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 Lithium-ion electrochemical batteries are being used more in a large number 

of applications, such as electric vehicles. However, increasing their 

efficiency lies in the accuracy of their model. For this, extracting the best 
values of parameters of the battery model is needed. A recent metaheuristic 

optimizer named the red-tail hawk (RTH) is used in the current research to 

extract the battery parameters. The idea of this algorithm is extracted from 

hunting techniques of red-tail hawks. The RTH algorithm is more likely to 
avoid entangled local optimums because of its high diversity, fast 

convergence rate, and appropriate exploitation-exploration balance. The 

RTH optimizer is compared with other algorithms to check and approve its 

performance. Using the proposed method, the root mean squared error 
(RMSE) between the model outputs and the measured voltage dataset was 

decreased to 8.12E-03, much better than all the other considered algorithms. 
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1. INTRODUCTION 

Being the prominent energy storage solution, batteries hold great promise in bringing the rapidly 

expanding intelligent grid idea and electric transportation systems to fruition. This potential lies in their 

capacity to store substantial energy for prolonged periods. Lithium-ion batteries are often chosen for electric 

vehicles due to their extended lifespan, and rapid charging attributes [1]-[3]. Multiple battery models were 

developed to simulate the battery behavior [4]. These models include mathematical representations, 

electrochemical simulations, and electrical circuit equivalents [5]. The capacity, efficiency, and runtime of 

batteries are predicted using mathematical models grounded in stochastic approaches or empirical equations 

[6]. Using resistance-capacitances (RCs) in series and parallel, similar circuit models provide high accuracy 

and require nothing in the way of parametrization work [7]. Some of these models are listed in Table 1. 

Accurate modeling of Li-ion batteries (LIB) under various operating situations is essential to 

forecasting and simulated their behavior accurately. The Shepherd model is a macroscopic model that 

describes the battery's electrical behavior, including the voltage and the state of charge. However, these 

systems exhibit ongoing degradation starting from their initial use [1], leading to changes in their internal 

characteristics. Consequently, it is imperative to determine their internal parameters to assess their overall 

health [8], [9].  
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Table 1. Real battery parameters 
Category Description Model Reference  

Electrochemical models Rooted in the electrochemical aspect of the 

battery components 

Doyle fuller Newman (DFN) [10] 

Single particle model (SPM) [11] 

Pseudo-two-dimensional (P2D)  [12] 

Equivalent circuit models 

(ECMs) 

Approximative models designed to 

describe battery outputs 

Shepherd model [13] 

RC models [14], [15] 

 

 

In this context, the literature has proposed a variety of identification approaches. Using a group-wise 

approach, Shen and Li [16] suggested a method for identifying the parameters of LIBs. However, the 

effectiveness of this strategy depends on both the precision of the measurements and the availability of the 

data, as it is mostly exploratory. Researchers used an extended Kalman filter (EKF) and an unscented 

Kalman filter (UKF) to try to identify the resistance-capacitance (RC) model [17]. The accuracy of these 

methods depends on the filter selections, which may increase estimate inaccuracy. As reported in [18], the 

parameters of the Thevenin battery model are often identified using the H-infinity filter. A significant 

disadvantage of the aforementioned approaches is their dependence on the designer-supplied parameters. 

Recently, intelligent and straightforward identification algorithms based on metaheuristic optimizers to 

extract the battery parameters have been widely employed to boost this trend further [13]. Electrochemical 

battery model parameters were obtained by employing a genetic algorithm (GA), as reported in [14]. The 

proposed model is founded on an established single-particle framework, which incorporates the solid-

electrolyte-interface and is called enhanced single-particle (eSPM). In study [15], a variety of metaheuristic 

algorithms were used to estimate battery parameters using ECMs, including well-established techniques like the 

genetic algorithm (GA), particle swarm optimization (PSO), salp swarm algorithm (SSA), firefly algorithm 

(FA), grey wolf optimizer (GWO), multi-verse optimization (MVO), and whale optimization algorithm (WOA). 

Jusoh and Daud [19] utilized GA, PSO, and gravitational search algorithms (GSA) to identify the optimal 

Shepherd model set of parameters. Unfortunately, while the findings obtained using GA were the most 

beneficial, the associated error function had a significant size, resulting in decreased accuracy in parameter 

identification. As described in [20], parameter identification in the context of a lower-order model based on 

electrochemical models was carried out utilizing a mix of spectral techniques, a Kalman filter, and an ant lion 

optimizer. Initially, spectral techniques for simplification were used to simplify the electrochemical model. 

Then, a square-root cubature Kalman filter was applied for estimating the state, and finally, the ant lion 

optimizer was used to carry out parameter optimization. The study [21] extracted parameters for a Li-ion 

Shepherd model using an artificial ecosystem optimizer (AEO), producing positive results. Additionally, the 

modified COOT (mCOOT) algorithm was used in a similar investigation that was described in [22].  

It is well known that metaheuristic optimization algorithms can provide sufficient solutions when 

used to extract a lithium-ion battery's parameters. However, they cannot guarantee the exact solutions due to 

their stochastic nature. For this reason, the researchers have used various optimization algorithms to solve 

this problem, where each algorithm can provide different results at different times. These research articles 

aim to extract solutions as close to the exact solutions as possible, with higher accuracy and similar or close 

results each time. The proposed method aims to provide better results in these terms compared to other 

published works. The proposed method is based on a recent meta-heuristic algorithm, the red-tail hawk 

(RTH) optimization algorithm [23]. The way red-tail hawks hunt is an inspiration for RTH. The RTH was 

inspired by the bald eagles' food-related seeking and hunting techniques. There are three phases in the RTH 

algorithm: the high soaring, the low soaring, and then the stooping and swooping phases. The RTH is applied 

to optimally get the battery parameters of a Shepherd model. The obtained results are compared with other 

optimizers including PSO [24], COOT [25], dandelion optimizer (DO) [26], equilibrium optimizer (EO) [27], 

GWO [28], osprey optimization algorithm (OOA) [29], sine cosine algorithm (SCA) [30], and SSA. The 

principal contributions of the suggested work are: i) Use the RTH for the first time for the battery parameters 

extraction problem, ii) Evaluating the performance of the proposed technique compared to other well-known 

metaheuristic optimization algorithms (MAs), iii) Accurately extract the Li-ion battery model parameters.  

The paper is arranged as follows: section 2 describes the problem statement, including the battery 

model, the cost function, and its constraints. Section 3 reviews the RTH algorithms. Section 4 shows and 

discussed the obtained results. Where section 5 outlines the main findings.  

 

 

2. PROBLEM STATEMENT  

2.1.  Battery modeling  

Models of lithium-ion batteries have been developed by researchers all across the world [31]. These 

models include mathematical representations, electrochemical simulations, and electrical circuit equivalents 
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[5]. Batteries' capacity, efficiency, and runtime are predicted using mathematical models grounded in 

stochastic approaches or empirical equations [6]. Using RCs in series and parallel, similar circuit models 

provide high accuracy and require nothing in the way of parametrization work [32]. The Shepherd model, as 

explained previously, can reproduce the electrical behavior of the battery. Figure 1 presents the battery model 

using the Shepherd circuit. Consistent with [12], the battery voltage can be calculated. 

Discharge model (𝑖∗> 0): 

 

𝑉𝐵𝑎𝑡 = 𝐸0 − 𝐾
𝐶𝐵

𝐶𝐵−𝑖𝑡
𝑖𝑡 − 𝑅𝑏𝑖𝐵𝑎𝑡 + 𝐴𝑏𝑒(−𝐵×𝑖𝑡) − 𝐾

𝐶𝐵

𝐶𝐵−𝑖𝑡
𝑖∗ (1) 

 

Charge model (
*i < 0): 

 

𝑉𝐵𝑎𝑡 = 𝐸0 − 𝐾
𝐶𝐵

𝐶𝐵−𝑖𝑡
𝑖𝑡 − 𝑅𝑏𝑖𝐵𝑎𝑡 + 𝐴𝑏𝑒(−𝐵×𝑖𝑡) − 𝐾

𝐶𝐵

𝑖𝑡+0.1𝐶𝐵
𝑖∗ (2) 

 

where E0 denotes open-circuit voltage, CB denotes the rating of the battery, ibat denotes the battery, it is 

charging current, i* is the filtered battery current, Rb represents the resistance, Ab denotes exponential zone 

amplitude. The following relation can be used to express the battery's polarization resistance: 

 

𝑃𝑜𝑙𝑟𝑒𝑠 = 𝐾
𝐶𝐵

𝑖𝑡+0.1𝐶𝐵
 (3) 

 

Following are some rough calculations for the battery's state of charge (SOC): 

 

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶0 −
1

𝐶𝐵
∫ 𝑖𝐵𝑎𝑡𝑑𝑡 (4) 

 

where SoC0 denotes the initial SoC. 
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Figure 1. Li-ion battery model  

 

 

2.2.  Cost function formulation  

The proposed identification method focuses on reducing the voltage differential as much as possible 

between the battery's actual data and its model. The voltage error serves as the input for the generation of the 

cost function. The root mean squared error (RMSE) objective functions are expressed as (5). 

 

𝑓(𝑁) = √
1

𝑘
∑ (𝑉𝐷𝑎𝑡𝑎(𝑁) − 𝑉𝑀𝑜𝑑𝑒𝑙(𝑁))

2𝑘
𝑁=1  (5) 

 

where VData is the experimental data, VModel is the generated data by the Shepherd model, and k is the data size.  
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The aim is to define the unknown model parameters by minimizing the cost function. 

 

𝑥 = [𝐸0, 𝑅𝑏, 𝐶𝑏, 𝐾, 𝐴, 𝐵, 𝜏] (6) 

 

In the first stage, the algorithm assigns random values considering the following boundary limits. 

 

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 (7) 
 

where lb and ub are the upper and lower limits. Then, the error between the measured data and calculated 

data is determined, and the new positions are modified. This procedure will remain up until the optimal 

solution is obtained. The identification strategy can be illustrated in Figure 2. 

 

 

Cost function

Battery model 

 Shepherd 

VModel

+
-RTH

Candidate parameters 

Battery data

ibatt

VData

 
 

Figure 2. The proposed identification strategy 

 

 

3. RED-TAILED HAWK OPTIMZATION  

RTH is a type of bird of prey. Its hunting strategies inspired the RTH algorithm, a metaheuristic 

optimization method [23]. From the first step of prey identification to the last stage of swooping, the red-

tailed hawk employs a methodical hunting approach. There are three phases to the hunting procedure: 

̶ The hawk intensively scans the search area during the high-soaring stage, detecting prospective areas 

where its prey may be located. The mathematical equation of this stage can be presented as (8):  

 

𝑥𝑡 = 𝑥𝑏𝑒𝑠𝑡 + (𝑥𝑎𝑣𝑟 − 𝑥𝑡−1). 𝐿𝑓. 𝑇𝐹𝑡 (8) 

 

where, xt is the position of the hawk at iteration t, while xbest is the best-attained position. xavr is the 

average position. Lf is the levy flight distribution, and TFt is the transition factor t. 

̶ The hawk fine-tunes its motions inside the chosen zone surrounding the prey's location as it transitions to 

the low-soaring stage, deliberately determining the best locations for the approaching hunt. The 

mathematical equation of this stage can be presented as (9): 

 

𝑥𝑡 = 𝑥𝑏𝑒𝑠𝑡 + (𝑑𝑥𝑡 − 𝑑𝑦𝑡). (𝑥𝑡 − 𝑥𝑎𝑣𝑟) (9) 

 

where dxt and dyt represent directional coordinates during iteration t. 

̶ The red-tailed hawk conducts a quick and accurate assault while stooping and swooping stage, effectively 

striking its victim with its swooping action. 

 

𝑥𝑡 = 𝑎𝑡𝑥𝑏𝑒𝑠𝑡 + 𝑑𝑥𝑡(𝑥𝑡 − 𝑇𝐹𝑡𝑥𝑎𝑣𝑟) + 𝑑𝑦𝑡(𝐺𝑡𝑥𝑡 − 𝑇𝐹𝑡𝑥𝑏𝑒𝑠𝑡) (10) 

 

where Gt stands for the gravitational influence, which decreases as the hawk gets closer to the prey in an 

effort to reduce exploitation diversity, and αt stands for the hawk's acceleration, which increases as t 

advances to speed up the convergence rate. 
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4. RESULTS AND DISCUSSION  

Using MATLAB/Simulink, the simulation of a Shepherd model of the considered LIB will be 

produced. Within the constraints of the search space, proposals were created at random and then allocated to 

the model. After running the model using these variables, we compared the output to the already collected 

data. The ECE-15 urban driving cycle current profile has been considered. The exact numbers for the 

proposed battery's attributes are displayed in Table 2. Figure 3(a) and (b) present the produced voltage and 

the imposed current during the test. 

 

 

Table 2. Actual parameters of the battery 
Parameter 𝑸 Rint (10-3) K (10-3) B τ E0 A 

Actual value 1500 1.8667 1.3985 0.040708 20 303.6205 23.5133 

 

 

 
 

Figure 3. The battery (a) voltage and (b) current 

 

 

Since the MAs are stochastic algorithms, each run has variable beginning positions. Statistical tests 

such as analysis of variance (ANOVA) and Tuckey might be utilized to evaluate robustness by contrasting 

the suggested method's performance with that of numerous MAs, including PSO, COOT, DO, EO, GWO, 

OOA, SCA, and SSA. Because MAs are inherently random, we tested each approach ten times to ensure their 

correctness and dependability. The population size is 30, the maximum number of iterations is 50 iterations, 

and the upper search space boundary is set at 120% of the real value, where the lower search space boundary 

is 80%. Table 3 displays the identification results of each run, Table 4 presents the statistical results, whereas 

the best-achieved results are presented in Table 5. 

Considering Table 4, the best cost function values are ranged between 8.12E-03 and 1.54E-02. The 

maximum cost function of 8.12E-03 is obtained by RTH, followed by 8.72E-03 (using COOT), whereas the 

lower performance is obtained by SCA (1.54E-02). The average cost function values ranged between  

8.37E-03 and 4.12E-02. The lowest value of 8.37E-03 is obtained by RTH, followed by EO (1.09E-02). SCA 

obtains the highest value of 4.12E-02. The standard deviation values range between 2.30E-04 and 1.20E-02. 

The lowest STD value of 2.30E-04 is obtained by RTH, followed by EO (3.32E-03). SCA obtains the highest 

STD value of 1.20E-02. The cost function evolution is shown in Figure 4, which shows that the proposed 

identification technique based on the RTH achieves better than others regarding convergence speed and final 

fitness value. 

Table 6 presents a comprehensive comparison between the optimizers using the ANOVA test. The 

results definitively affirm the differences between the algorithms. In parallel, Figure 5 offers a graphical 

representation of the rankings, confirming the exceptional stability and accuracy demonstrated by the RTH 

algorithm. Figure 6 shows the outcomes of the Tukey post-hoc statistical test outcomes, which supports the 

ANOVA analysis findings. All the other optimizers' mean results significantly differ from those provided by 

the RTH. This confirms its excellent performance for this application. 

The predicted voltage and SoC using each algorithm are shown in Figure 7 and the real data profile. 

The calculated values for the measured voltage profiles are almost exactly the same as those measured using 
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the RTH. The EO also performed well; however, the RTH performed better based on the previous numerical 

analysis. The identification accuracy was validated by comparing the model output with the measurement 

data. As a result, proper identification will increase battery lifetime and improve battery management. 

Considering the results in Table 4, RTH has best results in comparison with other used optimizers in 

terms of best (8.12E-03), worst (8.80E-03), mean (8.37E-03), and STD (2.30E-04). This approved its 

performance in solving the problems considered in this paper compared to the algorithms used. The proposed 

identification strategy 'RTH' results have been better than those of other published results recently for similar 

conditions. The RTH can be compared to the mBES [33] and SaBO [8]. Regarding best results, the RTH best 

value is 8.12E-03, whereas the mBES and SaBO best results are 8.12E-03 and 8.350e-03, respectively. 

Regarding worst values, the mBES and SaBO results are 42.180e-03 and 9.070e-03, whereas the RTH 

achieved 8.80E-03. Regarding the mean value, the RTH value is 8.37E-03, where the mBES and SaBO 

results are 21.340e-03 and 8.640e-03, respectively. This proves that the RTH performs better in solving the 

battery parameters extraction problem.  

 

 

Table 3. Details of 30 runs 
 PSO COOT DO EO GWO OOA SCA SSA RTH 

1 1.03E-02 8.73E-03 1.48E-02 9.28E-03 1.59E-02 3.49E-02 3.70E-02 2.66E-02 8.41E-03 

2 1.49E-02 1.64E-02 1.29E-02 9.36E-03 2.65E-02 3.14E-02 2.92E-02 1.99E-02 8.32E-03 

3 1.98E-02 1.21E-02 1.92E-02 9.43E-03 1.57E-02 3.04E-02 4.26E-02 1.95E-02 8.15E-03 

4 1.45E-02 1.91E-02 1.37E-02 1.28E-02 1.85E-02 2.87E-02 4.09E-02 1.43E-02 8.24E-03 

5 1.30E-02 1.36E-02 1.34E-02 8.79E-03 2.36E-02 2.64E-02 4.17E-02 2.03E-02 8.72E-03 

6 1.63E-02 1.35E-02 9.58E-03 1.06E-02 2.13E-02 2.82E-02 4.38E-02 1.43E-02 8.12E-03 

7 2.49E-02 1.51E-02 1.61E-02 1.98E-02 1.37E-02 3.13E-02 2.95E-02 1.60E-02 8.41E-03 

8 1.27E-02 1.24E-02 9.48E-03 1.00E-02 1.51E-02 2.21E-02 1.54E-02 1.48E-02 8.12E-03 

9 1.82E-02 9.67E-03 1.14E-02 1.20E-02 1.89E-02 2.02E-02 4.60E-02 2.34E-02 8.72E-03 

10 1.55E-02 1.12E-02 8.90E-03 9.10E-03 2.72E-02 4.58E-02 6.07E-02 1.89E-02 8.19E-03 

11 1.57E-02 1.17E-02 3.05E-02 1.09E-02 3.21E-02 3.21E-02 4.95E-02 1.87E-02 8.54E-03 

12 1.53E-02 2.49E-02 1.12E-02 8.86E-03 1.96E-02 1.49E-02 4.00E-02 2.84E-02 8.80E-03 

13 2.05E-02 1.10E-02 1.37E-02 1.28E-02 3.36E-02 1.34E-02 3.29E-02 2.51E-02 8.13E-03 

14 1.39E-02 1.27E-02 1.44E-02 1.04E-02 3.32E-02 3.95E-02 6.59E-02 1.56E-02 8.35E-03 

15 1.60E-02 1.18E-02 1.61E-02 9.29E-03 1.93E-02 3.66E-02 4.15E-02 1.53E-02 8.41E-03 

16 1.42E-02 8.72E-03 9.36E-03 9.29E-03 2.22E-02 2.45E-02 3.09E-02 1.50E-02 8.67E-03 

17 1.86E-02 8.79E-03 1.95E-02 1.12E-02 3.63E-02 2.83E-02 3.27E-02 2.65E-02 8.12E-03 

18 1.28E-02 1.53E-02 1.44E-02 1.00E-02 2.18E-02 2.77E-02 4.22E-02 1.79E-02 8.37E-03 

19 1.89E-02 1.00E-02 1.52E-02 9.05E-03 2.48E-02 2.75E-02 5.64E-02 1.58E-02 8.33E-03 

20 1.28E-02 1.22E-02 1.39E-02 1.00E-02 4.03E-02 1.83E-02 2.58E-02 2.20E-02 8.72E-03 

21 1.72E-02 1.04E-02 1.95E-02 1.09E-02 1.79E-02 2.60E-02 2.48E-02 2.21E-02 8.71E-03 

22 1.60E-02 1.55E-02 1.21E-02 9.43E-03 2.51E-02 2.01E-02 5.76E-02 1.45E-02 8.12E-03 

23 2.46E-02 1.51E-02 1.04E-02 8.69E-03 2.09E-02 3.64E-02 4.31E-02 2.81E-02 8.20E-03 

24 2.89E-02 1.01E-02 1.31E-02 9.59E-03 3.59E-02 2.66E-02 5.14E-02 1.17E-02 8.12E-03 

25 1.37E-02 1.28E-02 1.52E-02 9.33E-03 3.43E-02 1.97E-02 5.45E-02 3.41E-02 8.36E-03 

26 2.87E-02 1.50E-02 1.33E-02 9.17E-03 2.59E-02 2.17E-02 2.08E-02 1.50E-02 8.21E-03 

27 1.51E-02 1.17E-02 1.71E-02 2.35E-02 2.08E-02 2.53E-02 3.21E-02 2.93E-02 8.13E-03 

28 2.53E-02 9.76E-03 1.37E-02 9.01E-03 2.38E-02 1.87E-02 5.41E-02 2.27E-02 8.12E-03 

29 1.54E-02 2.26E-02 1.94E-02 1.64E-02 1.78E-02 3.17E-02 5.01E-02 2.65E-02 8.77E-03 

30 1.45E-02 1.38E-02 1.34E-02 8.49E-03 2.47E-02 3.34E-02 4.17E-02 1.63E-02 8.40E-03 

 

 

Table 4. Optimal parameters and numerical statistics 
 PSO COOT DO EO GWO OOA SCA SSA RTH 

Best  1.03E-02 8.72E-03 8.90E-03 8.49E-03 1.37E-02 1.34E-02 1.54E-02 1.17E-02 8.12E-03 

Worst  2.89E-02 2.49E-02 3.05E-02 2.35E-02 4.03E-02 4.58E-02 6.59E-02 3.41E-02 8.80E-03 

Mean  1.73E-02 1.32E-02 1.45E-02 1.09E-02 2.42E-02 2.74E-02 4.12E-02 2.03E-02 8.37E-03 

STD  4.72E-03 3.75E-03 4.19E-03 3.32E-03 6.96E-03 7.25E-03 1.20E-02 5.59E-03 2.30E-04 

 

 

Table 5. Optimal parameters and numerical statistics 
 PSO COOT DO EO GWO OOA SCA SSA RTH  

Cb 1583.16 1394.53 1264.47 1260.16 1296.16 1591.50 1635.41 1539.00 1200.00  

Rb (10-3) 1.6623 1.6339 1.5765 1.6230 1.7086 1.7652 1.7724 1.7021 1.6134  

K (10-3) 1.5513 1.4860 1.4719 1.4602 1.4353 1.4997 1.6410 1.5437 1.4533  

B 0.0489 0.0412 0.0428 0.0409 0.0486 0.0435 0.0449 0.0420 0.0489  

τ 22.2542 21.3579 21.0360 20.9255 21.6059 22.5725 19.3005 21.6668 20.7405  

E0 307.556 303.879 304.728 303.591 307.284 304.043 307.568 304.512 306.989  

A 19.531 23.254 22.387 23.556 19.840 23.292 18.811 22.555 20.153  



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Robust parameter determination approach based on red-tailed hawk optimization … (Sulaiman Z. Almutair) 

3735 

 
 

Figure 4. Average cost function using different optimizers 

 

 

Table 6. ANOVA statistical test outcomes 
Source df SS MS F Prob 

Columns 8 0.025 0.0031 78.3 6.06e-65 

Error 261 0.010 0.0004   

Total 269 0.035    

 

 

 
 

Figure 5. ANOVA graphical ranking 

 

 

The primary target of this work is to present an identification method for lithium-ion battery 

parameter extraction with higher accuracy. The proposed methodology can extract the battery parameters 

with higher accuracy from the obtained results and after comparing them with other recently published 

papers. However, this may depend on the measured data and the used models. Microscopic models that can 

include the electrochemical and thermal aspects can be used to estimate the state of health better. However, 

macroscopic models like the one used are sufficient for energy management applications. Knowing the 

battery's actual parameters helps estimate its current state, which can help in battery management system 

design where the provided power depends on its actual capacity, as used in [33]. This can also help operate 

the battery in a comfortable condition, which can extend its lifecycle. 
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Figure 6. Tukey graphical ranking  

 

 

 

 
 

Figure 7. Estimated and measured for voltage waveforms 
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5. CONCLUSION  

For the purpose of providing an efficient technique, this article makes use of the Red-tailed Hawk 

(RTH) algorithm, which is a relatively new metaheuristic methodology. The results of this study indicated an 

accurate identification method that was based on the RTH optimizer and offered outstanding performance for 

this application. By comparing the results of the proposed approach with those of other algorithms, such as 

PSO, DO, COOT, GWO, OOA, SCA, and SSA techniques, it has been shown that the recommended strategy 

produces accurate results. Following the completion of the identification process, the findings reveal that the 

RTH is advantageous when it comes to extracting the parameters of the battery. When contrasted with the 

other methods, the mean value of the cost function is 8.37E-03, while the EO comes in at 1.09E-02. In 

addition, the RTH yields the best result at 8.12E-03, followed by the EO at 8.49E-03, which is the best result 

produced altogether. Compared to the other algorithms, the RTH has extraordinary resilience, as shown by its 

standard deviation of the results is 2.30E-04, which is lower than that of the others. Find out what 

characteristics Li-ion batteries should have. The fundamental purpose of this investigation is to make a 

prediction about the real properties of the battery. 
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