analyzing semantic relationships between these biomedical events and texts enhances 

understanding of how leukemia treatments influence specific biological pathways and related biomedical 

phenomena. This approach contributes deeper insights into leukemia therapy and its implications for 

biomedical research and treatment strategies. Lastly, based on Figure 6(c), the TriggerWord-EventType pair 
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achieves a similarity score 1, indicating a solid semantic relationship between all trigger words in the 

TriggerWord variable and the biomedical event types in the EventType variable. This analysis reveals 

significant insights into the biological mechanisms associated with leukemia disease. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 6. Confusion matrix on (a) sentence – TriggerWord, (b) sentence – EventType, and  

(c) TriggerWord – EventType 
 

 

The top-performing model in this research study is benchmarked against CNN, LSTM, and hybrid 

CNN-LSTM models and models proposed in previous studies. However, it is worth noting that prior studies 

often did not exclusively focus on the biomedical domain due to its relatively limited research volume 

compared to other fields. This benchmarking is presented in Table 2. 

The proposed method exhibits superior performance compared to previous models, as evidenced by 

the comparative results presented in Table 2. Among these, Tran et al. [21] achieved notable success using 

BioWordVec to predict synonyms and non-synonyms in the biomedical domain with an accuracy exceeding 

98%. This study, alongside Tran et al. [21], underscores the effectiveness of employing pre-trained word 

embeddings tailored to specific research domains, such as BioWordVec. Specifically trained on datasets from 

PubMed and MeSH, BioWordVec enhances the STS model's performance by providing domain-specific 

embeddings relevant to the biomedical data used in this research. Moreover, the high accuracy achieved in this 

study is also attributable to the selection of appropriate similarity metrics, particularly highlighted in Table 2, 

where the Manhattan metric is shown to potentially improve the STS model's accuracy significantly. 
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Table 2. Benchmarking analysis of STS calculations 
Title Authors Methods Performance 

Unlabeled short text similarity 
with LSTM encoder 

Yao et al. 
[39] 

a. Data: MSR paraphrase and Quora dataset 
(Unlabeled) 

b. Labelling: cosine similarity 

c. Domain: general 
d. Word embedding: Word2Vec  

Model: LSTM encoder 

Accuracy MSR: 88,00% 
Recall MSR: 87,00% 

 

Accuracy Quora: 85,00% 
Recall Quora: 92,00% 

STS with Siamese neural 
networks  

Ranasinghe 
et al. [15] 

a. Data: SemEval 2017 dataset (labeled) 
b. Domain: biomedical 

c. Word embedding: custom-trained embedding  

Model: Siamese Manhattan – LSTM 

Accuracy: 86,51% 

Detection of medical text 

semantic similarity based on 

convolutional neural network 

Zheng  

et al. [20] 

a. Data: imaging and pathology report-pairs 

(labeled) 

b. Domain: biomedical 
c. Word embedding: CMESH 

Model: Siamese neural network – CNN using 

LIME algorithm for similarity output 

Recall: 93,70% 

Precision: 94,50% 

F1-Score: 94,10% 

A Siamese CNN architecture 

for learning Chinese sentence 

similarity 

Shi et al. 

[17] 

a. Data: Chinese sentence pairs (labeled) 

b. Domain: general 

c. Word embedding: custom-trained embedding  
Model: Siamese neural network – CNN with two 

different metric distances (Cosine and Manhattan) 

Accuracy Cosine: 77,05% 

Accuracy Manhattan: 77,31% 

 

Siamese KG – LSTM: a deep 
learning model for enriching 

UMLS Meta thesaurus 

synonymy 

Tran et al. 
[21] 

a. Data: the UMLS dataset (labeled) 
b. Domain: biomedis 

c. Word embedding: BioWordVec 

Model: Siamese Manhattan - LSTM with 
knowledge graph 

Accuracy: 98,23% 
Recall: 93,87% 

Precision: 97,86% 

F1-Score: 96,41% 

Similarity matching of medical 

questions based on Siamese 
network 

Li and He 

[22] 

a. Data: ethnic medical Question dataset (labeled) 

b. Domain: Biomedis 
c. Word embedding: Word2Vec  

d. Model: Siamese neural network – RNN with 

Manhattan distance 

F1-Score Euclidean: 94,13% 

F1-Score Cosine: 96,93% 
F1-Score Manhattan: 97,34% 

 

Proposed method  Kurniasari 

et al.  

a. Data: GENIA event dataset (unlabeled) 

b. Labeling: CS and WMD 

c. Word embedding: BioWordVec 

Model: Siamese Manhattan-hybrid LSTM CNN 

Accuracy: 100% 

Recall: 100% 

Precision: 100% 

F1-Score: 100% 

 

 

5. CONCLUSION  

This research identifies the optimal model for detecting semantic similarity among leukemia-related 

biomedical terms, a hybrid LSTM-CNN model combining Siamese Manhattan and LSTM-CNN architectures. 

Results indicate superior performance compared to models proposed in previous research despite differing 

domains between studies. The research aims to aid researchers and medical professionals in uncovering 

correlations between various biomedical events and leukemia, understanding semantic connections between 

trigger words and biomedical events, and automatically extracting critical information from biomedical texts 

to enhance leukemia-related information retrieval. Moreover, the study seeks to deepen understanding of how 

leukemia treatments impact specific biological pathways and subsequent biomedical processes. Future research 

directions could explore further advancements in the STS task by extracting relationships between biomedical 

entities, thereby enhancing insights into leukemia and its biomedical implications. 
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