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 Millions of people died worldwide as a result of the coronavirus disease 

2019 (COVID-19) pandemic that started in early 2020. Examining the 

COVID-19 susceptible-exposed-infected-recovery (SEIR) mathematical 

model is one approach to developing the best control scenario for this 

disease. The study utilized two control variables, vaccination, and therapy, to 

construct a control function that relied on the quadratic Lyapunov function. 

The control objective was to lower the number of COVID-19 infections 

while maintaining system stability. A genetic algorithm (GA) is used as a 

novel method to estimate controller parameter value to replace the 

previously used parameter tuning procedure. Then, a numerical simulation 

was carried out implementing three control scenarios, namely vaccination 

control only, treatment control only, and vaccination and treatment control 

simultaneously. Based on the results, scenario 3 (vaccination and treatment 

simultaneously) showed the most significant decrease: the average decrease 

in the exposed human population was 98.29%, and the infected human 

population was 98.18%.  
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1. INTRODUCTION 

World Health Organization (WHO) announced a global pandemic caused by coronavirus disease 

2019 (COVID-19) in March 2020. COVID-19, caused by a novel human coronavirus, severe-acute-

respiratory-syndrome-related coronavirus-2 (SARS-CoV-2), first appeared in Wuhan, China, at the end of 

December 2019. The disease causes several symptoms, including difficulty breathing, cough, runny nose, 

odynophagia, headache, fever or chills, muscle or body aches, vomiting or diarrhea, shortness of breath, and 

a new loss of taste or smell [1]. The primary target of this virus is the respiratory system, and COVID-19's 

respiratory symptoms can range widely from mild symptoms to severe hypoxia and acute respiratory distress 

syndrome (ARDS) [2]. Several researchers have conducted in-depth research regarding the SARS-CoV-2 

virus to create effective and safe drugs and vaccines to treat this disease. It is essential to do this, considering 

that COVID-19 has caused millions of deaths globally [3]–[5].  

Mathematical models can be an alternative to preliminary research before conducting clinical trials 

of vaccination and treatment scenarios for patients. In [6], a mathematical model of high-risk parasitic worm 

clonorchiasis was used to conduct an analytical and numerical examination of vaccine recommendations. 

While a vaccine to cure this condition has not yet been developed, this mathematical model is the first 

reference point. A mathematical model of dengue fever transmission was constructed in [7], [8] to determine 

the efficacy of Wolbachia release as a biological control in stopping the spread of the Aedes aegypti 
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mosquito, which serves as a vector for the dengue fever virus. The analysis of dynamics of the COVID-19 

dissemination were described by the susceptible-exposed-infected-recovery (SEIR) model in [9]–[11]. In 

[11], this model separates the symptomatic and asymptomatic infected compartments into two groups.  

Control variables such as treatment and vaccination have been discussed in the SEIRCOVID-19 

model in several studies [12]–[16]. Applying these control variables aims to reduce the spread of COVID-19 

in the population by reducing the number of infected and exposed humans. However, the control method 

used does not contain the uncertainty and robustness factors of the model, and the parameter values are not 

estimated based on real data. Model parameter values need to be estimated based on real data to obtain more 

precise simulation results based on real conditions in the population [17]–[19]. Different approaches have 

been taken to improve modeling concerning the new coronavirus using genetic algorithms. genetic 

algorithms (GA) were developed in the mid-1960s by Holland by using the natural selection process to 

inspire fresh, improved, and varied approaches to optimization challenges [20].  

Lyapunov control is usually used in the field of mechanical models [21], [22]. In this research, a 

Lyapunov function-based control method will be constructed that can stabilize the SEIR model while 

achieving control objectives. Then, a new approach is used, using a genetic algorithm to estimate optimal 

control parameter values to replace the parameter tuning process that has been carried out so far. The model 

parameter values will be estimated based on actual data using a genetic algorithm. A genetic algorithm is a 

search algorithm that mimics the process of natural selection to find the optimal solution to a problem. In this 

study, the optimal solution is when the model satisfies the control objective and Lyapunov stability criteria 

[23], [24]. Next, the model will be analyzed for stability, and numerical simulations will be carried out based 

on the proposed Lyapunov control design. Three control scenarios will be carried out, namely vaccination 

control only, treatment control only, and vaccination and treatment control simultaneously. 

This research is structured as follows: section 1 contains the introduction and formulation of the 

problem. Section 2 provides an explanation of the mathematical model formulation of the spread of 

COVID-19, analysis of the dynamics of the COVID-19 model including the model equilibrium point, the 

basic reproduction number, stability analysis of the equilibrium point. Section 3 presents the results, which 

involve the estimation of parameters for the COVID-19 model, the development of a control design using a 

quadratic Lyapunov function, and the numerical simulation of the control design's application and 

interpretation. Finally, section 4 provides a conclusion from the entire research. 

 

 

2. RESEARCH METHOD  

The research flow in this work consists of four main stages, namely model formulation, model 

dynamic analysis, controller design determination, and numerical simulation and result analysis. The main 

topic discussed in this research is determining optimal control in minimizing the spread of COVID-19. This 

research uses parameter values sourced from previous research obtained from the parameter estimation 

process. The brief research methodology of this work is shown in Figure 1.  

 

 

 
 

Figure 1. Research methodology 
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2.1.  Formulate a model 

In this stage, a SEIR mathematical model will be prepared that describes the dynamics of the spread 

of COVID-19 in a population. The model was built based on [17], [18] using several assumptions as problem 

constraints to facilitate model formulation. The assumptions used in this research are that the birth rate and 

the death rate are the same; the population is closed; there is no movement (migration, mobility) from or to 

the observed area; every human being is born into a susceptible population; types of death are natural, deaths 

from COVID-19 are ignored; and immunity is not immune, meaning that individuals who already have 

immunity can lose immunity and re-enter the susceptible population [11], [25]. 

 

2.2.  Analysis the model 

At this stage, an analysis of the model's dynamics is carried out, consisting of determining the basic 

reproduction number (𝑅0) and analyzing the stability of the model's equilibrium point. This aims to 

determine the important conditions of the model as knowledge in constructing controllers and implementing 

numerical simulations. The amount of 𝑅0 is calculated using the next generation matrix by determining the 

largest absolute eigenvalue by first determining the Jacobian matrix around the non-endemic equilibrium 

point. Local stability analysis is determined by linearizing the model around the equilibrium point using the 

Jacobian matrix. 

 

2.3.  Optimal control 

At this stage, optimal control is constructed based on the Lyapunov function and genetic algorithm 

optimization. The objective function of the controller is to achieve a stable condition and reduce the number 

of individuals infected with COVID-19. First, the COVID-19 model that has been prepared will be called the 

actual nonlinear system. Then, a reference model was formed as a tracking system that will describe ideal 

conditions, namely non-endemic conditions with no spread of the COVID-19 disease. Next, a controller 

based on the Lyapunov function is designed to estimate the control parameter values using a genetic 

algorithm with a fitness function that minimizes the error between the actual model output and the reference 

model and reaches the condition. When the error between the actual model output and the reference model 

reaches a minimum, the actual model has succeeded in moving along with the reference model toward non-

endemic conditions. 

 

2.4.  Numerical simulation 

In this stage, a numerical simulation of the control design is carried out. Three control scenarios will 

be reviewed to see the different effect of every control variable, namely control vaccination (𝑢1) only, 

control treatment (𝑢2) only, and control 𝑢1 and 𝑢2 simultaneously. Numerical simulations were carried out 

using the 4th order Runge-Kutta method. The model parameter values use reference values from previous 

research, while the initial values used refer to conditions at a certain time. The numerical simulation also 

aims to determine the effectiveness of the control design that has been prepared by calculating the percentage 

reduction in the number of cases with and without control. 

 

 

3. RESULTS AND DISCUSSION 

3.1.   Results of model formulation 

The proposed of a mathematical model for the spread of COVID-19 based on [10], [26] requires 

basic assumptions, defining compartments and parameters, and explaining disease transmission between 

compartments. The proposed model was divided the total population N into four subpopulations, namely 

susceptible (𝑆), exposed (𝐸), infected (𝐼), and immune (𝑅). In this model, the immune individuals are 

individuals who already have immunity to COVID-19, both natural immunity and immunity from vaccines. 

There are two control variables, namely vaccination (𝑢1) and treatment (𝑢2). The definition of the model 

parameters is presented in Table 1. 

 

 

Table 1. The definition of model parameter 
Parameter Definition Unit Value 

𝑏 Natural birth rate Human.Day-1 1

70,69×365
 [26] 

𝜇 Natural death rate Day -1 1

70,69×365
 [26] 

𝛽 Transmission rate Day -1 0.30379 [26] 

𝛼 The transition rate of exposed 
to infectious individual 

Day -1 0.22235 [26] 

𝜀 Recovery rate Day -1 0.33229 [26] 

𝜙 Waning immunity rate Day -1 1

180
 [26] 
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Each compartment of the model can increase or decrease in number at any time 𝑡. Control of 

vaccination 𝑢1 was given to susceptible and exposed individuals at rates of 𝑢1𝑝𝑆 and 𝑢1𝑝𝐸, respectively. 

Susceptible and exposed individuals who have been vaccinated will move into immune individuals. 

Susceptible individuals increase because the recruitment rate 𝑏𝑁. Unvaccinated susceptible individuals 

(1 − 𝑢1𝑝)𝑆 can become exposed individuals if they interact with infected individuals with a transmission 

rate of (1 − 𝑢1𝑝)𝛽𝑆𝐼/𝑁. The exposed individuals move into infected individuals after passing the incubation 

period at a rate of 𝛼. The parameter 𝛼 can be interpreted as the inverse of the length of the incubation period. 

Infected individuals can recover through treatment control 𝑢2 and switch to immune individuals at a rate of 

(1 + 𝑢2)𝜀𝐼. Based on the assumption that immunity is temporary, immune individuals can lose their 

immunity and return to susceptible individuals at a rate of 𝜙𝑅. Each compartment can be reduced by natural 

death at a rate of 𝜇 [26]. A transmission diagram illustrating the interactions of each compartment is given in 

Figure 2. According to the above explanation, we obtain the mathematical model of COVID-19 with control 

as in system (1): 

 

�̇� = 𝑏 + 𝜙𝑅 − (1 − 𝑢1𝑝)𝛽𝑆𝐼 − 𝑢1𝑝𝑆 − 𝜇𝑆,  

�̇� = (1 − 𝑢1𝑝)𝛽𝑆𝐼 − (𝛼 + 𝜇)𝐸 − 𝑢1𝑝𝐸,  

𝐼̇ = 𝛼𝐸 − (1 + 𝑢2)𝜀𝐼 − 𝜇𝐼,  
�̇� = (1 + 𝑢2)𝜀𝐼 + 𝑢1𝑝𝑆 + 𝑢1𝑝𝐸 − (𝜙 + 𝜇)𝑅,  (1) 

 

where 𝑆 + 𝐸 + 𝐼 + 𝑅 = 1 and initial condition 𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0) ≥ 0. 

 

 

 
 

Figure 2. Transmission diagram of the COVID-19 model 

 

 

3.2.  Results of analysis of the model’s dynamics  

This section examines the dynamics of the mathematical model that describes the spread of COVID-19 

in the absence of any control measures (𝑢1 = 𝑢2 = 0). It includes an examination of the equilibrium point, 

basic reproduction number, and the stability analysis of the equilibrium point. The following system (2) is a 

mathematical model of COVID-19 without control: 

 

�̇� = 𝑏 + 𝜙𝑅 − 𝛽𝑆𝐼 − 𝑢1𝑝𝑆 − 𝜇𝑆,  

�̇� = 𝛽𝑆𝐼 − (𝛼 + 𝜇)𝐸 − 𝑢1𝑝𝐸,   

𝐼̇ = 𝛼𝐸 − 𝜀𝐼 − 𝜇𝐼,  

�̇� = 𝜀𝐼 + 𝑢1𝑝𝑆 + 𝑢1𝑝𝐸 − (𝜙 + 𝜇)𝑅,  (2) 

 

The equilibrium points of the model in system (2) is obtained when the rate of change of a 

subpopulation over time is zero, namely when �̇� = �̇� = 𝐼̇ = �̇� = 0 [27]. The mathematical model describes 

in system (2) possesses two equilibrium points, namely the disease-free equilibrium 𝐸0 and the endemic 

equilibrium point 𝐸1. The disease-free equilibrium point is a condition when there is no spread of disease in 

the population, namely 𝐸 = 0 and 𝐼 = 0 [28]. Based on the calculations, the non-endemic equilibrium point 

is 𝐸0 = (𝑆0, 𝐸0, 𝐼0, 𝑅0) = (𝑏/𝜇, 0,0,0). Based on the assumption of positivity of all parameters, the 

equilibrium points 𝐸0 always exists. The endemic equilibrium point is a condition where the disease  

spreads in the population, namely 𝐸 ≠ 0 and 𝐼 ≠ 0. The endemic equilibrium points of the system (2) is  
𝐸1 = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) where 

 

𝑆∗ = (𝛼 + 𝜇)(𝜀 + 𝜇)/𝛼𝛽,  

𝐸∗ = ((𝜇 + )(𝜇 + 𝜀)2(𝛼 + 𝜇)(𝑅0 − 1))/𝛼𝛽((𝛼 + 𝜇)(𝜙 + 𝜀 + 𝜇) + 𝜙𝜀),  
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𝐼∗ = (𝛼 + 𝜇)(𝜇 + 𝜙)(𝜇 + 𝜀)(𝑅0 − 1)/𝛽((𝛼 + 𝜇)(𝜙 + 𝜀 + 𝜇) + 𝜙𝜀), and  

𝑅∗ = (𝜀(𝛼 + 𝜇)(𝜇 + 𝜀)(𝑅0 − 1))/𝛽((𝛼 + 𝜇)(𝜙 + 𝜀 + 𝜇) + 𝜙𝜀).  

 

Therefore, the endemic equilibrium point 𝐸1 exists if 𝑅0 > 1. 

 

3.2.1. Basic reproduction number (𝑹𝟎) 

The basic reproduction number 𝑅0 is one of the important parameters in the epidemic model. In a 

population that is fully susceptible, the basic reproduction number indicates the number of secondary 

infection cases that were passed on by a single primary infection case [29]. The basic reproduction number is 

a threshold quantity that indicates whether an epidemic will occur or not. If the basic reproduction number 

(𝑅0) is less than 1, the infection will become extinct. Conversely, if 𝑅0 is more than 1, an epidemic will 

occur. The value of 𝑅0 will be computed using the next generation matrix (NGM) as described in reference 

[5]. Based on system (2) defined vector x = (𝐸, 𝐼)𝑇  then decompose x into 𝐹 − 𝑉 form as follows: 

 

𝐹 = (
𝛽𝑆𝐼
0

) and 𝑉 = (
(𝛼 + 𝜇)𝐸

−𝛼𝐸 + (𝜀 + 𝜇)𝐼
), 

 

where matrix 𝐹 represents disease transmission and matrix 𝑉 represents disease transition. Next, the NGM 

matrix is obtained from the formula 𝑁𝐺𝑀 = 𝔽ℤ−1 with 𝔽 =
𝜕𝐹

𝜕𝐱
|
𝐸0

 and ℤ =
𝜕𝑉

𝜕𝐱
|
𝐸0

 [30]. The NGM matrix 

corresponding to the disease-free equilibrium point 𝐸0 is as (3): 

 

𝑁𝐺𝑀 = (
𝛽𝛼𝑆

(𝛼+𝜇)(𝜀+𝜇)

𝛽𝑆

(𝜀+𝜇)

0 0
). 

 

So that the basic reproduction number obtained from system (2) is: 

 

𝑅0 =
𝛼𝛽𝑏

𝜇(𝛼+𝜇)(𝜇+𝜀)
  (3) 

 

Disease-free conditions will occur if the disease is not epidemic or infection has not occurred, 

namely when 𝑅0 < 1. Note that the term 𝑏 represents the parameters for the occurrence of infection in the 

population. Meanwhile, the term (𝛼 + 𝜇)(𝜇 + 𝜀) represents the parameters related to the reduction of 

infection in the population. Thus, the condition that describes the disease is not endemic or infection has not 

occurred if the infection rate is less than the cure and death rate. 

 

3.2.2. The stability analysis of equilibrium point 

The mathematical model of COVID-19 describes in system (2) takes the form of a system of 

nonlinear differential equations. Therefore, the stability analysis is carried out by linearization around the 

equilibrium point using the Jacobian matrix [29]. The Jacobian matrix of system (2) is obtained by partially 

deriving the four equations 𝑓1 to 𝑓4 with respect to compartments 𝑆, 𝐸, 𝐼, and 𝑅, respectively, as: 

 

𝐽 =

(

 
 
 
 
 
 

𝜕𝑓1
𝜕𝑆

𝜕𝑓1
𝜕𝐸

𝜕𝑓1
𝜕𝐼

𝜕𝑓1
𝜕𝑅

𝜕𝑓2

𝜕𝑆

𝜕𝑓2

𝜕𝐸

𝜕𝑓2

𝜕𝐼

𝜕𝑓2

𝜕𝑅
𝜕𝑓3

𝜕𝑆

𝜕𝑓3

𝜕𝐸

𝜕𝑓3

𝜕𝐼

𝜕𝑓3

𝜕𝑅
𝜕𝑓4
𝜕𝑆

𝜕𝑓4
𝜕𝐸

𝜕𝑓4
𝜕𝐼

𝜕𝑓4
𝜕𝑅)

 
 
 
 
 
 

 

 

where 

𝑓1 = �̇� = 𝑏 + 𝜙𝑅 − 𝛽𝑆𝐼 − 𝜇𝑆  

𝑓2 = �̇� = 𝛽𝑆𝐼 − (𝛼 + 𝜇)𝐸 

𝑓3 = 𝐼̇ = 𝛼𝐸 − (𝜀 + 𝜇)𝐼  

𝑓4 = �̇� = 𝜀𝐼 − (𝜙 + 𝜇)𝑅  

 

We obtained the Jacobian of the system (2) is: 
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𝐽 = (

−𝛽𝑰 − 𝜇 0 −𝛽𝑺 𝜙

𝛽𝑰 −(𝛼 + 𝜇) 𝛽𝑺 0

0 𝛼 −(𝜀 + 𝜇) 0

0 0 𝜀 −(𝜙 + 𝜇)

)  (4) 

 

The stability analysis of the disease-free equilibrium (DFE) point 𝐸0 and endemic equilibrium point 

𝐸1 of system (2) is given by the following theorems: 

Theorem 1. The non-endemic equilibrium (DFE) point 𝐸0 is asymptotically stable if 𝑅0 < 1. 

Proof. The Jacobian matrix (4) evaluated at the non-endemic equilibrium point 𝐸0 of system (2) is as (5): 

 

𝐽0 =

(

  
 

−𝜇 0 −
𝛽𝑏

𝜇
𝜙

0 −(𝛼 + 𝜇) 
𝛽𝑏

𝜇
0

0 𝛼 −(𝜀 + 𝜇) 0

0 0 𝜀 −(𝜙 + 𝜇))

  
 

. (5) 

 

The eigen values of the Jacobian matrix 𝐽0 are 𝜆1 = −𝜇, 𝜆2 = −(𝜇 + 𝜙), and 𝜆3,4 are the root of the equation 

 

𝜆2 + 𝜆(𝛼 + 2𝜇 + 𝜀) + ((𝛼 + 𝜇)(𝜇 + 𝜀)(1 − 𝑅0)) = 0.   (6) 

 

The eigen values 𝜆3,4 will be negative if ((𝛼 + 𝜇)(𝜇 + 𝜀)(1 − 𝑅0)) > 0, it means when 𝑅0 < 1. The 

equilibrium point 𝐸0 will asymptotically stable if all of the eigen values are negative. Therefore, the non-

endemic equilibrium point 𝐸0 is asymptotically stable if 𝑅0 < 1.  

Theorem 2. The endemic equilibrium point 𝐸1 is asymptotically stable if 𝑅0 > 1, (
𝑐1

𝛼𝛽𝑆∗) > 1, (
𝑐2

𝛼𝛽𝑆∗(𝜇+𝜙)
) >

1, and 
𝑎1𝑐1+𝛼𝛽2(𝜇+𝜙)

𝑎1𝛼𝛽𝑆∗+𝑐2
> 1, where 

 

𝑎1 = 𝛽𝐼∗ + 𝛼 + 3𝜇 + 𝜙 + 𝜀, 

𝑐1 = (𝛽𝐼∗ + 𝜇)(𝛼 + 2𝜇 + 𝜙 + 𝜀) + 𝛼(𝜇 + 𝜀) + 𝜙(𝛼 + 𝜀), and 

𝑐2 = 𝛽𝐼∗[(𝜇 + 𝜙 + 𝜀)(𝛼 + 𝜇) + 𝜙𝜀] + (𝜇 + 𝛼)[𝜇(𝜇 + 𝜙 + 𝜀) + 𝜙𝜀]. 
 

Proof. The Jacobian matrix (4) evaluated at the endemic equilibrium point 𝐸1 of system (2) is as (7): 

 

𝐽1 = (

−𝛽𝑰∗ − 𝜇 0 −𝛽𝑺∗ 𝜙

𝛽𝑰∗ −(𝛼 + 𝜇) 𝛽𝑺∗ 0

0 𝛼 −(𝜀 + 𝜇) 0

0 0 𝜀 −(𝜙 + 𝜇)

).  (7) 

 

The eigen values of Jacobian matrix 𝐽1 are 𝜆1 = −𝜇 and 𝜆2,3,4 are the root of the qubic (8): 

 

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0,   (8) 

 

where 𝑎1 = 𝛽𝐼∗ + 𝛼 + 3𝜇 + 𝜙 + 𝜀, 𝑎2 = 𝑐1 − 𝛼𝛽𝑆∗, 𝑎3 = 𝑐2 − 𝛼𝛽𝑆∗(𝜇 + 𝜙), 𝑐1 = (𝛽𝐼∗ + 𝜇)(𝛼 + 2𝜇 +
𝜙 + 𝜀) + 𝛼(𝜇 + 𝜀) + 𝜙(𝛼 + 𝜀), and 𝑐2 = 𝛽𝐼∗[(𝜇 + 𝜙 + 𝜀)(𝛼 + 𝜇) + 𝜙𝜀] + (𝜇 + 𝛼)[𝜇(𝜇 + 𝜙 + 𝜀) + 𝜙𝜀]. 

Based on Routh-Hurwitz criteria, the roots of (8) will have negative real part if 𝑎1,𝑎2,𝑎3 > 0 and 

𝑎1𝑎2 − 𝑎3 > 0. Therefore, we obtained as follows: 

− Because of all the parameter is positive and 𝐼∗ ≥ 0, then 𝑎1 > 0. 

− The coefficient 𝑎2 > 0 if (
𝑐1

𝛼𝛽𝑺∗) > 1. 

− The coefficient 𝑎3 > 0 if (
𝑐2

𝛼𝛽𝑺∗(𝜇+𝜙)
) > 1. 

− The term 𝑎1𝑎2 − 𝑎3 > 0 will satisfied if 
𝑎1𝑐1+𝛼𝛽2(𝜇+𝜙)

𝑎1𝛼𝛽𝑺∗+𝑐2
> 1.  

The endemic equilibrium point 𝐸1 will be asymptotically stable if all of the eigenvalues are negative. Hence, 

the endemic equilibrium point 𝐸1 will be asymptotically stable if 𝑅0 > 1, (
𝑐1

𝛼𝛽𝑆∗) > 1, (
𝑐2

𝛼𝛽𝑺∗(𝜇+𝜙)
) > 1, and 

𝑎1𝑐1+𝛼𝛽2(𝜇+𝜙)

𝑎1𝛼𝛽𝑺∗+𝑐2
> 1.  
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3.3.  Results of optimal control construction 

In this section, we discuss the design of Lyapunov's control for the COVID-19 model with vaccine 

and treatment control [2], [26], [31]. The control design aims to overcome the nonlinearity and instability in 

the mathematical model of COVID-19 in the system (1). System (1) can be written in the following form: 

 

x = 𝑓(𝑥, 𝑢, 𝑡), (9) 

 

where x = (𝑆, 𝐸, 𝐼, 𝑅), u = (𝑢1, 𝑢2). The system (1) is referred to as the actual system. Furthermore, the 

Lyapunov Quadratic Function (LQF) will be used to analyze the system (1) and develop appropriate control 

designs to stabilize and control the spread of COVID-19. First, a reference system (10) is established as: 

 

𝑥�̇� = 𝐹𝑥𝑑, (

𝑆
𝐸
𝐼
𝑅

) = (

−𝜇 0 −𝛽1 0

0 −(𝛼 + 𝜇) 𝛽1 0

0 𝛼 −(𝜀 + 𝜇) 0
0 0 𝜀 −𝜇

)(

𝑆
𝐸
𝐼
𝑅

). (10) 

 

The parameter 𝛽1 is the infection rate selected so that the reference model on the system (10) meets 

the disease-free condition. The magnitude of the error between the reference model (10) and the actual 

system (1) is defined as (11): 

 

𝑒 = 𝑥𝑑 − 𝑥  

�̇� = 𝑥�̇� − �̇�  (11) 

 

Substitute the system (1) and system (10) into (11) will obtained. 

 

�̇� = 𝐹𝑥𝑑 − 𝑓(𝑥, 𝑢, 𝑡)  

�̇� = 𝐹𝑥𝑑 − 𝐹𝑥 + 𝐹𝑥 − 𝑓(𝑥, 𝑢, 𝑡)  

�̇� = 𝐹𝑒 + 𝐹𝑥 − 𝑓(𝑥, 𝑢, 𝑡)  (12) 

 

Lyapunov quadratic function (LQF) defined as (13): 

 

𝑉(𝑒) = 𝑒𝑇𝑃𝑒,  (13) 

 

where 𝑃 is real symmetry and positive definite matrix. 

Differentiate (13) over 𝑡 will gives: 

 

�̇�(𝑒) = �̇�𝑇𝑃𝑒 + 𝑒𝑇𝑃�̇�  

�̇�(𝑒) = 𝑒𝑇(𝐹𝑇𝑃 + 𝑃𝐹)𝑒 + 2𝑒𝑇𝑃[𝐹𝑥 − 𝑓(𝑥, 𝑧, 𝑢, 𝑡)]  
�̇�(𝑒) = −𝑒𝑇𝑄𝑒 + 2𝑀  (14) 

 

where 

 

𝐹𝑇𝑃 + 𝑃𝐹 + 𝑄 = 0, and  (15) 

 

𝑀 = 𝑒𝑇𝑃[𝐹𝑥 − 𝑓(𝑥, 𝑢, 𝑡)].  (16) 

 

Then, substitute the system (1) and (10) into (16) will obtain: 

 

𝑀 = 𝑒𝑇𝑃[𝐹𝑥 − 𝑓(𝑥, 𝑢, 𝑡)]  
 

= (𝑒1 𝑒2 𝑒3 𝑒4) (

𝑝11 𝑝12 𝑝13 𝑝14

𝑝12 𝑝22 𝑝23 𝑝24

𝑝13 𝑝23 𝑝33 𝑝34

𝑝14 𝑝24 𝑝34 𝑝44

) 

[
 
 
 

(

−𝛽1𝐼 − 𝜇𝑆

𝛽1𝐼 − (𝛼 + 𝜇)𝐸

𝛼𝐸 − (𝜀 + 𝜇)𝐼
𝜀𝐼 − 𝜇𝑅

) −

(

 

𝑏 + 𝜙𝑅 − (1 − 𝑢1𝑝)𝛽𝑆𝐼 − 𝑢1𝑝𝑆 − 𝜇𝑆
(1 − 𝑢1𝑝)𝛽𝑆𝐼 − (𝛼 + 𝜇)𝐸 − 𝑢1𝑝𝐸

𝛼𝐸 − (1 + 𝑢2)𝜀𝐼 − 𝜇𝐼
(1 + 𝑢2)𝜀𝐼 + 𝑢1𝑝𝑆 + 𝑢1𝑝𝐸 − (𝜙 + 𝜇)𝑅)

 

]
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= (𝑟1 𝑟2 𝑟3 𝑟4) (

−𝛽1𝐼 − 𝑏 − 𝜙𝑅 + (1 − 𝑢1𝑝)𝛽𝑆𝐼 + 𝑢1𝑝𝑆

𝛽1𝐼 − (1 − 𝑢1𝑝)𝛽𝑆𝐼 + 𝑢1𝑝𝐸
𝑢2𝜀𝐼

−𝑢2𝜀𝐼 − 𝑢1𝑝𝑆 − 𝑢1𝑝𝐸 + 𝜙𝑅

)  

= 𝑟1(−𝛽1𝐼 − 𝑏 − 𝜙𝑅 + 𝛽𝑆𝐼) + 𝑟2(𝛽1𝐼 − 𝛽𝑆𝐼) + 𝑟4𝜙𝑅 + 𝑢1𝑝((𝑟2 − 𝑟1)𝛽𝑆𝐼 + (𝑟1 − 𝑟4)𝑆 +

(𝑟2 − 𝑟4)𝐸) + 𝑢2𝜀𝐼(𝑟3 − 𝑟4),  (17) 

 

where 𝑟1 = 𝑒1𝑝11 + 𝑒2𝑝12 + 𝑒3𝑝13 + 𝑒4𝑝14, 𝑟2 = 𝑒1𝑝12 + 𝑒2𝑝22 + 𝑒3𝑝23 + 𝑒4𝑝24, 𝑟3 = 𝑒1𝑝13 + 𝑒2𝑝23 +
𝑒3𝑝33 + 𝑒4𝑝34, 𝑟4 = 𝑒1𝑝14 + 𝑒2𝑝24 + 𝑒3𝑝34 + 𝑒4𝑝44,  

Let 
 

𝑢1 =
−𝑟1(−𝛽1𝐼−𝑏−𝜙𝑅+𝛽𝑆𝐼)−𝑐1𝑆2−𝑐2𝐸2+𝑐3𝑆2𝑠𝑖𝑔𝑛(𝑟1)+𝑐4𝐸2𝑠𝑖𝑔𝑛(𝑟3)

𝑝((𝑟2−𝑟1)𝛽𝑆𝐼+(𝑟1−𝑟4)𝑆+(𝑟2−𝑟4)𝐸)
,   (18) 

 

𝑢2 =
−𝑟2(𝛽1𝐼−𝛽𝑆𝐼)−𝑟4𝜙𝑅−𝑐5𝐼2+𝑐6𝐼2𝑠𝑖𝑔𝑛(𝑟2)

𝜀𝐼(𝑟3−𝑟4)
.  (19) 

 

Substitute (18) and (19) into (17) then we obtained 
 

𝑀 = −𝑐1𝑆
2 − 𝑐2𝐸

2 + 𝑐2𝑆
2𝑠𝑖𝑔𝑛(𝑟1) + 𝑐4𝐸

2𝑠𝑖𝑔𝑛(𝑟3) − 𝑐5𝐼
2 + 𝑐6𝐼

2𝑠𝑖𝑔𝑛(𝑟2). (20) 
 

Therefore, (14) become 
 

�̇�(𝑒) = −𝑒𝑇𝑄𝑒 + 2(−𝑐1𝑆
2 − 𝑐2𝐸

2 + 𝑐3𝑆
2𝑠𝑖𝑔𝑛(𝑟1) + 𝑐4𝐸

2𝑠𝑖𝑔𝑛(𝑟3) − 𝑐5𝐼
2 + 𝑐6𝐼

2𝑠𝑖𝑔𝑛(𝑟2)).(21) 
 

Next, the matrix 𝑃 will be solved from (15). In general, the parameter values in the controller design 

are determined by tuning. However, in this study, optimization was carried out using a genetic algorithm to 

obtain the parameter values 𝑐𝑖, 𝑖 = 1,… , 6, of the control designs (18) and (19) that met �̇�(𝑒) < 0 so that the 

system was stable. 

 

3.4.  Results of numerical simulation 

In this section, a numerical simulation of the control design obtained from (20). The overview of the 

control strategy is given in Figure 1. Three control scenarios will be reviewed, namely control 𝑢1 only, 

control 𝑢2 only, and control 𝑢1 & 𝑢2 simultaneously. The initial value used in this simulation is (𝑆, 𝐸, 𝐼, 𝑅) =
(0.980047, 8.6596 × 10−4, 0.001740, 0.017347) with a simulation time of 100 days. The parameter values 

of the COVID-19 mathematical model use the values in Table 1. 

 

3.4.1. Scenario 1 (control 𝒖𝟏 only) 

Simulations were carried out by applying only vaccination controls, namely 𝑢1 ≠ 0 and 𝑢2 = 0. The 

value of the control design parameter estimates for scenario 1 is shown in Table 2. The graph of the control 

effort 𝑢1 for implementing scenario 1 is given in Figure 3. The dynamics of each population based on the 

application of control 𝑢1 is given in Figure 4. Based on Figure 3, the amount of control 𝑢1 is given quite high 

at the beginning of the observation period then it decreases slowly until the end. Figure 4 shows that by 

giving control of vaccination to susceptible and exposed populations causes a decrease in both populations 

while increasing the immune population. Figure 4(a) shows that the number of susceptible humans decreased 

drastically and relatively quickly due to the implementation of vaccination control. The susceptible 

population will change phase to become an immune population, resulting in a drastic increase in the immune 

population, as seen in Figure 4(b). Figures 4(c) and 4(d) show that the exposed and infected individual 

populations have not been able to follow the reference curve well. However, in general, vaccination control 

reduced the exposed and infected population. 
 

 

Table 2. Controller’s parameter value of scenario 1, 2, and 3 
Scenario 1 Scenario 2 Scenario 3 

Parameter Value Parameter Value Parameter Value  

𝑐1 0.89336 𝑐1 0.91366 𝑐1 0.91366 

𝑐2 0.55222 𝑐2 0.29210 𝑐2 0.29210 

𝑐3 0.89274 𝑐3 0.75015 𝑐3 0.75015 

𝑐4 0.90952 𝑐4 0.26440 𝑐4 0.26440 

𝑐5 0.96515 𝑐5 0.96002 𝑐5 0.96002 

𝑐6 0.31483 𝑐6 0.93945 𝑐6 0.93945 
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Figure 3. Optimal control 𝑢1 of scenario 1 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 4. The dynamics of (a) 𝑆, (b) 𝐸, (c) 𝐼, and (d) 𝑅 for scenario 1 

 

 

3.4.2. Scenario 2 (control 𝒖𝟐 only) 

The simulation was carried out by applying only treatment controls, namely 𝑢2 ≠ 0 and 𝑢1 = 0. The 

value of the control design parameter estimation results for scenario 2 is shown in Table 2. The graph of the 

optimal control 𝑢2 for implementing scenario 2 is given in Figure 5. The dynamics of each population based 

on the application of control 𝑢2 is given in Figure 6. Based on Figure 5, the amount of control effort is given 
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with a high portion at the beginning of the observation period, and then it decreases slowly until it reaches 

zero on the 65th day and ends. Figure 6 shows that administration of control treatment succeeded in 

significantly reducing the number of exposed and infected individual populations. While Figure 6(a) shows that 

the susceptible population experienced an increase, Figure 6(b) shows a significant decrease in the exposed 

individual. Figure 6(c) shows that the curve of infected individuals is able to follow the reference curve quite 

well. In addition, in Figure 6(d), the population of immune individuals decreased. This happens because of the 

assumption that immunity is temporary so that immune individuals return to being susceptible individuals. 

 

 

 
 

Figure 5. Optimal control value 𝑢2 of scenario 2 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 6. The dynamics of (a) 𝑆, (b) 𝐸, (c) 𝐼, and (d) 𝑅 for scenario 2 
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3.4.3. Scenario 3 (control 𝒖𝟏 and 𝒖𝟐 simultaneously) 

Simulations were carried out by applying only treatment controls, namely 𝑢2 ≠ 0 and 𝑢1 ≠ 0. The 

estimated control design parameter values for scenario 3 are shown in Table 2. The graphs of the control 

effort 𝑢1 and 𝑢2 for the implementation of scenario 3 are given in Figure 7. The dynamics of each population 

are given in Figure 8. Based on Figure 7, the amount of control effort 𝑢1 is given is relatively low during the 

observation time. The amount of control effort 𝑢1 is given is quite high at the beginning of the observation 

period and then decreases slowly until the end of the observation period. While the amount of control effort 

𝑢2 is given with a high portion at the beginning of the observation period. Then it decreased slowly until it 

reached zero on the 65th day until the end of the observation time. 

Figure 8 shows the dynamics of each population based on the application of control scenario 3. The 

administration of control of vaccination and treatment simultaneously succeeded in reducing the number of 

exposed and infected individual populations significantly. In Figure 8(a) the population of susceptible 

individuals has significantly decreased. In Figure 8(b), the population of exposed individuals decreases 

significantly following the reference model. In addition, Figure 8(c) shows that the curve of infected 

individuals is able to follow the reference curve quite well, while in Figure 8(d) the immune population has 

increased. This happened because of the implementation of vaccination control in susceptible individuals. 

 

 

 
 

Figure 7. Optimal control value of 𝑢1 and 𝑢2 for scenario 3 

 

 

Table 3 compares the number of individuals exposed and infected at the end of the observation 

period for each scenario. Table 3 shows that implementing the three scenarios may decrease the exposed and 

infected populations by the end of the observation period (day 100). The application of scenario 1 

(vaccination) was able to lower the number of people exposed to the disease by 72.21% and the number of 

people who were infected by 70.53% over the observation period. By implementing scenario 2 (vaccination), 

it was possible to lower the number of people exposed to human disease by 93.80% and the number of people 

infected by 93.81%. The most significant reduction was achieved by implementing scenario 3 (vaccination 

and concurrent treatment), which led to a 98.29% decrease in the population of exposed humans and a 

98.18% decrease in infected humans. 

 

 

Table 3. The comparison of exposed & infected population in the end of simulation (day-100th) 
Condition Exposed 

Population (𝐸) 

Infected 

Population (𝐼) 

The reduction percentage of 

exposed population 

The reduction percentage 

of infected population 

Without control 3854 people 2698 people - - 

Control 𝑢1 1071 people 795 people 72.21% 70.53% 

Control 𝑢2 239 people 167 people 93.80% 93.81% 

Control 𝑢1 & 𝑢2 

simultaneously 

66 people 49 people 98.29% 98.18% 
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(a) (b) 

 

  
(c) (d) 

 

Figure 8. The dynamics of (a) 𝑆, (b) 𝐸, (c) 𝐼, and (d) 𝑅 for scenario 3 

 

 

4. CONCLUSION  

A mathematical model of the spread of COVID-19 with control variables of vaccination and 

treatment has been studied. Parameter values in the model have been obtained using parameter estimation 

with genetic algorithms. An analysis of the stability of the equilibrium points and the basic reproduction 

number of the COVID-19 model has been carried out. Then, a control design based on the Lyapunov 

function was developed to stabilize the system and reduce the population of exposed and infected individuals. 

Furthermore, numerical simulations were carried out with three control scenarios, namely control vaccination 

only, control treatment only, and both controls simultaneously. The controller parameter values have been 

estimated using a genetic algorithm. Based on the results of numerical simulations, scenario 3 (vaccination 

and concurrent treatment) gave the most significant decrease, namely the average decrease in the exposed 

human population by 98.29% and the infected human population by 98.18%. 
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