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 The Omicron variant of the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) virus is an extremely contagious variant that has garnered 

global attention due to its potential for rapid spread and its impact on the 

effectiveness of vaccines and non-pharmacological measures. In this paper, 

we investigate mathematical models involving vaccinated individuals and 

control functions to analyze how the spread of coronavirus disease 2019 

(COVID-19) infection evolves over time. In the process of constructing a 

mathematical model for COVID-19, there are many parameters whose 

values are not yet known with certainty. Therefore, the extended Kalman 

filter method is used as a tool to estimate these parameters in an effort to 

better understand the dynamics of the spread and evolution of this disease. 

This method helps align the mathematical model with existing empirical 

data, allowing us to make more accurate predictions about the course of the 

COVID-19 pandemic and plan more precise actions to address the situation. 

Furthermore, an optimal control design is applied to reduce the number of 

infected individuals by implementing seven strategies involving a 

combination of health education, vaccination, and isolation controls. The 

simulation results we conducted indicate that the use of optimal control 

strategies can lead to a significant decrease in the number of individuals 

infected with COVID-19. 
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1. INTRODUCTION 

Coronavirus disease 2019 (COVID-19) first detected in Wuhan, China at the end of 2019 [1], has 

rapidly evolved into a global pandemic, disrupting nearly all aspects of life. As the virus spread worldwide, it 

underwent several mutations leading to the emergence of variants such as Alpha (B.1.1.7), first identified in 

the United Kingdom on December 18, 2020, which has several mutations in the viral spike protein enhancing 

its ability to attach to human cells and increasing transmission [2]. Following the Alpha variant, the Beta 

variant (B.1.351) was reported in South Africa in December 2020, featuring mutations that could potentially 

impact vaccine and antibody efficacy [3]. Similarly, the Gamma variant (P.1) was identified in Brazil on 

January 21, 2021, and the Delta variant (B.1.617.2), known for being more contagious than its predecessors, 

raised global concerns in April 2021 [4]. The latest, the Omicron variant (B.1.1.529), was first reported in 

South Africa on November 24, 2021 [5], and has quickly become a major concern due to its numerous 

mutations, some previously unseen, which contribute to its faster transmission rate and potential to overcome 

existing immunity [6]. These variants have not only increased the complexity of controlling the virus's spread 

https://creativecommons.org/licenses/by-sa/4.0/
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but also challenged the effectiveness of established public health strategies. In Indonesia, the swift 

predominance of the Omicron variant since late 2021 has exacerbated strains on an already overwhelmed 

national health system and complicated ongoing vaccination efforts [7]. 

Mathematical models are crucial tools for understanding and managing the spread of the COVID-19 

virus. Research using mathematical models has been conducted extensively since the pandemic began. These 

models are used to understand virus transmission, predict epidemiological trends, plan interventions, and 

make policy decisions [8]. Research by Annas et al. [9] developed an susceptible–exposed–infectious–

removed (SEIR) model that incorporated vaccination and isolation parameters, providing insights into the 

effectiveness of these interventions in slowing the spread. Another study by Wang et al. [10] adapted the 

SEIR model to include compartments for susceptible (S), exposed (E), infected (I), hospitalized (H), and 

removed (R), using public data from Wuhan. This model was utilized to determine the initial date of COVID-

19 infection in Wuhan, considering the lack of information on initial conditions. Sun et al. [11] constructed 

the SEIR model with an added quarantine (Q) compartment to assess the impact of lockdown measures and 

the availability of medical resources in Wuhan during 2020 on the virus's dynamics and spread. The results 

indicated that the longer the lockdown was implemented in Wuhan, the fewer people were infected, but this 

had implications for other cities in China and around the world. However, despite these advancements, 

current models often struggle to adapt to the rapidly evolving dynamics of the virus, especially with the 

frequent emergence of new variants. There is a pressing need for models that incorporate real-time data, 

which could significantly improve the accuracy of predictions and the effectiveness of interventions. 

The concept of optimal control is particularly relevant in managing dynamic systems like pandemics, 

where it aims to identify the most effective strategies under given constraints [12]. Many researchers have 

utilized optimal control theory to address infectious disease control issues. Madubueze et al. [13] investigates 

optimal control in COVID-19 models as non-pharmacological strategies such as quarantine and isolation. 

Sweilam et al. [14] explores optimal control as medical treatment strategies such as isolation in healthcare 

facilities and the provision of respiratory aids, involving variations in parameters related to contact rates and 

infection transmission. Djidjou-Demasse et al. [15] utilizes optimal control theory to explore the best strategy 

that can be implemented while awaiting the vaccine by seeking a solution that minimizes the number of deaths 

and the costs resulting from the implementation of the control strategy itself. Their findings show that such a 

solution leads to an increasing level of control peaking around the 16th month from the onset of the epidemic, 

followed by a steady decline until the vaccine is implemented. Li and Guo [4] employed optimal control by 

implementing a vaccination control strategy in a model with COVID-19 mutations (Delta strain). However, 

existing models have not specifically addressed the challenges posed by the Omicron variant and the original 

virus, nor have they fully utilized the potential of real-time data integration from both aspects. 

This study aims to address these limitations by enhancing the responsiveness of the SEIR model to 

changes in virus transmission dynamics through the integration of the extended Kalman filter and optimal 

control strategies. This approach is designed to not only improve the adaptability of our models but also to 

provide more effective and timely responses to the pandemic's challenges. Specifically, we focus on the 

application of these advanced techniques to manage populations that have been vaccinated, aiming to refine 

the control strategies against COVID-19 more effectively. 

The next part of this paper will describe the methodology we use, including details about the 

integration of the extended Kalman filter and the development of optimal control strategies. We will present 

simulation results to demonstrate the effectiveness of this approach in reducing the spread of COVID-19. 

Subsequently, the discussion will critique these results in the context of existing literature and their impact on 

public health policy. The conclusion will summarize the significant findings and propose directions for future 

research in this field. 

 

 

2. METHOD 

In constructing a mathematical model, appropriate assumptions are needed to make the model simpler, 

easier to analyze, understand, and implement. Furthermore, one of the important challenges in mathematical 

models is determining parameter values based on data, requiring optimization methods to overcome this 

difficulty. In this paper, we applied the extended Kalman filter and succeeded in estimating the values of several 

previously unknown parameters. Additionally, we developed control strategies to effectively manage the spread 

of the disease. The results of these control strategies are simulated to demonstrate their effectiveness in 

controlling the outbreak. The research methodology is illustrated in Figure 1. 

 

2.1.  Data collection 

In this study, COVID-19 data collection was carried out by obtaining daily data from the Health 

Department for the period from February 6 to May 5, 2022, specifically for the DKI Jakarta province. The 

collected data includes the number of new cases, active cases, vaccinations, quarantines, recoveries, and 
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deaths that occurred each day during the period. The use of this data aims to analyze the trends in virus 

spread, the effectiveness of the interventions applied, and the dynamics of case changes in the community. 

This information is crucial for understanding the characteristics of COVID-19 spread in the region and serves 

as a basis for further health policy decisions. 

 

 

 
 

 

Figure 1. Research process diagram for the optimization of the mathematical model of COVID-19 

 

 

2.2.  Formulate a mathematical model of COVID-19 

In this paper, the model employed is provided with assumptions as problem constraints to facilitate 

the construction of the model. The assumptions utilized are i) The average birth rate is equal to the average 

death rate, so the total population is constant; ii) The population is closed. There is no movement (migration, 

mobility) to or from the observed area; iii) Every human being born enters a susceptible population;  

iv) Individuals who have received the vaccine but have not yet generated antibodies might still be susceptible 

to infection. When the vaccine does not offer full immunity against the virus, vaccinated individuals can 

remain at risk of contracting the disease [16]; v) Infection with the Omicron variant is transmitted through 

contact with individuals carrying this variant, whereas infection with the original strains occurs via contact 

with individuals infected with those strains. It is important to note that susceptible individuals who come into 

contact with those infected with the original virus may contract that virus but will not become infected with 

the Omicron variant unless exposed to it specifically [17]; vi) Transmission occurs through interactions 

between susceptible and infected individuals [18]; and vii) Individuals who are recorded as confirmed 

positive if declared cured are assumed to be immune to COVID-19. 

 

2.3.  Parameter estimation 

Extended Kalman filter (EKF) is an algorithm designed to estimate states in nonlinear dynamic 

systems and is represented by (1). 

 

𝑑𝑥(𝑡) = 𝑓(𝑥(𝑡))𝑑𝑡  (1) 

 

where 𝑓(. ) denotes the nonlinear system function. By discretizing (1) in time domain, we can obtain the 

discrete-time model: 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝑓(𝑥𝑘)  (2) 

 

where 𝑥𝑘 represents the system state at time point 𝑘.  
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The steps of the extended Kalman filter algorithm proceed as follows, after converting (1) into its 

discrete form. 

a. Linearize the system model (1), resulting in the Jacobian matrix 𝐴. 

b. Initialization of each state variable and parameter when 𝑘 = 0 for the system model (1). 

c. Determine the initial value of the error covariance �̂�0 based on [19]. 

 

�̂�0 = 𝐸[(𝑥0 − �̂�0)(𝑥0 − �̂�0)𝑇] 
 

d. Calculate the predicted state using 

 

 �̂�𝑘
− = 𝐴�̂�𝑘−1. 

 

e. Determine the error covariance value obtained using the equation, 

 

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴𝑇 + ℚ

𝑘
 

 

f. Next is the correction stage. Calculate Kalman gain based on the following equation, 

 

𝐾𝑘 = 𝑃𝑘𝐶𝑇(𝐶𝑃𝑘
−𝐶𝑇 + ℛ𝑘)−1, 

 

with 𝐶 is the observation matrix. 

g. Update state estimates based on the following equation, 

 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐶�̂�𝑘

−) 
 

h. Calculate the error covariance using the following equation, 

 

𝑃𝑘 = [𝐼 − 𝐾𝑘𝐶]𝑃𝑘
− 

 

Repeat steps (a)-(d) until all iterations are processed and the values converge. 

 

2.4.  Optimal control 

Numerically solving this optimal control problem utilizing Pontryagin's minimum principle involves 

developing an algorithm to generate an approximate optimal control solution. The optimal system 

encompasses state equations, along with their initial conditions, costate equations, and associated 

transversality conditions, as well as optimal control characteristics. This control problem can be solved using 

the backward-forward sweep algorithm as in [12], [20], in the following manner: 

a. Divide the time interval [0, 𝑇] into 𝒩 equally spaced subintervals. Create vectors 𝑥 = (𝑥1, 𝑥2, … , 𝑥6) and 

𝜆 = (𝜆1, 𝜆2, … , 𝜆6) to approximate the state and costate variables. 

b. Initialize the values of 𝜑1, 𝜑2, and 𝜑3 for the entire time interval, setting 𝜑1(0) = 𝜑2(0) = 𝜑3(0) = 0. 

The vectors 𝜑1, 𝜑2, and 𝜑3 represent control approximations at time 𝑡. 

c. Starting with the initial condition 𝑥1 = 𝑥(𝑡0) = 𝑥0 and the values in 𝜑1, 𝜑2, and 𝜑3, state differential 

equation is solved forward with respect to time using the 4th order Runge-Kutta method. This provides a 

numerical estimate for the state development. 

d. Using the transversality condition 𝜆𝒩+1 = 𝜆(𝑇) = 0 and the vector values 𝜑1, 𝜑2, 𝜑3, and 𝑥, solve the 

costate equation backward in time using the 4th-order Runge-Kutta method. This provides a numerical 

estimate for the costate. 

e. The control values 𝜑1, 𝜑2, and 𝜑3 are updated by substituting the state and costate values into the optimal 

control characterization.  

f. Next, a convergence check is carried out. If the value of the variable being calculated in the current 

iteration and the value in the previous iteration are quite close or converge, then the value of the variable 

in the current iteration is considered an acceptable solution. This indicates that the algorithm has 

converged or is approaching the optimal solution. If not, the algorithm returns to step 2 for the next 

iteration. 

This process is repeated iteratively until the numerical solution converges to the optimal solution of 

the given optimal control problem. This method is a combination of forward and backward approaches to 

find optimal control using the 4th order Runge-Kutta numerical method. The forward approach involves 

simulating the state dynamics forward in time using initial guesses for the control variables, while the 

backward approach involves adjusting these control variables based on the discrepancies observed in the 
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desired state trajectory. Through iterative refinement of controls, this method efficiently addresses the 

challenges of non-linearities and constraints in control systems, ensuring accuracy and stability in the 

computed solutions. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Result of the COVID-19 model 

In the COVID-19 model, the population 𝑁(𝑡) is categorized into eight distinct compartments to 

better understand and simulate the spread of the virus and its variants. The compartment 𝑆(𝑡) represents the 

subpopulation of individuals who are susceptible to the virus and have not been vaccinated. 𝐸1(𝑡) and 𝐸2(𝑡) 

denote individuals who have been exposed to the original COVID-19 virus and the Omicron variant, 

respectively. 𝑉(𝑡) includes those who have received vaccinations. 𝐼1(𝑡) and 𝐼2(𝑡) are subsets of the 

population infected with the original virus and the Omicron variant, respectively. 𝐻(𝑡) refers to those who 

are severely infected and currently hospitalized, while 𝑅(𝑡) represents individuals who have recovered from 

the infection, highlighting the dynamics and interactions between different stages of the disease within the 

population. Thus, the total population is given by, 

 

𝑁(𝑡) = 𝑆(𝑡) + 𝐸1(𝑡) + 𝐸2(𝑡) + 𝑉(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝐻(𝑡) + 𝑅(𝑡) 

 

The mathematical model for the spread of COVID-19 along with control input can be seen in the following 

system: 

 

�̇�(𝑡) = 𝛬 −
𝛽1𝑆𝐼1

𝑁
(1 − 𝜑1(𝑡)) −

𝛽2𝑆𝐼2

𝑁
(1 − 𝜑1(𝑡)) − (1 + 𝜑2(𝑡))𝜎𝑆 − 𝜇𝑆  

�̇�1(𝑡) =
𝛽1𝑆𝐼1

𝑁
+

𝛽1𝜔1𝑉𝐼1

𝑁
− 𝛼1𝐸1 − 𝜇𝐸1  

�̇�2(𝑡) =
𝛽2𝑆𝐼2

𝑁
+

𝛽2𝜔2𝑉𝐼2

𝑁
− 𝛼2𝐸2 − 𝜇𝐸2  

�̇�(𝑡) = (1 + 𝜑2(𝑡))𝜎𝑆 −
𝛽1𝜔1𝑉𝐼1

𝑁
−

𝛽2𝜔2𝑉𝐼2

𝑁
− 𝜇𝑉 

𝐼1̇(𝑡) = 𝛼1𝐸1 − 𝜑3(𝑡)𝐼1 − 𝛾1𝐼1 − 𝜇𝐼1  

𝐼2̇(𝑡) = 𝛼2𝐸2 − 𝜑3(𝑡)𝐼2 − 𝛾2𝐼2 − 𝜇𝐼2  

�̇�(𝑡) = 𝜑3(𝑡)𝐼1 + 𝜑3(𝑡)𝐼2 − 𝛾3𝐻 − 𝜇𝐻  

�̇�(𝑡) = 𝛾1𝐼1 + 𝛾2𝐼2 + 𝛾3𝐻 − 𝜇𝑅  (3) 

 

and the explanation of the parameters in model (3) are provided in Table 1. 

The control variable 𝜑1(𝑡) represents health education provided to individual 𝑆 with the aim of 

enhancing their understanding of personal health conditions, disease prevention efforts, and steps to maintain 

optimal health. The control variable 𝜑2(𝑡) represents the vaccination intervention, which is intended to 

mitigate and manage the transmission of COVID-19 by increasing the vaccination coverage among the 

population. The control variable 𝜑3(𝑡) is the isolation rate given to 𝐼1 and 𝐼2 with the aim of reducing the 

infected population of 𝐼1 and 𝐼2. 

The basic reproduction number (𝑅0) is given by, 

 

𝑅0 = 𝑚𝑎𝑥 {
(

𝛽1𝛬
𝑁(𝜎 + 𝜇)

+
𝛽1𝜔1𝛬𝜎

𝑁(𝜎 + 𝜇)𝜇
) 𝛼1

𝑎1

,
(

𝛽2𝛬
𝑁(𝜎 + 𝜇)

+
𝛽2𝜔2𝛬𝜎

𝑁(𝜎 + 𝜇)𝜇
) 𝛼2

𝑎3

}. 

 

Disease-free conditions occur if the disease is not endemic or infection has not occurred, namely when 𝑅0 < 1. 

Endemic conditions occur if the disease is not endemic or infection has not occurred, namely when 𝑅0 > 1. 

 

3.2.  Result of parameter estimation using extended Kalman filter 

Before estimating the COVID-19 spread model using the extended Kalman filter (EKF), 

discretization will be carried out first. Discretization itself aims to obtain the form of the equation in a 

discrete state [21]. This is because the EKF method is a system model that uses measurements and a discrete 

time system model. In the COVID-19 model (3), it will be discretized using a forward finite difference 

method for changes in variables over time. The following is a discretization of the COVID-19 disease 

transmission model: 
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𝑆𝑘+1 = 𝑆𝑘 + (𝛬 −
𝛽1𝑆𝑘𝐼1𝑘

𝑁
−

𝛽2𝑆𝑘𝐼2𝑘

𝑁
− 𝜎𝑆𝑘 −  𝜇𝑆𝑘) ∆𝑡  

𝐸1𝑘+1
= 𝐸1𝑘

+ (
𝛽1𝑆𝑘𝐼1𝑘

𝑁
+

𝛽1𝜔1𝑉𝑘𝐼1𝑘

𝑁
− 𝛼1𝐸1𝑘

− 𝜇𝐸1𝑘
) ∆𝑡  

𝐸2𝑘+1
= 𝐸2𝑘

+ (
𝛽2𝑆𝑘𝐼2𝑘

𝑁
+

𝛽2𝜔2𝑉𝑘𝐼2𝑘

𝑁
− 𝛼2𝐸2𝑘

− 𝜇𝐸2𝑘
) ∆𝑡  

𝑉𝑘+1 = 𝑉𝑘 + (𝜎𝑆𝑘 −
𝛽1𝜔1𝑉𝑘𝐼𝑘

𝑁
−

𝛽2𝜔2𝑉𝑘𝐼2𝑘

𝑁
− 𝜇𝑉𝑘) ∆𝑡  

𝐼1𝑘+1
= 𝐼1𝑘

+ (𝛼1𝐸1𝑘
− 𝜑3𝐼1𝑘

− 𝛾1𝐼1𝑘
− 𝜇𝐼1𝑘

)∆𝑡  

𝐼2𝑘+1
= 𝐼2𝑘

+ (𝛼1𝐸2𝑘
− 𝜑3𝐼2𝑘

− 𝛾2𝐼2𝑘
− 𝜇𝐼2𝑘

)∆𝑡  

𝐻𝑘+1 = 𝐻𝑘 + (𝜑2𝐼1𝑘
+ 𝜑3𝐼2𝑘

− 𝛾3𝐻𝑘 − 𝜇𝐻𝑘)∆𝑡  

𝑅𝑘+1 = 𝑅𝑘 + (𝛾1𝐼1𝑘
+ 𝛾2𝐼2𝑘

+ 𝛾3𝐻𝑘 − 𝜇𝑅𝑘)∆𝑡.  (4) 

 
The discrete model (4) can be simplified into the form of a nonlinear function as: 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝑓(𝑥𝑘) 
 

where 𝑥𝑘 is the system state at time point 𝑘. In model (4) a new state variable, �̇�1𝑘
= 0, �̇�2𝑘

= 0, �̇�𝑘 = 0, 

�̇�1𝑘
= 0, �̇�2𝑘

= 0, �̇�1𝑘
= 0, �̇�2𝑘

= 0 �̇�3𝑘
= 0 dan �̇�3𝑘

= 0. Next, to form a system model, in (4) a stochastic 

factor in the form of noise is added as:  

 

𝑆𝑘+1 = 𝑆𝑘 + (𝛬 −
𝛽1𝑘𝑆𝑘𝐼𝑘

𝑁
−

𝛽2𝑘
𝑆𝑘𝐼2𝑘

𝑁
− 𝜎𝑘𝑆𝑘 −  𝜇𝑆𝑘) ∆𝑡 + 𝑤1𝑘

  

𝐸1𝑘+1
= 𝐸1𝑘

+ (
𝛽1𝑘𝑆𝑘𝐼1𝑘

𝑁
+

𝛽1𝑘𝜔1𝑉𝑘𝐼1𝑘

𝑁
− 𝛼1𝑘

𝐸𝑘 − 𝜇𝐸𝑘) ∆𝑡 + +𝑤2𝑘
  

𝐸2𝑘+1
= 𝐸2𝑘

+ (
𝛽2𝑘

𝑆𝑘𝐼2𝑘

𝑁
+

𝛽2𝑘
𝜔2𝑉𝑘𝐼2𝑘

𝑁
− 𝛼2𝑘

𝐸2𝑘
− 𝜇𝐸2𝑘

) ∆𝑡 + 𝑤3𝑘
  

𝑉𝑘+1 = 𝑉𝑘 + (𝜎𝑘𝑆𝑘 −
𝛽1𝑘𝜔1𝑉𝑘𝐼𝑘

𝑁
−

𝛽2𝑘
𝜔2𝑉𝑘𝐼2𝑘

𝑁
− 𝜇𝑉𝑘) ∆𝑡 + 𝑤4𝑘

  

𝐼1𝑘+1
= 𝐼1𝑘

+ (𝛼1𝑘
𝐸1𝑘

− 𝜑3𝑘
𝐼1𝑘

− 𝛾1𝑘
𝐼1𝑘

− 𝜇𝐼1𝑘
)∆𝑡 + 𝑤5𝑘

  

𝐼2𝑘+1
= 𝐼2𝑘

+ (𝛼1𝐸2𝑘
− 𝜑3𝑘

𝐼2𝑘
− 𝛾2𝑘

𝐼2𝑘
− 𝜇𝐼2𝑘

)∆𝑡 + 𝑤6𝑘
  

𝐻𝑘+1 = 𝐻𝑘 + (𝜑3𝑘
𝐼1𝑘

+ 𝜑3𝑘
𝐼2𝑘

− 𝛾3𝑘
𝐻𝑘 − 𝜇𝐻𝑘)∆𝑡 + 𝑤7𝑘

  

𝑅𝑘+1 = 𝑅𝑘 + (𝛾1𝑘
𝐼1𝑘

+ 𝛾2𝑘
𝐼2𝑘

+ 𝛾3𝑘
𝐻𝑘 − 𝜇𝑅𝑘)∆𝑡 + 𝑤8𝑘

 

𝛽1𝑘+1
= 𝛽1𝑘

+ 𝑤9𝑘
  

𝛽2𝑘+1
= 𝛽2𝑘

+ 𝑤10𝑘
  

𝜎𝑘+1 = 𝜎𝑘 + 𝑤11𝑘
   

𝛼1𝑘+1
= 𝛼1𝑘

+ 𝑤12𝑘
  

𝛼2𝑘+1
= 𝛼2𝑘

+ 𝑤13𝑘
  

𝛾1𝑘+1
= 𝛾1𝑘

+ 𝑤14𝑘
  

𝛾2𝑘+1
= 𝛾2𝑘

+ 𝑤15𝑘
  

𝛾3𝑘+1
= 𝛾3𝑘

+ 𝑤16𝑘
  

𝜑3𝑘+1
= 𝜑3𝑘

+ 𝑤17𝑘
  (5) 

 

where ∆𝑡 is the change in time with ∆𝑡 = 0.01. 𝑤𝑘 is system noise in a system model that is normally 

distributed with zero mean and covariance ℚ𝑘  or can be written w𝑘~𝑁(0, ℚ𝑘). 

It is assumed that the parameters to be estimated are: 𝛽1𝑘
, 𝛽2𝑘

, 𝜎𝑘 , 𝛼1𝑘
, 𝛼2𝑘

, 𝛾1𝑘
, 𝛾2𝑘

, 𝛾2𝑘
, 𝛾3𝑘

,  

and 𝜑3𝑘
 as a continuous piecewise functions with jumps every day, obtained in one day the values  

𝛽1𝑘
, 𝛽2𝑘

,  𝜎𝑘 , 𝛼1𝑘
,  𝛼2𝑘

,  𝛾1𝑘
, 𝛾2𝑘

,  𝛾2𝑘
,  𝛾3𝑘

, and 𝜑3𝑘
 are constant, so that equations 𝛽1𝑘+1

= 𝛽1𝑘
,  𝛽2𝑘+1

=

𝛽2𝑘
, 𝜎𝑘+1 = 𝜎𝑘 , 𝛼1𝑘+1

= 𝛼1𝑘
, 𝛼2𝑘+1

= 𝛼2𝑘
, 𝛾1𝑘+1

= 𝛾1𝑘
, 𝛾2𝑘+1

= 𝛾2𝑘
,  𝛾3𝑘+1

= 𝛾3𝑘
, and 𝜑3𝑘+1

= 𝜑3𝑘
 

satisfies. In the process of parameter estimation with extended Kalman filter, it is a common practice to 

introduce additional parameters as new state variables. Equation (5) is a system model, while the 

measurement model is: 

 

𝑧𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 

 

where 𝑣𝑘 is the system noise in the measurement model which is normally distributed with zero mean and 

covariance ℛ𝑘 or usually written v𝑘~𝑁(0, ℛ𝑘). 
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The C matrix follows the available data which includes 𝑆, 𝐸1, 𝐸2, 𝑉, 𝐼1, 𝐼2, 𝑄, and 𝑅. The stochastic 

factor in the form of noise contained in the equation is generated from a number of random numbers from the 

computer through the MATLAB program. The noise generated is assumed to have a normal distribution with 

a mean of zero while the noise variance is assumed to be constant at ℚ𝑘 and ℛ𝑘. By following the algorithm 

steps in sub section 2.3, estimation results are obtained which can be seen in Table 1. Validating the 

constructed model's accuracy entails comparing numerical simulation outcomes with actual data obtained 

from the DKI Jakarta Health Service from February 05 to May 05, 2022. The following is a graph comparing 

the infected population from the results of the numerical simulation with the data shown in Figure 2. 

 

 

Table 1. Estimation results of several parameters with the extended Kalman filter (EKF) 
Parameter Description Result EKF References 

𝛽1 Transmission rate of the original virus 0.09717 Estimation 

𝛽2 Transmission rate of the omicron virus 0.1097 Estimation 

𝛼 Vaccination rates 0.1053 Estimation 

𝜔1 Antibodies may not have been formed by vaccine recipients against the original 

virus after 28 days. 
0.05 [17] 

𝜔2 Antibodies may not have formed in vaccine recipients against the Omicron 
virus after 28 days. 

0.33 [22] 

𝜎1 The rate of change of individual exposures from 𝐸1 to 𝐼1 0.1052 Estimation 

𝜎2 The rate of change of individual exposures 𝐸2 to 𝐼2 0.1053 Estimation 

𝛾1 Recovery rate of each compartment 𝐼1 0.04659 Estimation 

𝛾2 Recovery rate of each compartment 𝐼2 0.05587 Estimation 

𝛾3 Recovery rate of each compartment 𝑄 0.05134 Estimation 

𝜑3 isolation rate 0.659 Estimation 

 

 

  
 

 

   
 

Figure 2. COVID-19 model simulation matching graph with real data 

 

 

3.3.  Design optimal control 

In this subsection, we will be applying optimal control techniques to the COVID-19 model (3). The 

objective of this optimal control is to minimize the performance index with the goal of reducing the 

populations 𝐼1(𝑡) and 𝐼2(𝑡), which is formulated as (6), 

 

𝐽(𝜑1, 𝜑2, 𝜑3) = ∫ (𝐼1(𝑡) + 𝐼2(𝑡) +
1

2
𝐵1𝜑1

2(𝑡) +
1

2
𝐵2𝜑2

2(𝑡) +
1

2
𝐵3𝜑3

2(𝑡))
𝑇

0
𝑑𝑡 (6) 

 

with 𝐵1, 𝐵2, dan 𝐵3 respectively are the weight constants of the control variables in the form of costs for 

health education (𝜑1), vaccination (𝜑2), and isolation (𝜑3). 𝑇 represents the end time of the observation. 
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Our primary focus is on identifying the optimal control (𝜑1
∗, 𝜑2

∗ , 𝜑3
∗) such that 

 

𝐽(𝜑1
∗, 𝜑2

∗ , 𝜑3
∗) = 𝑚𝑖𝑛

𝜑1,𝜑2,𝜑3∈𝜙
𝐽(𝜑1, 𝜑2, 𝜑3) 

 

where 𝜙 = {(𝜑1, 𝜑2, 𝜑3)|𝜑𝑖(𝑡) is Lebesque measurable on [0,1], (𝑖 = 1,2,3)}. Based on system (3) and 

index performance in (6), a Hamiltonian function can be formed as: 

 

ℋ = ℋ(𝑥(𝑡), 𝜑(𝑡), 𝜆(𝑡)) = 𝐼1 + 𝐼2 +
1

2
𝐵1𝜑1

2(𝑡) +
1

2
𝐵2𝜑2

2(𝑡) +
1

2
𝐵3𝜑3

2(𝑡) + 𝜆1 (Λ − (1 −

𝜑1(𝑡))
𝛽1𝑆𝐼

𝑁
− (1 − 𝜑1(𝑡))

𝛽1𝑆𝐼2

𝑁
− (1 + 𝜑2(𝑡))𝜎𝑆 − 𝜇𝑆) + 𝜆2 ((1 − 𝜑1(𝑡))

𝛽1𝑆𝐼1

𝑁
+ (1 −

𝜑1)
𝛽1𝜔1𝑉𝐼1

𝑁
− 𝛼1𝐸1 − 𝜇𝐸1) + 𝜆4 ((1 + 𝜑2(𝑡))𝜎𝑆 − (1 − 𝜑1(𝑡))

𝛽1𝜔1𝑉𝐼1

𝑁
− (1 − 𝜑1(𝑡))

𝛽2𝜔2𝑉𝐼2

𝑁
−

𝜇𝑉 ) + 𝜆5(𝛼1𝐸1 − 𝜑3(𝑡)𝐼1 − 𝛾1𝐼2 − 𝜇𝐼1 ) + 𝜆6(𝛼2𝐸2 − 𝜑3(𝑡)𝐼2 − 𝛾2𝐼2 − 𝜇𝐼2) + 𝜆7(𝜑3(𝑡)𝐼1 +

𝜑3(𝑡)𝐼2 − 𝛾3𝐻 − 𝜇𝐻 ) + 𝜆8(𝛾1𝐼1 + 𝛾2𝐼2 + 𝛾3𝑄 − 𝜇𝑅 ).  

 

where 𝑥(𝑡) = (𝑆(𝑡), 𝐸1(𝑡), 𝐸2(𝑡), 𝑉(𝑡), 𝐼1(𝑡), 𝐼2(𝑡), 𝑄(𝑡), 𝑅(𝑡)) is state system (3) and 𝜆𝑖 , 𝑖 = 1,2,3,4,5,6,7,8 

are the adjoint variables or costate variable. 

Theorem 1. Suppose given the solutions 𝑆(𝑡), 𝐸1(𝑡), 𝐸2(𝑡), 𝑉(𝑡), 𝐼1(𝑡), 𝐼2(𝑡), 𝑄(𝑡), 𝑅(𝑡) of the state system 

(3) and optimal control pairs (𝜑1
∗, 𝜑2

∗ , 𝜑3
∗), there exist costate variables 𝜆𝑖 , 𝑖 = 1,2,3,4,5,6,7,8, which fulfill 

the following adjoint system: 

 

�̇�1 = (𝜆1 − 𝜆2)
𝛽1𝐼1

𝑁
(1 −

𝑆

𝑁
) (1 − 𝜑1) + (𝜆1 − 𝜆3)

𝛽2𝐼2

𝑁
(1 −

𝑆

𝑁
) (1 − 𝜑1) + (𝜆1 − 𝜆4)(1 + 𝜑2)𝛼 +

𝜇𝜆1  
�̇�2 = (𝛼1 + 𝜇)𝜆2 − 𝛼1𝜆5  
�̇�3 = (𝛼2 + 𝜇)𝜆3 − 𝛼2𝜆6  

�̇�4 = (𝜆4 − 𝜆2)
𝛽1𝛿1𝐼1

𝑁
(1 −

𝑉

𝑁
) (1 − 𝜑1) + (𝜆4 − 𝜆3)

𝛽2𝜔2𝐼2

𝑁
(1 −

𝑉

𝑁
) (1 − 𝜑1) + 𝜇𝜆4  

�̇�5 = −1 + (𝜆1 − 𝜆2)
𝛽1𝑆

𝑁
(1 −

𝐼1

𝑁
) (1 − 𝜑1) + (𝜆4 − 𝜆2)

𝛽1𝜔1𝑉

𝑁
(1 −

𝐼1

𝑁
) (1 − 𝜑1) + 𝜆5(𝜑3 + 𝛾1 + 𝜇)  

−𝜑3𝜆7 − 𝛾1𝜆8  

�̇�6 = −1 + (𝜆1 − 𝜆3)
𝛽2𝑆

𝑁
(1 −

𝐼2

𝑁
) (1 − 𝜑1) + (𝜆4 − 𝜆3)

𝛽2𝜔2𝑉

𝑁
(1 −

𝐼2

𝑁
) (1 − 𝜑1) + 𝜆6(𝜑3 + 𝛾2 + 𝜇)  

−𝜑3𝜆7 − 𝛾2𝜆8  
�̇�7 = 𝜆7(𝛾3 + 𝜇) − 𝛾3𝜆8  
�̇�8 = 𝜇𝜆8. 
 

The costate equation system related to the optimal controls (𝜑1
∗, 𝜑2

∗ , , 𝜑3
∗)  ∈ 𝜙 and satisfying the transversality 

conditions 𝜆𝑖(𝑇), 𝑖 = 1,2,3,4,5,6,7,8. As a result, the optimal controls are obtained as: 

 

𝜑1
∗ = 𝑚𝑎𝑥 {0, 𝑚𝑖𝑛 {1,

1

𝐵1
((𝜆2 − 𝜆1)

𝛽1𝑆𝐼1

𝑁
+ (𝜆3 − 𝜆1)

𝛽2𝑆𝐼2

𝑁
+ (𝜆2 − 𝜆4)

𝛽1𝜃1𝑉𝐼1

𝑁
+ (𝜆3 −

𝜆4)
𝛽2𝜃2𝑉𝐼2

𝑁
)} }  

𝜑2
∗ = 𝑚𝑎𝑥 {0, 𝑚𝑖𝑛 {1,

𝜎𝑆(𝜆1−𝜆4)

𝐵2
}}  

𝜑3
∗ = 𝑚𝑎𝑥 {0, 𝑚𝑖𝑛 {1,

(𝜆5−𝜆7)𝐼1+(𝜆6−𝜆7)𝐼2

𝐵3
}}. 

 

3.4.  Result of numerical simulation 

In this subsection, we conduct numerical simulations on models both without and with control 

measures to illustrate the importance of implementing control strategies. Optimal control simulation is 

carried out using the forward-backward sweep algorithm. The parameter values used in the simulation are in 

Table 1. The weight values used are 𝐵1 = 10, 𝐵2 = 20, and 𝐵2 = 20 and observation time 0 ≤ 𝑡 ≤ 150 

days. In this paper, three control scenarios and seven control strategies are presented, encompassing a 

combination of health education (𝜑1(𝑡)), vaccination (𝜑2(𝑡)), and isolation measures (𝜑3(𝑡)).  

− Scenario 1 consists of single controls, namely strategy 1 (health education control), strategy 2 (vaccination), 

and strategy 3 (isolation).  
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− Scenario 2 consists of double controls, there are strategy 4 (combined health education and vaccination 

control), strategy 5 (health education and isolation control), and strategy 6 (vaccination and isolation 

control).  

− Scenario 3 is strategy 7, three control inputs of health education, vaccination, and isolation. 

In Figure 3, control represents the change in control 𝜑∗ with time. Note that initially the optimal 

control 𝜑1
∗ (health education) takes a maximum value at 𝑡 ∈ [0.65], then at time 𝑡 ∈ [65,150] the optimal 

control value 𝜑1
∗ begins to decrease until on day 150 we obtain φ 𝜑1

∗ = 0. In optimal control 𝜑2
∗  (vaccination) 

takes a maximum value at 𝑡 ∈ [0.5], then at time 𝑡 ∈ [5,150] the optimal control value 𝜑2
∗  begins to decrease 

until day 150 we obtain 𝜑2
∗ = 0. Meanwhile, the optimal control 𝜑3

∗  (isolation) takes a maximum value at 𝑡 ∈
[0.95], then at time 𝑡 ∈ [95,150] the optimal control value 𝜑3

∗  begins to decrease until on day 150 we obtain 

𝜑3
∗ = 0. This means that initially the control effort is carried out in full, then the control value decreases 

gradually until the end of the observation reaches zero. 

To perform a comprehensive comparison of all available control strategies, an important step is to 

calculate the total number of infected individuals (TII) as well as the total cases averted (TCA) for each 

strategy. In other words, it is necessary to evaluate the effectiveness of each control strategy to assess its 

ability to reduce the number of people infected and the number of cases that can be prevented. 

 

𝑇𝐼𝐼 = ∫ (𝐼1(𝑡) + 𝐼2(𝑡))
𝑇

0
𝑑𝑡 and 𝑇𝐶𝐴 = ∫ (𝐼1(𝑡) + 𝐼2(𝑡) − (𝐼1(𝑡) + 𝐼2(𝑡)))

𝑇

0
𝑑𝑡,  

 

where (𝐼1(𝑡) + 𝐼2(𝑡)) represents the number of infected individuals without control measures, (𝐼1(𝑡) +

𝐼2(𝑡)) denote the infected individuals with control strategy [4]. The outcomes of all computations are 

presented in Table 2. 

In single input control scenarios, only isolation control showed a significant reduction in the number 

of infected individuals compared to health education and vaccination controls. This reduction occurred 

because, in model (3), isolation control is directly applied to already infected individuals, thus accelerating 

the decrease in the number of infected individuals as shown in Figure 4. In the double input control scenario 

in Figure 5, combining isolation control with other strategies, such as vaccination or health education, has a 

greater positive impact in reducing the number of infected individuals. Furthermore, the triple input control 

scenario showed better results compared to single and double input controls, indicating that the combination 

of these three strategies is more effective in controlling the spread of the virus. The implementation of the 

seventh strategy, which includes health education, vaccination, and isolation control, has proven successful in 

addressing the COVID-19 pandemic, reducing the spread of the virus and costs, as shown in Figure 6. 

 

 

 
 

Figure 3. Optimal control by implementing health education, vaccination, and isolation controls 

 

 

The combination of three strategies (health education, vaccination, and isolation) in dealing with the 

COVID-19 pandemic shows the highest effectiveness, with only 3,417,109 infected individuals and 

88,752,048 cases averted, recording an infection averted ratio of 96.30% and a performance index of 

3,417,510. This strategy is significantly superior compared to others. For instance, isolation control alone 

managed to reduce 88,596,984 cases with an averted ratio of 96.13%, while the combination of health 

education and isolation approaches a similar effectiveness with 96.28% cases averted. Meanwhile, the use of 
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vaccination alone was only able to avert 13.04% of infections. These results indicate that an integrated 

approach involving isolation, vaccination, and health education, when implemented together, provides the 

most comprehensive protection against the spread of COVID-19, underlining the importance of a 

multifaceted strategy in pandemic response. 

 

 

 
(a) 

 
(b) 

 

Figure 4. Population dynamics 𝐼1(𝑡) and 𝐼2(𝑡) by implementing single control input 

 

 

  
(a) (b) 

 

Figure 5. Population dynamics 𝐼1(𝑡) and 𝐼2(𝑡) by implementing double control input 

 

 

  
(a) (b) 

 

Figure 6. Population dynamics 𝐼1(𝑡) and 𝐼2(𝑡) by implementing three control input 
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Table 2. Comparison results of various strategies 
Strategy control Total infected 

individuals (TII) 

Total cases 

averted (TCA) 

Infection 

averted ratio 

Index 

Performances 

Without control 92,168,664 - - - 

Health education control 62,226,360 29,941,797 32.49% 62,226,835 

Vaccination control 880,149,964 12,018,700 13.04% 85,488,961 
Isolation control 3,572,413 88,596,984 96.13% 3,572,413 

Health education and vaccination control 60,031,120 32,137,037 34.87% 61,005,573 

Health education and isolation control 3,423,317 88,744,840 96.28% 3,424,592 
Vaccination and isolation 3,466,109 88,702,556 96.23% 3,528,234 

Health education, vaccination, isolation control 3,416,109 88,752,048 96.30% 3,417,510 

 

 

3.5.  Discussion 

Based on the results of this study, the combination of isolation, vaccination, and health education 

strategies in controlling the COVID-19 pandemic provides very high effectiveness, with an infection 

avoidance ratio reaching 96.30%. This significant reduction in cases supports findings by Ellwanger et al. 

[23], which emphasize that layered interventions can significantly enhance the control of infectious diseases. 

In this study, isolation as a direct intervention on infected individuals plays a vital role in accelerating case 

reduction, similar to conclusions drawn by Littlecott et al. [24] which show effective transmission reduction 

through strict isolation. 

Although this study demonstrates the high effectiveness of a combination of health education, 

vaccination, and isolation strategies, the mere 13.04% effectiveness of vaccination alone in preventing 

infection highlights a significant gap compared to the 50% effectiveness reported by Okoli et al. [25] in 

preventing the spread of the influenza virus. This difference may be due to variability in immune response 

and the rapid mutation rate of COVID-19, which can reduce vaccine effectiveness. This underscores the need 

for ongoing adaptation in vaccine formulation and deployment strategies. As recommended by Vito et al. 

[26], adapting public health responses to the changing conditions of the pandemic is key to maintaining 

control over the spread of the virus. 

The main purpose of this study is to test the effectiveness of combining various control strategies in 

addressing the COVID-19 pandemic and to demonstrate the importance of a multifaceted approach, which 

involves the simultaneous use of multiple strategies. These results are highly relevant to previous studies by 

Murni et al. [27], which documented that multifaceted intervention strategies are more likely to be successful 

in controlling the spread of complex diseases. Although this study provides valuable insights into the benefits 

of combination strategies, there are still unanswered questions related to the optimal implementation of these 

strategies on a larger scale. Therefore, future research needs to explore further how these elements can be 

effectively integrated into different public health policies, adjusting to population dynamics and epidemiological 

changes. 

 

 

4. CONCLUSION 

This study provides deep insights into the complexities of controlling the spread of COVID-19 amid 

the emergence of more infectious variants. Based on the data presented in table above and thorough 

discussions, it has been proven that the use of combined control strategies such as vaccination, health 

education, and isolation offer the most effective results in reducing the number of infected individuals and 

the transmission of the virus, as evidenced by the high infection averted ratio in these combined strategies. 

Strategies without control show high infection rates, underscoring the importance of proactive interventions. 

The use of health education and isolation, whether separately or in combination, shows a significant 

reduction in transmission, with the strategy that combines all three (health education, vaccination, and 

isolation) achieving the highest efficiency in controlling the virus spread. Additionally, the use of 

mathematical models enhanced with parameters estimated using the extended Kalman filter has provided 

strong predictive capabilities and supported evidence-based policy-making decisions. This underscores the 

importance of mathematical models in planning and evaluating responses to the pandemic. 

In conclusion, the findings from this study highlight the importance of a holistic approach in 

managing the COVID-19 pandemic, where a combination of public health education, effective vaccination 

strategies, and strict isolation measures significantly contribute to reducing new cases. This is not only 

relevant for the scientific community but also for policymakers in designing and adjusting effective public 

health interventions for the future. This research also paves the way for further studies in optimizing disease 

control models, especially in the face of continuously emerging new variants. Thus, continued efforts in 

developing and implementing integrated and adaptive control strategies are crucial to addressing the 
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constantly changing dynamics of the pandemic, ensuring that the global community can respond quickly and 

efficiently to emerging health challenges. 
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