
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 5, October 2024, pp. 5400~5407

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i5.pp5400-5407 5400

Journal homepage: http://ijece.iaescore.com

Enhancing the resistance of password hashing using binary

randomization through logical gates

Muhamad Zaki Anbari, Bambang Sugiantoro
Master of Informatics Department, Faculty of Science and Technology, Sunan Kalijaga Islamic State University, Yogyakarta, Indonesia

Article Info ABSTRACT

Article history:

Received Feb 20, 2024

Revised Jun 14, 2024

Accepted Jun 17, 2024

 Digitalization in various sectors makes information security issues very

crucial. Information security follows the authentication, authorization, and

accounting (AAA) principle, where one of the most important parts is
authentication. The most widely used authentication method is username-

password. The best method to secure a user-pass is to convert the plaintext

using a hash so that the converted plaintext cannot be recovered. However,

with higher technology, hackers can crack the ciphertext using brute force.
This research proposes a username-password scrambling algorithm before it

is fed into the hash function to improve resilience from attacks. This

algorithm is named logical gates (LG). It works by converting the user pass

into binary form, adding salt, and scrambling it with certain logical gates
before inserting it into the hash function. Testing is divided into two: time of

execution and attack resistance. Time of execution results show that LG

takes 0.0443432033 s, while without LG takes 0.01403197646 s. The

resistance of attack results show that the plaintext of the hash amplified by

LG cannot be cracked at all and increases the attack time by 321.3% at

prefix and 161.3% at postfix, while without LG, the plain text can be found

for a certain duration of time.

Keywords:

Binary

Hash

Information security

Logical gates

Salt

This is an open access article under the CC BY-SA license.

Corresponding Author:

Muhamad Zaki Anbari

Master of Informatics Department, Faculty of Science and Technology, Sunan Kalijaga Islamic State

University

Caturtunggal, Depok, Sleman, Yogyakarta, 55281, Indonesia

Email: mzakianbari@gmail.com

1. INTRODUCTION

Today most people have utilized technology to support their various activities such as

communication, business, study, entertainment, public services, and so on. Each application of the

technology is closely related to data or information so that information security becomes very important for

everyone. The rapid digitization on the one hand does facilitate various activities but also creates risks such

as data leakage. Confidentiality, integrity, and availability are three parameters that must be referenced in

building information security [1]. Confidentiality means ensuring that the use and storage of data can only be

done by those who have the right. Integrity means ensuring that the data is intact and not deformed or

contaminated by malware or viruses. Availability means ensuring that users who have data access rights can

access the data when they need it [2].

Every application must have an authentication system. Authentication is very important because it

serves to ensure that the data or information in the application can only be accessed by those entitled to

access it [3]. The most commonly used authentication is a combination of username and password, so the

issue of securing password data is very important [4]. Some methods of securing passwords are by

encrypting passwords, entering passwords into a hash function before storing them in the database [5], and

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

 Enhancing the resistance of password hashing using binary randomization … (Muhamad Zaki Anbari)

5401

creating strong passwords [6]. Strong password criteria include a minimum length of 6 characters, not using

the same password for all accounts, using a combination of letters, numbers, symbols, and avoiding

dictionary words as much as possible [7].

The method of securing passwords by storing hashes is the most secure method. Hackers will have

difficulty finding the plaintext password due to the one-way nature of the hash function [8]. The use of

hashes to secure data or passwords can be improved by adding salt [9]. Salt is random text that is combined

with the plaintext password. Salt in addition to increasing the number of password characters will also make

it more difficult to read and guess, making it more immune to various attacks such as dictionary attack, brute

force attack, or rainbow table attack [10], [11]. One of the modules used to generate salt is Secrets. The

Secrets module exists in the python programming language and is used to generate cryptographically strong

random strings. Secrets has incorporated various parameters in cryptography theory to be able to generate

random strings that are more immune to cryptographic attacks [12]. Apart from using salt, hash security is

also affected by the combination scheme between password and salt. Research conducted by [13] clearly

shows the effect of salt placement when used as prefix, postfix, and alternating. This means that the security

of the hash function can be improved by increasing the complexity of the password before it is entered into

the hash function.

Another method introduced to improve hash security is the SXR algorithm. SXR stands for split,

XOR, and replace. This algorithm consists of 4 steps: the password is hashed, then the ratio and number of

iterations of the secret key are calculated. Next, the hashed password is split into 2 based on the result of the

ratio calculation. Finally, the obtained data is combined and stored in the database [14]. Another method

introduced is by swapping the elements in the array proposed by Karrar et al. [15]. This algorithm works by

randomizing the password and salt elements, then separating and hashing the salt when stored in the

database, making it difficult for hackers to guess the stored password. Research conducted by De Guzman

et al. [16] tried to strengthen the hash function by adding a hill chipper. Hill chipper is used to increase

complexity when generating salt. This research focuses on overcoming hash-collision that may occur in large

databases. The method used is that when the system detects hash-collision, the algorithm will take the first

and last characters of the username, then input them into the matrix encryption key (MEK) which then

generates a salt. The salt is combined with the original password to produce a new hash value so that hash-

collision can be avoided.

Based on previous research, there are several methods to improve hash security. Starting from

changing the hash function itself, adding salt, using complex passwords, or adding other algorithms before

the hash function. In summary, this research aims to develop alternative algorithms in randomizing

usernames, passwords, and salt before being entered into the hash function. The resulting algorithm is

expected to have better complexity and robustness than other existing algorithms or methods. The proposed

algorithm is named the logical gates (LG) algorithm. The way it works is that the username and password

that have been combined with salt into binary form, then scramble them with a series of certain logic gates,

the result is a binary circuit that is completely different from the initial binary circuit. Furthermore, the binary

series is converted back to string form and entered into a hash function. In the final stage, testing is done

using time of execution test and resistance of attack hash to compare the performance of LG algorithm with

other algorithms.

2. PROPOSED ALGORITHM

At this stage the proposed algorithm is designed and developed. The proposed algorithm uses a

combination of logic gates to scramble the username, password, and salt before being entered into the hash

function. The flowchart of the proposed algorithm can be seen in Figure 1. Logic gates have many types with

different functions. According to Garg and Kaur [17] there are 7 types of logic gates, namely AND, OR,

NOT, NAND, NOR, XOR, and XNOR.

The LG algorithm uses some of these logic gates to randomize the binary username, password, and

salt before entering the hash function. The first step is for the user to enter a username and password like

most authentication methods. Second, the system will automatically generate a salt using the secrets module.

The third salt and password will be combined using two different schemes in turn, namely the prefix and

postfix schemes. The goal is to find out which scheme is better for strengthening the hash function.

The fourth step of the combined password and salt will be converted in binary form which only

consists of the numbers 1 and 0. Then the binary will be entered sequentially through a series of certain logic

gates. Determining the order of the logic gate circuit is very considering the function of the function of each

logic gate. Errors in making sequences can cause functions between logic gates to be ineffective and

eliminate each other. For example, when the NAND gate is followed by the NOT gate, it is the same as

directly using the AND gate. The logic gate circuit used in the LG algorithm is as follows.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5400-5407

5402

𝐴 𝐴𝑁𝐷 𝐵 = 𝐴𝐵 (1)

𝐴 𝑂𝑅 𝐵 = 𝐴 + 𝐵 (2)

𝐴𝐵 𝑁𝐴𝑁𝐷 (𝐴 + 𝐵) = 𝐴𝐵(𝐴 + 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (3)

𝐴𝐵 𝑁𝑂𝑅 (𝐴 + 𝐵) = 𝐴𝐵 + (𝐴 + 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (4)

𝐴𝐵(𝐴 + 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑋𝑂𝑅 𝐴𝐵 + (𝐴 + 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐴𝐵(𝐴 + 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊕ 𝐴𝐵 + (𝐴 + 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (5)

𝐴𝐵(𝐴 + 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊕ 𝐴𝐵 + (𝐴 + 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑁𝑂𝑇 = 𝐴𝐵 (𝐴 + 𝐵) ⊕ 𝐴𝐵 + (𝐴 + 𝐵) (6)

After passing through a series of logic gates, the resulting binary will be converted back into string

form. But sometimes the resulting binary cannot be converted immediately into string form because the

arrangement of the resulting binary does not meet ASCII standards. So, the step before converting back into a

string is to force the binary to meet the ASCII standard. Finally, the resulting string is entered into the hash

function. The flowchart of LG algorithm is shown in Figure 1.

Figure 1. Flowchart of LG algorithm

Start

Input username and password from

user

Generate salt and concatenate it with

password

Convert username & password to

binary form

Combine binary-user & binary-

password through AND & OR gates

Combine binary-AND & binary-OR

through NAND & NOR gates

Combine binary-NAND & binary-

NOR through XOR gates

Reverse modified password binary

through NOT gates

Force and convert modified

password binary to string form

Input modified password to hash

function

Finish

Int J Elec & Comp Eng ISSN: 2088-8708

 Enhancing the resistance of password hashing using binary randomization … (Muhamad Zaki Anbari)

5403

3. METHOD

3.1. Research Setup

The research begins with preparing research equipment in the form of a computer with Intel Core

i3-10100T @3.00 GHz processor specifications, 8 GB RAM, and Windows 10 operating system. Computer

specifications will greatly affect the testing process. Especially in testing time of attack using the hashcat

application, where the application is highly dependent on computer computing capabilities [18].

3.2. Experimental design

This research uses 8 different passwords and salts with the same username. Each password and salt

will pass through the LG algorithm with variations in salt placement postfix and prefix. The following is the

pseudo-code of the LG algorithm when using the prefix variation, while the postfix variation only needs to

change the pseudo-code on line number 4 to 𝑝𝑠 𝑠𝑎𝑙𝑡 + 𝑝. Algorithm 1 are showing the prefix variations of

the LG algorithm:

Algorithm 1. LG algorithm
Input: a username U

 a password P

Output: a hash value with modified password MP

Start

01: U char(00000000)

02: P char(000000)

03: salt generate_random char (00)

04: ps p + salt

05: bin_U conv2bin(U)

06: bin_PS conv2bin(PS)

07: bin_AND empty array

08: bin_OR empty array

09: bin_NAND empty array

10: bin_NOR empty array

11: bin_XOR empty array

12: bin_NOT empty array

13: ascii_char empty array

14: for i to len(bin_U) do :

15: bin_AND[i] bin_U[i] AND bin_PS[i]

16: bin_OR[i] bin_U[i] OR bin_PS [i]

17: end loop

18: for I to len(bin_U) do :

19: bin_NAND[i] bin_AND[i] NAND bin_OR[i]

20: bin_NOR[i] bin_AND[i] NOR bin_OR[i]

21: end loop

22: for I to len(bin_U) do :

23: bin_XOR bin_NAND[i] XOR bin_NOR[i]

24: end loop

25: for I to len(bin_U) do :

26: bin_NOT bin_XOR[i] NOT

27: end loop

28: ascii_char “01”+Bin_NOT[3:len(bin_U)]

29: hash_value md5(ascii_char)

Testing is done with the aim of knowing how the hash resistance that has been strengthened with the

LG algorithm when compared to hash without the LG algorithm. Testing is divided into 2, namely time of

execution and resistance of attack. Time of execution test is a test of algorithm execution time, which is the

time required for a computer to run an algorithm, generally the lower the execution time, the better the

algorithm [19]. While the resistance of attack test is a test of hash resistance when attacked or hacked. In this

test, the brute force attack method will be used, which is the easiest attack and is widely used by hackers

because the method is simple [18]. The resistance of attack test uses hashcat v6.2.6 software to intentionally

penetrate or brute force attacks. The more complex or secure a hash used, the longer it takes to hack it [20].

4. RESULTS AND DISCUSSION

The LG algorithm is tested through two types of testing, namely time of execution and resistance of

attack. Some examples of passwords and salts used for testing purposes are taken based on [13] which are

then limited to 6 characters, while the salt is generated using the secrets python module and is limited to 2

characters. Limiting the number of characters in passwords and salts aims to speed up testing due to limited

computer specifications and computing power [21].

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5400-5407

5404

4.1. Test dataset

The username used in the research is made uniform, namely "uinjogja", while the list of passwords,

salt, and hash values used can be seen in Table 1. The LG algorithm is implemented using the Python

language by utilizing Google Colab. Here's an example of how the LG algorithm works. For example, the

password inputted is "qwerty" and the salt generated from the secret’s module is "b9". In the LG algorithm,

the prefix variations of the two variables will be combined into "b9qwerty" then the string and username are

converted into binary form which only consists of the numbers 0 and 1. After that the binary username and

binary password will be input into a series of logic gates as described in (1) to (6). The result is a modified

binary string that is different from the initial username and password binary. However, the modified binary is

often not recognized by the ASCII standard. In ASCII the binary first byte of a string is "0" so when the

modified binary has a first byte of "1" it needs to be converted back to a value of "0" in order to be

recognized by ASCII. After the modified binary is in accordance with ASCII, it will then be returned in the

form of a string, so that from the input username "uinjogja", password "qwerty", and salt "b9" a new string

will be generated, namely "h/`bujag". The new string is then inputted into a hash function which in this study

uses the MD5 hash function. Finally, the resulting hash value is stored in the database.

Table 1. Password, salt, and hash value data
No. Password Salt Hash value prefix

(Non-LG)

Hash value prefix

(LG)

Hash value postfix

(Non-LG)

Hash value postfix

(LG)

1 qwerty b9 a57cffb9f48b37302279

cb65c28774c6

3ca9d9ceab8fb2b639c

49a73590b519e

b47ed88cae441f0e23fc1272

2fb98478

9fc747ca76a15894c64

7d34441cea7fe

2 123456 d8 2b10bb383ccffa1cff33a

f8187367143

6ac43c69655c04b37d

706b2a766e9ed1

38dffc940cc4f21c3cdef30a

249576da

c82d53102081487769f

77374f9da69cf

3 monyet ya bcb00de27df5c0b5c5a7

c4d1b1a18dd4

c8e9d120ee747ff54c5

841b5d6dc51fa

c5ad972283684079c891c78

0d3b66342

c8c0f9b7db316890b4e

3ad955fd87d45

4 qazwsx 60 773fc2c5b4c3d4549e0

b804d80b65330

416cb4084e98a33512

09bdb50a131e07

8f82ee16388f7dd17fda7b01

8b5c7940

ec8f2e10507ef3309eee

1f7879c48767

5 qwaszx e2 aac8ec9aa26314d72eaf

11270a62e1cc

f34eab820a2241d9bf6

cbc8cf8595026

c8301921bccc19b4e249d94

d4a443d5b

7a58fb0be8d7fa40c33

581ae35163467

6 harkey e8 c0c3cbb45de7d1d6e00

d3794f1415aed

74cd4547873b1c7745

6a16a750598338

012fed830ef9e9f9d863616a

8bdd2eb4

b9ed9b01df5d7d65ddb

b7b5ea9c7f60a

7 654321 ef 77cbe5a08f41ac2baef6

d0a67591d45a

4c461860053b441bce

17dd596d00833c

4e981513bf3f127d0358fb7

b4f0bdff9

a3be7d5cc1ce86ceb34

6bd36931273c4

8 abc123 67 3a13787a28981863ea0

0a9a099e9ea1a

b897de258ed1bfd6a8f

ebeac6ff5c3e3

8459e2de27ab485d40a8f88

13f03b74f

6e7be7789b71bb171f5

4f0fb554c05ad

4.2. Time of execution test

Time of execution test aims to determine the execution time of the LG algorithm and the

algorithm without LG. The execution time is calculated from the time the username and password are

inputted until the hash value is generated. This test uses software. The test results show that the average

execution time of the algorithm without LG takes 0.01403197646 seconds while the LG algorithm takes

0.0443432033 seconds. The LG algorithm takes 4 times longer than the algorithm without LG. This data is

obtained by testing each password from Table 1 using prefix and postfix variations for 10 repetitions and

then taking the average. Thus, the algorithm without LG has better performance than the LG algorithm in

the execution time section. However, with an execution time of less than 0.1 seconds, humans will not

really notice it when the algorithm is implemented in the real world [22]. The time of execution test data is

shown in Table 2.

Table 2. Execution time data

No
Time execution proposed algorithm (s) Time execution without proposed algorithm (s)

Prefix Postfix Prefix Postfix

1 0.0141196250 0.0131189823 0.0410013198 0.0520370006

2 0.0111825466 0.0125463008 0.0456936359 0.0502171516

3 0.0131368637 0.0158793926 0.0417432785 0.0403289794

4 0.0123655796 0.0108537674 0.0394756794 0.0459666252

5 0.0161843299 0.0133821964 0.0389025211 0.0469002723

6 0.0199582576 0.0157468318 0.0447325706 0.0459043979

7 0.0125904083 0.0116624832 0.0402889251 0.0458452701

8 0.0178318023 0.0139522552 0.04235863686 0.04809498787

Int J Elec & Comp Eng ISSN: 2088-8708

 Enhancing the resistance of password hashing using binary randomization … (Muhamad Zaki Anbari)

5405

4.3. Resistance of attack test

The resistance of attack test aims to compare the resistance of the hash value generated without the

LG algorithm with the hash that has been reinforced with the LG algorithm. The test data is obtained by

testing each password from Table 1 using prefix and postfix variations for 10 repetitions and then the average

is taken. The resistance of attack data is shown in Table 3.

Brute force works by trying all possible combinations to guess the password to be attacked. The

duration of brute force is highly dependent on how long the character set is and the computational

capabilities of the device used by the hacker [21]. The following is the command used to perform brute force

penetration using hashcat:

ℎ𝑎𝑠ℎ𝑐𝑎𝑡 − 𝑎 3 − 𝑚 0 ℎ𝑎𝑠ℎ_𝑣𝑎𝑙𝑢𝑒. 𝑡𝑥𝑡 – −𝑓𝑜𝑟𝑐𝑒

the above command consists of several arguments, namely:

− ℎ𝑎𝑠ℎ𝑐𝑎𝑡 : to call hashcat application

− −𝑎 : to determine attack mode

− 3 : to determine brute force as attack mode

− − 𝑚 : to determine hash function

− 0 : to determine md5 as hash function

− ℎ𝑎𝑠ℎ_𝑣𝑎𝑙𝑢𝑒. 𝑡𝑥𝑡 : to call file contains hash value

− − − 𝑓𝑜𝑟𝑐𝑒 : to ignore any warnings

In hashcat, brute force attacks are similar to mask attacks. The difference between mask attack and

brute force attack is in determining the keyspace. Brute force attacks use the default keyspace, while mask

attacks use a keyspace that has been adjusted to the hacker's target. Keyspace is a limitation of possibilities

that are determined before carrying out an attack [23]. For example, when hackers use brute force, by default

hashcat will use a combination of character sets that include uppercase letters, lowercase letters, and all

numbers or known as mixalpha-numeric. The use of keyspace allows hackers to speed up the attack process

as it minimizes the number of combinations that need to be executed by the computer. However, the use of

keyspace may actually prolong the hacking process or even thwart it due to the hacker's mistake in

determining the keyspace. Keyspace determination is closely related to social engineering techniques. Social

engineering plays a role in the process of finding out how someone designs a password. By knowing how

someone designs a password, hackers can determine a narrower keyspace so that the attack time becomes

shorter [24].

This research uses a brute force attack with a default keyspace because brute force is more general

and objective. In short, when a hash is immune to brute force, it is almost certainly immune to other types of

attacks [25]. Here is the keyspace brute force attack on hashcat:

“? 1? 2? 2? 2? 2? 2? 2? 3? 3? 3? 3? 𝑑? 𝑑? 𝑑? 𝑑”

where,

? 1 : ? 𝑙? 𝑑? 𝑢 (lowercase letters, numbers, and uppercase letters)

? 2 : ? 𝑙? 𝑑 (lowercase letters and numbers)

? 3 : ? 𝑙? 𝑑 ∗ ! $@_ (lowercase letters, numbers, and five selected special characters)

The results of the resistance of attack test can be seen in Table 3.

Table 3. Resistance of attack test data

No
Average duration of attack

Prefix Non LG (s) Cracked Prefix LG (s) Cracked Postfix Non LG (s) Cracked Postfix LG (s) Cracked

1 5639.3 Yes 28798.4 No 17774.7 Yes 28651.7 No

2 1450.5 Yes 28793.3 No 11637.6 Yes 28488.8 No

3 6316.8 Yes 28831.6 No 2469.8 Yes 28543.1 No

4 22421.9 Yes 28669.8 No 3277.1 Yes 28705.9 No

5 7506.7 Yes 28965.2 No 7759.2 Yes 28474.1 No

6 6345.7 Yes 20715 No 19217.9 Yes 28568.7 No

7 2161.7 Yes 28450.8 No 22954.2 Yes 28601.5 No

8 775.3 Yes 28456.5 No 2415.6 Yes 28660.3 No

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5400-5407

5406

Table 3 shows that conventional or non-LG hashes can be cracked within a certain period of time.

The difference in time is due to the varying level of complexity of the hashed password. Based on the

experiments conducted, it is known that passwords that use numbers are more vulnerable than passwords that

use letters. This is because numbers only have 10 different variations, namely numbers 0-9. While letters

have 26 different variations, namely A-Z. For example, password number 1 (qwerty) has a longer hack time

than password number 2 (123456). In addition, the order in which passwords are created has a significant

effect on the duration of the hack [13]. Putting letters at the beginning of the password shows better strength

than putting numbers at the beginning of the password. Password No. 2 when combined with salt (d8123456)

has a longer duration than password No. 8 (67abc123) even though the number of letters in password No. 8 is

more than No. 2. Meanwhile, the LG-strengthened hash has a much longer hacking duration than the

conventional hash. Table 2 shows that the duration of the LG algorithm has a small difference between one

password variation and another. This is very different from the non-LG algorithm whose duration varies

greatly according to the level of password complexity. The similarity in the duration of the LG hash is

because hashcat has run out of password candidates with a length of 8 characters. So, the attack duration on

the LG hash is the total amount of time it takes hashcat to test password candidates from 1 character to 8

characters. In the LG hash, all password variations cannot be found in plaintext. This method is much more

effective for improving password security because there is no need to force someone to create a complex

password for security, but the computer will automatically strengthen the entered password no matter

whether it is vulnerable or not [26].

5. CONCLUSION

The development of digitalization makes information security issues very important. Fraud, hacking,

data theft that is increasingly happening shows that research in the field of information security is needed.

The main focus of this research is on methods to improve password security using hash functions by utilizing

the logical gates (LG) algorithm. The LG algorithm is an algorithm that functions to randomize the username

and password at the binary level before being entered into the hash function. Tests were conducted to

measure the execution time of the LG algorithm and measure the resistance of the hash generated using a

brute force attack.

The test results show that the LG algorithm requires four times longer execution time than the use of

hash without LG. However, the hash combined with the LG algorithm has a much higher resistance to brute

force attacks. Experimental results show that none of the 8 password variations used can be cracked by brute

force. Even though in the worst-case hackers can hack the hash of LG, hackers still need to try to find the

original plaintext password from the modified password generated by LG. This research can be a solution to

build a system that is user friendly, meaning that users do not need to create passwords that are too

complicated, but still take into account in terms of information security. Future research is expected to

develop the LG algorithm so that it can be embedded in a hardware so that its application in strengthening

information security becomes wider.

REFERENCES
[1] S. Samonas and D. Coss, “The cia strikes back: Redefining confidentiality, integrity and availability in security,” Journal of

Information System Security, vol. 10, no. 3, pp. 21–45, 2014.

[2] K. Y. Chai and M. F. Zolkipli, “Review on confidentiality, integrity and availability in information security,” Journal of ICT In

Education, vol. 8, no. 2, pp. 34–42, 2021, doi: 10.37134/jictie.vol8.2.4.2021.

[3] A. Sadiqui, “Securing access using AAA,” Computer Network Security, pp. 67–78, 2020, doi: 10.1002/9781119706762.ch4.

[4] E. Kuka and R. Bahiti, “Information security management: Password security issues,” Academic Journal of Interdisciplinary

Studies, vol. 7, no. 2, pp. 43–47, 2018, doi: 10.2478/ajis-2018-0045.

[5] M. Burnett and J. C. Foster, Chapter 1 Managing users solutions in this Chapter. Syngress Publishing, Inc, 2004, doi:

10.1016/B978-1-932266-65-8.50034-5.

[6] A. Singh and S. Raj, “Securing password using dynamic password policy generator algorithm,” Journal of King Saud University -

Computer and Information Sciences, vol. 34, no. 4, pp. 1357–1361, 2022, doi: 10.1016/j.jksuci.2019.06.006.

[7] M. Yıldırım and I. Mackie, “Encouraging users to improve password security and memorability,” International Journal of

Information Security, vol. 18, no. 6, pp. 741–759, 2019, doi: 10.1007/s10207-019-00429-y.

[8] M. C. Ah Kioon, Z. Wang, and S. Deb Das, “Security analysis of MD5 algorithm in password storage,” in Proceedings of the 2nd

International Symposium on Computer, Communication, Control and Automation (ISCCCA-13), Feb. 2013, pp. 706–709, doi:

10.2991/isccca.2013.177.

[9] D. Balu, A. G, T. S, K. V, and P. V, “Implementation of security in login page using salt and pepper algorithm,” SSRN Electronic

Journal, 2019, doi: 10.2139/ssrn.3358813.

[10] P. Patel, P. Goswami, A. Mishra, S. Khan, and A. Choudhary, “Brute force, dictionary and rainbow table attack on hashed

passwords,” International Journal of Creative Research Thoughts (IJCRT), vol. 9, no. 4, pp. 1899–1905, 2021.

[11] U. Rathod, M. Sonkar, and B. R. Chandavarkar, “An experimental evaluation on the dependency between one-way hash functions

and salt,” 2020 11th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2020,

Int J Elec & Comp Eng ISSN: 2088-8708

 Enhancing the resistance of password hashing using binary randomization … (Muhamad Zaki Anbari)

5407

2020, doi: 10.1109/ICCCNT49239.2020.9225503.

[12] Python Software Foundation, “Secrets — Generate secure random numbers for managing secrets,” Python Software Foundation,

2024, https://docs.python.org/3/library/secrets.html (accessed Feb 20, 2024).

[13] Sutriman and B. Sugiantoro, “Analysis of password and salt combination scheme to improve hash algorithm security,”

International Journal of Advanced Computer Science and Applications, vol. 10, no. 11, pp. 420–425, 2019, doi:

10.14569/IJACSA.2019.0101158.

[14] J. Polpong and P. Wuttidittachotti, “Authentication and password storing improvement using SXR algorithm with a hash

function,” International Journal of Electrical and Computer Engineering, vol. 10, no. 6, pp. 6582–6591, Dec. 2020, doi:

10.11591/ijece.v10i6.pp6582-6591.

[15] A. Karrar, T. Almutiri, S. Algrafi, N. Alalwi, and A. Alharbi, “Enhancing salted password hashing technique using swapping

elements in an array algorithm,” International Journal of Computer Science and Technology (IJCST), vol. 9, no. 1, pp. 21–25,

2018.

[16] F. E. De Guzman, B. D. Gerardo, and R. P. Medina, “Implementation of enhanced secure hash algorithm towards a secured web

portal,” 2019 IEEE 4th International Conference on Computer and Communication Systems, ICCCS 2019, pp. 189–192, 2019,

doi: 10.1109/CCOMS.2019.8821764.

[17] B. Garg and S. Kaur, “A review of logic gates and its applications,” Journal of Emerging Technologies and Innovative Research,

vol. 6, no. 5, pp. 124–129, 2019.

[18] K. Swathi, “Brute force attack on real world passwords,” International Journal of Research Publication and Reviews, vol. 3,

no. 11, pp. 552–558, 2022.

[19] J. Bielecki and M. Śmiałek, “Estimation of execution time for computing tasks,” Cluster Computing, vol. 26, no. 6,

pp. 3943–3956, 2023, doi: 10.1007/s10586-022-03774-1.

[20] D. P. Putra, I. W. A. P. Putra, and I. G. W. P. Sucipta, “Comparison of password attacks using the tools barshwf, hashcat, and

hash cracker console,” (in Bahasa), JTIK (Jurnal Teknik Informatika Kaputama), vol. 7, no. 1, pp. 181–187, 2023, doi:

10.59697/jtik.v7i1.62.

[21] D. J. Bernstein, “Understanding brute force,” ECRYPT STVL Workshop on Symmetric Key Encryption, pp. 10–19, 2005.

[22] R. B. Miller, “Response time in man-computer conversational transactions,” Proceedings of the December 9-11, 1968, Fall Joint

Computer Conference, Part I, vol. 33, no. pt 1, pp. 267–277, 1968, doi: 10.1145/1476589.1476628.

[23] M. Curtin and J. Dolske, “A brute force search of DES keyspace,” Login, vol. 23, no. 3, pp. 15–25, 1998.

[24] R. Hranický, L. Zobal, O. Ryšavý, and D. Kolář, “Distributed password cracking with BOINC and hashcat,” Digital Investigation,

vol. 30, pp. 161–172, 2019, doi: 10.1016/j.diin.2019.08.001.

[25] I. Alkhwaja et al., “Password cracking with brute force algorithm and dictionary attack using parallel programming,” Applied

Sciences (Switzerland), vol. 13, no. 10, 2023, doi: 10.3390/app13105979.

[26] H. Hussain, “Password Security: Best practices and management strategies,” SSRN Electronic Journal, 2022, doi:

10.2139/ssrn.4136333.

BIOGRAPHIES OF AUTHORS

Muhamad Zaki Anbari received his B.Sc degree in physics from Diponegoro
University, Indonesia, in 2020. Currently, he is a master of computer science degree candidate

at the Department of Informatics, Faculty of Science and Technology, Sunan Kalijaga State

Islamic University. His research interests include automation, internet of things, computer

networks, and cybersecurity. He can be reached at email: mzakianbari@gmail.com.

Bambang Sugiantoro earned his B.Sc and Dr degrees in computer science from

Gadjah Mada University, Indonesia. MT degree in electrical engineering at Bandung Institute
of Technology. He is currently the head of the informatics master study program at the

Informatics Department of Sunan Kalijaga State Islamic University. His research interests

include computer networks, cybersecurity, and machine learning. He can be contacted via

email: bambang.sugiantoro@uin-suka.ac.id.

https://orcid.org/0009-0003-5526-4097
https://scholar.google.com/citations?user=6K0OULUAAAAJ&hl=id&authuser=1
https://orcid.org/0000-0002-7548-8122
https://scholar.google.co.id/citations?user=BNiBMBkAAAAJ&hl=id
https://www.scopus.com/authid/detail.uri?authorId=49664086100

