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 The automation of scoliosis positioning presents a challenging and often 

understated task, yet it holds fundamental significance for the automated 

analysis of spinal morphological anomalies. This paper introduces a novel 
spinal curve localization model for precisely differentiating the spinal curves 

and identifying their concave centers. The proposed model contains three 

components: i) custom spine central line model, to define the spine central 

line as a combination of several secant line sequences with different 
polarities; ii) custom curve model, to classify each spinal curve into one of 

11 curves types and deduce each its concave centers by several custom 

formulas; and iii) adapted distance transform and quadratic line fitting 

algorithm coupled with custom secant line segment searching strategy 
(DTQL-LS), to search all line segments in the spine and group consecutive 

line segments with identical polarity into line sequence. Experimental results 

show that its positioning success rate is close to 99%. Furthermore, it 

exhibits significant time efficiency, with the average time to process a single 
image being less than 30 milliseconds. Moreover, even if some image 

boundaries are blurred, the center of the curve can still be accurately located. 
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1. INTRODUCTION 

Scoliosis is a deformation of the spinal column and its pathogenesis has not been completely 

elucidated to date. According to the statistics, the incidence of adolescent idiopathic scoliosis (AIS) is 

approximately 1%-3% [1], [2], and the morbidity of congenital scoliosis (CS) of infants is approximately  

0.5%-1% [3]. If allowed to progress, it may lead to irreversible deformities in the patient's physique and even 

trigger additional complications. Therefore, regular nationwide screening and assessment for scoliosis among 

adolescents are imperative, and for people who have been diagnosed with scoliosis, it is also necessary to 

track and monitor the patient's condition through regular examinations so that the optimal diagnosis and 

treatment plan can be adjusted timely. 

The measurement of spinal curvature primarily involves assessing the degree of curvature in the 

three regions: cervical-thoracic, main thoracic, and thoracic-lumbar spine. These spinal curves in different 

areas need to be distinguished through localization first during the assessment process. A single spinal curve 

is encompassed within a local region defined by the three farthest vertebrae, namely, the upper distal 

vertebra, the lower distal vertebrae, and the apex vertebrae, as illustrated in Figure 1. The localization of a 
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spinal curve refers to the determination of the positions of the three mentioned key vertebrae. Currently, The 

Cobb method [4] is the primary measurement technique for assessing spinal curvature. Given that the key 

idea of the Cobb method is to calculate the angle between the upper endplate of the upper distal vertebra and 

the lower endplate of the lower distal vertebra or the angle between two straight lines norm to these two 

endplates respectively, existing works mainly focus on the positioning of the two endplates and completely 

ignore the position of the curve center (apical vertebrae). 

 

 

 
 

Figure 1. Structural features of a spinal curve 

 

 

The manual measurement of scoliosis invariably engenders both inter and intra-observer variability 

[5], [6]. With the assistance of computers, such errors can be significantly reduced [7]. In theory, the less 

human intervention, the smaller the potential errors. In addition to reducing measurement errors, computer-

assisted measurement can also shorten processing time. The automatic localization of the curve is an 

indispensable and crucial step in automating scoliosis assessment. However, it is a challenging task owing to 

the following reasons: ⅰ) spine images, especially X-rays, are typically low contrast and low image quality, 

making curve positioning methods based on traditional image processing algorithms ineffective and ⅱ) the 

inherent complexity of the spinal structure. Firstly, between the spine and the ribs, as well as among adjacent 

vertebrae within the spine, there is a high degree of similarity. Secondly, the boundaries between the spine 

and other surrounding tissues, as well as among adjacent vertebrae internally, are not sufficiently clear, 

particularly in areas where pathology occurs, where the boundaries become even more blurred. 

Existing computer-aided measurement methods either rely on manual assistance for localization or 

entirely give up on localization. Almost none of them discussed the precise localization of the concave center 

or apex vertebrae. Therefore, this study focuses on the fully automatic localization and distinction of multiple 

scoliotic curves in the spine on X-rays, with an emphasis on the localization of the centers of each curve. Our 

contributions are: i) We defined a custom spine central line model to formulate the spine central line as a 

combination of secant line segments with three possible polarities (positive, negative, and zero) that still 

retain the trend for the first time; ii) We categorize the curves into 11 types for quick searching and 

positioning for the first time. Each curve type consists of no more than three consecutive line sequences. The 

lines in a line sequence have the same polarity but adjacent line sequences have different polarity. Several 

custom equations are defined to locate curve centers of different curve types; iii) We defined the DTQL 

algorithm to extract the central line from the extracted spine and group the secant line segments searched 

from the central line into a series of line sequences with different polarities; and iv) We defined an evaluation 

criterion adapted from the intersection of union (IoU) to assess the accuracy of curve localization. 

This paper consists of five sections. In section 1, the background, motivation, and contributions are 

discussed. In section 2, the related works are reviewed and analyzed. In section 3, the proposed method is 

presented. In section 4, the experiments and results are described and analyzed in detail, and a comparison 

analysis is given about our work and existing related closely articles. Last, the conclusion is presented in 

section 5. 

 

 

2. RELATED WORKS 

According to the definition of the Cobb method, manual measurement of the Cobb angle requires an 

experienced or trained professional to draw two straight lines on the X-ray film along the edges of the 

uppermost and lowermost tilted endplates of a spinal curve with a pencil respectively, and then use a 
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protractor to measure the angle between the two straight lines. Manual measurement not only has low time 

efficiency (about 20 minutes for a single X-ray film), but also is prone to inter-observer and intra-observer 

errors due to factors such as operator experience, skill level, and fatigue. Starting from the middle of the last 

century, experts have been continuously striving to reduce the manual intervention involved in scoliosis 

measurement. The primary and key problem in the automation of scoliosis measurement is the automatic 

positioning of the spinal curve. 

The earliest computer-assisted measurement methods had a low degree of automation because 

scoliosis localization relied on manually drawing lines along the target endplates on the screen with a mouse 

[8], [9], which was inefficient and provided limited assistance in reducing measurement errors. As an 

improvement, some scholars tried to use a rectangular bounding box to quickly select uppermost and 

lowermost tilted vertebrae as regions of interest (ROI) and then used image processing algorithms or artificial 

convolutional neural networks to automatically fit the edge of target endplates in the selected vertebrae. For 

example, a tailored fuzzy Hough transform [10] algorithm was proposed to fit the edge of target endplates in 

manually selected ROI in 2009, and a three-layer deep neural network (DNN) model [11] was designed and 

trained for predicting the slopes of the target endplates in 2017. In this way, the Cobb angle of all curves can 

be measured and does not require positioning curve centers. However, the rectangular box inevitably selects 

part of the upper and lower adjacent vertebrae and part of the left and right adjacent tissues when selecting 

the target vertebrae, which can easily affect the correct edge fitting, especially when the contrast is low or the 

image contains noise. During the same period, some scholars believed that the measurement of the maximum 

lateral bend could be used to represent the severity of spinal curvature, so their positioning objective was 

transferred to the location of the maximum spinal curve. In 2019, a retrained U-net model [12] was used to 

segment vertebrae first, and then position the uppermost and lowermost endplates of the largest spinal curve 

by searching the two most tilted lines from up and down edges of all vertebrae’s minimum bounding boxes 

and calculate their intersection angles. However, this method has two potential issues: ⅰ) the upper and lower 

edges of the minimum bounding rectangle may not always be parallel or coincident with the upper and lower 

edges of the vertebrae and ⅱ) the accuracy of segmentation has a heavy impact on the fitting results. 

The angle between two straight lines is equal to the angle between their respective orthogonal lines, 

which are nearly parallel to or coincide with the spine middle line. Therefore, some scholars attempt to 

estimate scoliosis by utilizing the spine middle line. One way is to search for the two most tilted straight lines 

with opposite directions on the spine middle line and take their intersection angle as an approximation of the 

Cobb angle of the largest curve. In 2002, a human-computer interaction approach [13] was proposed to 

obtain a spine middle line. In [13], the accuracy of its maximum Cobb angle is related to the number of 

midline points, which are obtained during human-computer interaction for the construction of the spine 

middle line, and the quantity of these points can be manually adjusted as needed. To reduce human-computer 

interaction, a five-layer AlexNet [14] was retrained to predict gravity centers of 17 vertebrae on (Moire,  

X-ray) image pairs to construct the spine middle line, in 2017. This method involves low manual 

intervention, requiring only the selection of two reference points on both sides of the shoulder and two points 

on both sides of the sacrum for aligning the (Moire, X-ray) image pair, and provides a new approach to locate 

three scoliotic curves based on the trend change of the spine middle line and calculate their Cobb angles. 

However, it is still semi-automatic and requires multiple image modalities. In 2020, a retrained ResNet50 

deep convolutional neuro network (DCNN) [15] was retrained to automatically identify all vertebrae and 

construct the spine middle line with centers of all vertebrae’s bounding boxes, to estimate the Cobb angle of 

the largest spinal curve. However, not all vertebrae's centroids can coincide with the center points of their 

bounding rectangular boxes, and the result performance heavily relies on the vertebrae segmentation 

accuracy. The experimental results also confirmed this inference; among 164 scoliosis cases, 95 cases 

exhibited an absolute difference greater than 5°. 

Some experts choose to train deep convolutional neural networks to directly predict Cobb angles, 

without focusing on the specific positions of each scoliotic curve. In 2017, a nonlinear classifier named 

structured support vector regression (S2VR) [16] was defined and trained to jointly estimate Cobb angles and 

landmarks of the spine in X-rays. S2VR uses relative root mean squared error (RRMSE) and correlation 

coefficient to assess the performance of Cobb angle estimation and landmark estimation respectively, which 

achieves a correlation coefficient of 92.76% and the lowest average RRMSE of 21.63. However, S2VR 

requires preprocessing the X-rays into a uniform size beforehand. With the breakthrough of deep 

convolutional neuro network in medicine, some authors attempted to design and train DCNN-based models 

to predict three Cobb angles in X-rays, such as multi-view correlation network (MVC-Net) [17] in 2018 and 

adaptive error correction network (AEC-Net) [18] in 2019. MVC-Net consists of a landmark estimator and a 

Cobb angle estimator. The landmark estimator is a custom nonlinear DCNN for predicting landmarks which 

takes coronal and sagittal X-ray pairs as input, and the Cobb angle estimator is a linear network for 

estimating three Cobb angles which takes landmarks as input. AEC-Net is similar to MVC-Net in that it also 
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contains a landmark estimator and Cobb angle estimator, but the structure of the landmark estimator is 

different from MVC-Net and it takes only a single coronal X-ray image as input. It is worth noting that the 

mean absolute errors (MAE) of these methods are all less than 5º, and these methods all require input images 

to have a consistent size. Due to the inherently small size of the dataset and the use of the entire image as the 

model input, these methods can only employ leave-one-out cross-validation for training. This makes them 

prone to overfitting, and their generalization ability is yet to be validated. With the purpose of rapid screening, 

an asymmetry-recognition system [19] using new 3D depth sensor imaging technology was introduced in 2018, 

which scans the patient’s back surface to obtain smoothed, normalized, and tailored 3D point cloud named p3 

and its mirror projection named p3r, and calculates the asymmetry index according to the difference between p3 

and p3r, which is strongly correlated with the maximum Cobb angle. Reference [20], [21] simplified the 

procedure of this automated asymmetry-recognition system in 2019 and designed a DCNN-based algorithm in 

2021 to take the difference between p3 and p3r as input and predict the maximum Cobb angle directly. The 

method based on 3D depth sensor imaging is inexpensive, noninvasive, and extremely fast. However, its 

accuracy for AIS evaluation is 0.94 for the curve of ≥10° and 0.89 for the curve of ≥20°, not conducive to 

clinical application. Still, it is a good method for school screening of early spinal deformity. 

Not only does scoliosis measurement require the accurate localization and segmentation of spinal 

structures, but other spinal conditions such as intervertebral disc narrowing and vertebral slippage also 

demand the localization and segmentation of relevant spinal structures. Therefore, some scholars undertook 

the study of the localization and segmentation of spinal structures as a research topic. Some of them 

attempted to locate two to four corners or the center of each vertebra, such as the semi-automatic Harris 

Corner detector [22] in 2009 and the full-automatic DCNN-based model Boost-Net [23] in 2017. Some of 

them estimated vertebral centers, such as full-automatic automatic algorithms based on regression forest and 

probabilistic graphical modes [24] in 2012. Some of them attempted to extract the contours of vertebrae or 

even the whole spine by using shape detection techniques, such as adapted active contour models (ACM) 

[25]–[29], adapted active shape models (ASM) [30]–[34], adapted level-set method (LSM) [35]–[42], 

adapted watershed methods (WSM) [43], [44]. Some of them attempted to locate specific parts of vertebrae 

or vertebral bodies using geometric mathematics and classical image operators, such as custom multiple-

feature boundary classification and mesh inflation [45]. Some of them endeavored to train DCNN-based 

models to segment vertebrae fully automatically [46]–[48]. DCNN-based models achieved a maximum 

accuracy of 94% dice coefficient, superior to other methods.  

Due to the inherent complexity associated with spinal curve localization, some experts have shifted 

their focus away from conventional Cobb angle measurement. They trained artificial intelligence (AI) based 

models to classify ROI into several classes directly, such as adapted support vector machine (SVM) to 

predict whether the observed curve is progressive or non-progressive [49] in 2005 or to categorize curves as 

mild, moderate, or severe [50] in 2006, fuzzy decision support system (FDSS) [51] to determine whether 

instrumentation or fusion is warranted. These methods are self-automatic because the location of ROI is 

identified by hand. Besides, it is noteworthy, that these methods do not possess the capability to precisely 

locate the spinal curve and consequently offer limited utility in terms of scoliosis monitoring, observation, 

and treatment planning. 

In summary, deep convolutional neural networks make it possible to achieve fully automated 

measurement of scoliosis with higher accuracy. However, the existing methods are still not mature enough. 

This paper proposes a custom DTQL-LS model that focuses on automatically distinguishing spinal curves 

and locating their centers. 

 

 

3. PROPOSED METHOD 

The normal human spine is vertically symmetrical with its central axis being a vertical line, but the 

central axis of the spine with deformity is curved and its curve curvature reflects the severity of scoliosis 

directly. Thus, the problem of measuring scoliosis can be translated into finding where the spine's central line 

is curved and measuring its degree of curvature. In this study, we propose a novel fully automatic spinal 

curve positioning method according to the geometry of the spine's central line. The overall algorithm 

framework is shown in Figure 2. The proposed model consists of three custom components: i) spine central 

line model, ii) curve model, and iii) distance transform and quadratic line fitting algorithm coupled with 

secant line segment searching strategy (DTQL-LS) model. The spine central line model defines a spine 

central line as a combination of several second-line sequences with different polarities; the curve model 

classifies all curve shapes into 11 distinct types according to two to three consecutive line sequences with 

different polarities inside the curve and deduces each curve’s concave centers by several custom formulas; 

and the DTQL-LS model extracts spine central line from the segmented spine by using adapted distance 

transform first, then formulate it as a secant line sequence obtained through quadratic line fitting strategy, and 

lastly aggregates adjacent line segments with the same polarity into a line sequence. 
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Figure 2. The overall framework of the proposed method 

 

 

3.1.  Spine central line model 

Our spine central line model describes for the first time the spine central axis as a sequence of secant 

lines that still retain the trend of the central line. Theoretically, when the distance between any two points on 

the curve is close enough, the curve segment between the two points can be regarded as a straight line, and a 

straight line is also a type of curve that represents a special case when tangent and secant lines coincide. As 

the curvature decreases, the number and length of straight segments that can be found on the curve increases 

accordingly. Since the central axis of the spine is a vertical straight line except for the local area of the 

scoliosis center, it is feasible to describe the central axis of the spine with a sequence of secant line vectors. 

The basic data unit of our custom central line model is a secant vector which consists of five 

parameters: i) line polarity, ii) line length, iii) line inclination, iv) line difference between adjacent lines, and 

v) inclination difference, as shown in Figure 3. The consecutive secant vectors with the same polarity form a 

line sequence which contains two additional parameters: sequence polarity and sequence distance. The line 

polarity (LP) has three possible values: positive, negative, and zero, as in (1). A spinal central Line contains n 

curves (n≤3), as in (2), and each curve is identified by 2 to 3 consecutive line sequences, which will be 

described in detail later. 

 

𝐿𝑃 =  {

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒,              𝑖𝑓 0𝑜 < 𝛼 < 90𝑜

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒,       𝑖𝑓 − 90𝑜 < 𝛼 < 0𝑜

𝑍𝑒𝑟𝑜,                              𝑖𝑓 𝛼 = 90𝑜
 (1) 

 

𝑆𝑐𝑙 = 𝑐𝑢𝑟𝑣𝑒 1 + ⋯+ 𝑐𝑢𝑟𝑣𝑒 𝑛) (2) 

 

 

 
 

Figure 3. Spinal central line model 
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3.2.  Curve model 

By analyzing the commonality and specificity of line sequences at different scoliosis locations on 

spinal central lines, we proposed dividing curves into 11 curve types named T1-T11 respectively for the first 

time, as shown in Figure 4. To display curve types intuitively, in our curve model, green arrows are used to 

denotes the line sequence with negative angles, brown red arrows are used to denote line sequence with 90° 

angles and blue arrows are used to denote line sequence with positive angles, as shown in Figures 4(a)  

to 4(k). If the combination of any three consecutive sequences within the central axis belongs to the 

categories represented in Figures 4(a) to 4(h), it indicates that the region where these three sequences are 

located is indicative of a lateral curvature. Figures 4(i) to 4(k) represents three exceptions that may contain 

spinal curves, and the presence of lateral curvature in the corresponding region may require additional 

information for further confirmation. The line polarity distributions of different curve types are listed in 

Table 1.  

T1 and T2 have two common features: i) curve contains two sequences: the up sequence (US) and 

the down sequence (LS) and ii) the sequence LS and US has different directions, one of them is positive and 

the other is negative, namely, 𝐿𝛼𝑖 × 𝑈𝛽𝑗 < 0). The only difference between these two curve types is that the 

concave side of type 1 is oriented to the left, and the concave side of type 2 is toward the right, as shown in 

Figures 4(a) and 4(b), respectively. T3 and T4 are characterized by three distinct parts: a lower sequence, a 

middle sequence, and an upper sequence, as shown in Figures 4(c) and 4(d). If the middle sequence M is 

removed, curve type 3 degenerates into type 3, and curve type 4 degenerates into type 1. T5 and T6 all 

consist of a middle sequence M and an upper sequence U, as shown in Figures 4(e) and 4(f). The only 

difference is their direction. T7 and T8 contain a lower sequence L and a middle sequence M, as shown in 

Figures 4(g) and 4(h). T9 and T10 are two exceptions, but similar to type 3 and 4, as shown in Figures 4(i) 

and 4(j), the only difference is that the lower sequence has the same direction as an upper sequence. T11 is 

also an exception, with all the line polarities in the central line the same. Figure 4(k) expressed the special 

case that all line polarities are zero but spinal deformity still existed and can be deduced through deviation of 

horizontal coordinates between all adjacent line vectors which is named 𝛥𝑥 for convenience.  

 

 

 
 

Figure 4. Curve type (a) to (k) representing different line sequence combinations 

 

 

Table 1. Line sequence polarities of different curve types    
Type Low sequence (LS) Middle sequence (MS) Up sequence (US) 

T1 Negative -not exist Positive 

T2 Positive -not exist Negative 

T3 Positive Zero Negative 

T4 Negative Zero Positive 

T5 -not exist Zero Negative 

T6 -not exist Zero Positive 

T7 Negative Zero -not exit 

T8 Positive Zero -not exit 

T9* Negative Zero Negative 

T10* Positive Zero Positive 

T11* All Negative/All Positive/All Zero 
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The center of curve type T1 and T2 is typically calculated as in (3), where 𝑆(𝑐) denotes the center of 

curve S, (𝑐𝑥, 𝑐𝑦) denotes the point in S with minimum or maximum horizontal coordinate value, 𝑃𝑥 denotes 

the set of horizontal coordinates of all points in S, (𝐿𝑡𝑥 ,  𝐿𝑡𝑦) denote the coordinate of the top point in the 

sequence 𝐿, and (𝑈𝑏𝑥  , 𝑈𝑏𝑦) denotes the coordinate of the bottom point in the sequence 𝑈. 

 

𝑆(𝑐) =

{
 

 (𝑐𝑥, 𝑐𝑦) |
𝑐𝑥 = 𝑚𝑖𝑛(𝑃𝑥) , 𝑖𝑓 𝑆 ∈ 𝑇2, 𝑜𝑟 

𝑐𝑥 = 𝑚𝑎𝑥(𝑃𝑥) , 𝑖𝑓 𝑆 ∈ 𝑇1      
 ,    𝑖𝑓 𝐿𝑡𝑦 > 𝑐𝑦 > 𝑈𝑏𝑦       

(𝑐𝑥, 𝑐𝑦) |
𝑐𝑥 = (𝐿𝑡𝑥 + 𝑈𝑏𝑥)/2 
𝑐𝑦 = (𝐿𝑡𝑦 +𝑈𝑏𝑦)/2 

    ,        𝑒𝑙𝑖𝑓 𝑈𝑏𝑦 ≤ 𝑐𝑦 𝑜𝑟 𝑐𝑦 ≤  𝐿𝑡𝑦

 (3) 

 

The center of T3 or T4 is commonly situated within the middle sequence. If the maximum absolute 

difference of the X-coordinate differences in sequence M is less than two, the center is calculated as in (4), 

where (𝑀𝑡𝑥 , 𝑀𝑡𝑦) is the coordinate of the top point of 𝑀, (𝑀𝑏𝑥  ,𝑀𝑏𝑦) is the coordinate of the bottom point of 

𝑀, 𝑀𝑥 is the set of x coordinates, and 𝑑𝑀𝑥 is the different sequence of 𝑀𝑥, 𝑙𝑖 denotes the 𝑖th line contour in 

𝑀, and (𝑙𝑖𝑏𝑥 , 𝑙𝑖𝑏𝑦) denotes the bottom point in 𝑙𝑖.  

 

𝑆(𝑐) =

{
 
 

 
 (𝑐𝑥, 𝑐𝑦) |

𝑐𝑥 = (𝑀𝑡𝑥 +𝑀𝑏𝑥)/2 

𝑐𝑦 = (𝑀𝑡𝑦 +𝑀𝑏𝑦)/2 
, 𝑖𝑓 𝑚𝑎𝑥 (|𝑑𝑀𝑥|) < 2,        

       

(𝑙𝑖𝑏𝑥, 𝑙𝑖𝑏𝑦) , 𝑖𝑓 𝑚𝑎𝑥 (|𝑑𝑀𝑥|) ≥ 2 𝑎𝑛𝑑 𝑑𝑀𝑥𝑖 ∗ 𝑑𝑀𝑥𝑖−1 < 0

(𝑐𝑥, 𝑐𝑦), |
𝑐𝑥 = 𝑚𝑖𝑛(𝑃𝑥) , 𝑖𝑓 𝑆 ∈ 𝑇3

𝑐𝑥 = 𝑚𝑎𝑥(𝑃𝑥) , 𝑖𝑓 𝑆 ∈ 𝑇4
 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              

 (4) 

 

The center of T5 and T6 is usually located at the intersection of these two sequences, and it is calculated as in 

(5), where ‖𝑀𝑡‖ denotes the length of the top line in 𝑀, d is an empirical value, defaulting to 20. 

 

𝑆(𝑐) =

{
 
 

 
 (𝑀𝑡𝑥, 𝑀𝑡𝑦) ,      𝑖𝑓 ‖𝑀𝑡‖ > 𝑑,                                                          

                                                          

(𝑀𝑖𝑏𝑥
, 𝑀𝑖𝑏𝑦

) , 𝑖𝑓 𝑚𝑎𝑥 (|𝑑𝑀𝑥|) > 2 𝑎𝑛𝑑  𝑑𝑀𝑥𝑖 ∗ 𝑑𝑀𝑥𝑖−1 < 0,

(𝑐𝑥, 𝑐𝑦), |
𝑐𝑥 = 𝑚𝑖𝑛(𝑀𝑥⋃𝑈𝑥) , 𝑖𝑓 𝑆 ∈ 𝑇5   

𝑐𝑥 = 𝑚𝑎𝑥(𝑀𝑥⋃𝑈𝑥) , 𝑖𝑓 𝑆 ∈ 𝑇6
  ,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (5) 

 

The center of T7 and T8 are calculated as in (6), which is similar to (5). The possible center of T9 and T10 is 

calculated by a slight modification of (4) when it is confirmed that the lateral curvature exists. The concave 

direction in these types depends on the horizontal deviation between the up sequence, middle sequence, and 

down sequences. 

 

𝑆(𝑐) =

{
 
 

 
 (𝑀𝑏𝑥,𝑀𝑏𝑦) ,       𝑖𝑓 ‖𝑀𝑡‖ > 𝑑,                                                          

                                                          

(𝑀𝑖𝑏𝑥
, 𝑀𝑖𝑏𝑦

) , 𝑖𝑓 𝑚𝑎𝑥 (|𝑑𝑀𝑥|) > 2 𝑎𝑛𝑑  𝑑𝑀𝑥𝑖 ∗ 𝑑𝑀𝑥𝑖−1 < 0, 

(𝑐𝑥, 𝑐𝑦), |
𝑐𝑥 = 𝑚𝑖𝑛(𝐿𝑥⋃𝑀𝑥) , 𝑖𝑓 𝑆 ∈ 𝑇8 

𝑐𝑥 = 𝑚𝑎𝑥(𝐿𝑥⋃𝑀𝑥) , 𝑖𝑓 𝑆 ∈ 𝑇7
  ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

  (6) 

 

The center of T11 is often located within the region exhibiting the maximum horizontal deviation between 

adjacent lines, which can be calculated as in (7) if the prerequisites are met. In (7), 𝑙𝑎 denotes a sequence of 

inclination angles of all lines in curve S, 𝑙𝑖𝑎 denotes the ith line angle, and 𝑑𝑙𝛼 denotes the different sequence 

of 𝑙𝑎. 

 

𝑆(𝑐) = {

(𝑙𝑖𝑏𝑥 , 𝑙𝑖𝑏𝑦), 𝑖𝑓 𝑚𝑎𝑥 (|𝑑𝑙𝑥|) > 2 𝑎𝑛𝑑  𝑑𝑙𝑥𝑖 ∗ 𝑑𝑙𝑥𝑖−1 < 0                          

(𝑙𝑖𝑡𝑥, 𝑙𝑖𝑡𝑦) , 𝑖𝑓 𝑑𝑙𝑖𝑎 = 𝑚𝑎𝑥(|𝑑𝑙𝛼|),  𝑎𝑛𝑑𝑚𝑎𝑥(|𝑙𝑎|) − 𝑚𝑖𝑛 (|𝑙𝑎|) ≥ 𝑑 

∅,      𝑒𝑙𝑠𝑒                                                                                                         

 (7) 

 

To provide an initial approximation of the curve center's position, it is essential to assess four key indicators: 

line length, line inclination, difference of line inclination angles, and horizontal deviation between adjacent 
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lines. However, it is generally unnecessary to compute these indicators for every line within the sequence. 

Instead, a focused examination of the last two to four lines in the lower sequence, the first two to four lines in 

the upper sequence, and selecting lines within the middle sequence suffices. 

 

3.3.  Custom DTQL-LS algorithm 

Given the continuous nature of the curve, the quantity of attainable secant lines on its surface is 

deemed infinite, nevertheless, only a limited number of such lines that can effectively capture the trend in 

critical regions of lateral curvature are of significance. Therefore, we propose a customized method based on 

distance transform and quadratic line fitting (DTQL) for extracting and filtering the most optimal trend lines. 

Our DTQL method utilizes adapted data transform to extract the central line from the spine and applies a 

quadratic line fitting method combining Hough Transform with Least Square to detect trend line segments in 

a central line. 

 

3.3.1. Adapted distance transform 

The distance transform (DT) is a classical image processing algorithm utilized to calculate the 

distance between each point of an object and its nearest background point. It was first introduced in [52] in 

1980 and has been commonly employed for the extraction of the skeleton or central line inside an object 

[53]. However, the central axis extraction algorithm based on distance transform tends to generate 

undesirable bifurcation lines on the extracted central axis. Improvements are essential to ensure that it 

meets the requirements for obtaining a smooth spine central axis. For ease of description, the image is 

taken as the sum of three mutually exclusive subsets: object (𝐼𝑜), object edge (𝐼𝑒), and background (𝐼𝑏), as 

defined in (8). 

 

𝐼 = 𝐼𝑜 + 𝐼𝑒 + 𝐼𝑏 (8) 

 

Our DTQL method begins by generating distance image D of the same size as image I. In image D, all points 

belonging to 𝐼𝑜 are initialized as -1, all points belonging to 𝐼𝑒 are initialized as 1, and all points belonging to 

𝐼𝑏 are initialized as 0, as defined in (9). 

 

𝐷(𝑥, 𝑦) = {

1, 𝐼(𝑥, 𝑦) ∈ 𝐼𝑒
0, 𝐼(𝑥, 𝑦) ∈ 𝐼𝑏
−1, 𝐼(𝑥, 𝑦) ∈ 𝐼𝑜

 (9) 

 

The distance values of points inside the object are updated iteratively by our Algorithm 1, as shown 

in Figure 5. Instead of using Euclidean distance [54], [55], our adapted DT algorithm determines the distance 

value of each object point by adding a value of 1 to the smallest non-negative distance value among its eight 

neighbors. The distance values of those points located at the object center often are local maximum. 

Henceforth, our algorithm partitions the distance image into slices of three rows each and searches its local 

maximum. The points with distance values equal to these local maxima are designated as candidate points for 

the central axis. 

Similar to other distance transform algorithms, the central axis formed by points with local 

maximum distance values exhibits issues such as discontinuity and a relatively wide line (typically up to two 

pixels wide). As our algorithm employs slices with a height of three, the intervals arising vertically within 

each slice due to the absence of local maxima do not exceed three. Therefore, the issue of discontinuity can 

be easily solved by directly connecting adjacent breakpoints. As for the wide central line, just delete one 

adjacent point with a local maximum on the same line. 

 

3.3.2. Quadratic line fitting 

The Hough transform is a widely employed line detection algorithm primarily utilized for the 

identification of lines within binary image contours. Nevertheless, when applied to skeleton images, it 

frequently yields an excessive number of shorter line segments, which can impede the accurate localization 

of curves. Additionally, the proliferation of numerous line segments contributes to an increase in processing 

time, further compounding the computational complexity of the task. 

By merging adjacent short lines with a gap of less than two pixels in the detected Hough line set, the 

number of Hough lines can be reduced effectively. However, the line contour reconstructed from two 

discontinuous line segments may be no longer straight and needs fitting a new line, which is settled by least 

square. The least square method is a commonly employed technique for establishing an approximate 

mathematical relationship between two variable functions using a data set. In the context of this paper, it is 

utilized to perform a linear regression fit based on the coordinates of all points within the contour. 
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Figure 5. Pseudocode of the iteratively updating of distance values 
 

 

Precisely, supposing that the expression for the fitting line is represented as in (10), its approximate 

form, denoted as (11), is determined such that it minimizes the sum of deviations. In other words, it aims to 

satisfy the conditions 𝜕𝑀/𝜕𝑎 = 0 and 𝜕𝑀/𝜕𝑏 = 0. The determination of the variables 'a' and 'b' that meet 

these conditions is achieved by solving the corresponding system of differential equations, as illustrated in 

(12). This process results in the unique determination of 'a' and 'b' values that best fit the data. 
 

𝑦 = 𝑎𝑥 + 𝑏 (10) 

 
𝑀 = ∑ [𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏)]

2𝑛
𝑖=1  (11) 

 

{
∑ 𝑦𝑖𝑥𝑖 =  𝑏 ∑ 𝑥𝑖 + 𝑎∑ 𝑥𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1 = 𝑎∑ 𝑥𝑖

𝑛
𝑖=1 + 𝑛𝑏                

 (12) 

 

In practical applications, to enhance processing efficiency, it is possible to expedite the 

determination of 'a' and 'b' by utilizing the highest and lowest points within a line contour. This streamlined 

approach offers the advantage of swifter computations without significant detriment to the accuracy of spinal 

curve localization. It is worth noting that the primary objective in spinal curve localization is to discern the 

overarching trends of line contours rather than achieving pinpoint accuracy in fitting straight lines. 

 

3.3.3. Secant line sequence grouping 

The line segments obtained by the DTQL algorithm are sorted according to their vertical coordinates 

for the sake of searching consecutive line segments with the same polarity and grouping them into a line 

sequence. After grouping, a spine central line can be viewed as a combination of a series of line sequences with 

different polarities. What is more, every two or three adjacent line sequences represents a possible spinal curve. 

 

3.4.  Adapted evaluation criterion 

The center of a spinal curve is not a pixel, but an area made up of one or more vertebrae. To assess 

the accuracy of the curve localization result, the ground truth label should be assigned to each curve center. 

In this study, the ground truth mark of each curve center is a blue circle to enclose all the vertebrae inside the 

center area, as shown in Figure 6, and as a contrast, the predicted centers are identified with smaller red 

circles by our algorithm.  

The criterion for successfully detecting the scoliosis center is the existence of an intersection between 

the ground truth center and the predicted center. In the image processing field, the intersection of two areas can 

be substituted by a convolution operation. Let rectangle P denote the ground truth mark of a spine curve, the 

point value inside the circle is marked 1 and the other point value is marked 0; let rectangle I denote the 

predicted result, its point value inside the red circle is 1 and the other is 0. The convolution results of 𝐼 × 𝑃 is a 

new rectangle, with a point value of intersection area equals 1 and the other is 0, as shown in rectangle R. 

Naturally, the IoU is defined in (13), and the accuracy of concave center detecting is defined in (14). 
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𝐼𝑜𝑈 = ∑ ∑
2𝐼(𝑥,𝑦)×𝑃(𝑥,𝑦)

𝐼(𝑥,𝑦)+𝑃(𝑥,𝑦)
𝑀
𝑦=1

𝐿
𝑥=1  (13) 

 

Acc =
∑ (⌈∑ ∑

2𝐼(𝑥,𝑦)×𝑃(𝑥,𝑦)

𝐼(𝑥,𝑦)+𝑃(𝑥,𝑦)
𝑀
𝑦=1

𝐿
𝑥=1 ⌉𝑁

𝑖=1 )

𝑁
 (14) 

 

 

 
 

Figure 6. Intersection over union 

 

 

4. EXPERIMENT AND RESULT DISCUSSION 

We developed a fully automatic software system to implement and verify our DTQL-LS-based 

method. Our spinal curve localization system contains three main modules: spine central line extraction, 

secant line sequence extraction, and curve localization. The results of these modules will be discussed in 

detail in section 4.2, 4.3 and 4.4, respectively. 

 

4.1.  Data preparation 

The spinal X-ray images used in this paper are from the public dataset MICCAI 2019. It contains 

609 images of various sizes and quality. Considering that the quality of X-ray images is increasingly 

improving due to technological advancement, some images in this dataset are no longer suitable for research. 

To make the proposed method more general and representative, data should be chosen from the dataset 

according to the following principles: i) the outer contour of the spine must be clear and visible to the naked 

eye; ii) the contour of the vertebral mass inside the spine is clear and recognizable to the naked eye; 

iii) various accessories should not appear in spinal X-ray images; iv) exclude images with no side bends or 

slight side bends that do not require regular observation; and v) exclude spinal images of paralyzed patients 

or with broken vertebrae. 

According to the above five excluding principles, approximately 410 cervicothoracic and 415 

thoracolumbar curvatures were selected from 481 images for this experiment. The processing object of this 

study is the segmented spine by our previous work, which is a transferred semantic segmentation model 

based on deep convolutional neuro network and will be discussed in another paper in detail. All spinal curve 

centers in these spines are annotated with blue ellipses. The original spine and its ground truth annotation are 

shown in Figures 7(a) and 7(b), respectively. 

 

 

  
(a) (b) 

 

Figure 7. Spine image: (a) original spine and (b) curve center annotated spine  

 

 

4.2.  Spine central line extraction result and comparison 

We implemented our adapted DT algorithm on an HP Envy Laptop for central line extraction. To 

verify its performance, a comparison experiment was conducted between our adapted DT algorithm and 

OpenCV's built-in DT algorithm. Figure 8 gives an intuitive visual comparison, where Figures 8(a), (b), and 

(c) represent the original image, the central line extracted by our adapted DT, and the central line extracted 

by OpenCV’s built-in algorithm, respectively. Our algorithm was applied to extract the central axes of the 
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segmented spine from X-ray images provided by MICCAI 2019, and the results demonstrated that all central 

axes obtained with our algorithm are free from redundant branching. 

 

 

   
(a) (b) (c) 

 

Figure 8. Contrast of central line extraction for (a) original image, (b) central extracted by custom distance 

transform, and (c) central line extracted by OpenCV's built-in distance transform 

 

 

4.3.  Quadratic line fitting and comparison 

We applied our custom quadratic curve fitting method to all spinal central axes. The statistical result 

showed that our algorithm can reduce the number of secant lines by at least 2 and up to 27 while still 

preserving the changing trend of the line sequence. Randomly selecting 10 images and numbering them 1-10, 

the comparison of the number of line segments extracted by our method and the Hough algorithm is shown in 

Table 2. 

 

 

Table 2. Result comparison of secant line number 
Image number Line quantity from quadratic line fitting Line quantity from Hough Line detection 

1 24 37 

2 27 36 

3 21 35 

4 23 32 

5 27 42 

6 18 26 

7 29 39 

8 22 37 

9 24 29 

10 27 40 

 

 

4.4.  Curve localization result analysis 

We selected 415 thoracolumbar curves and 410 cervicothoracic curves and marked their centers with 

blue circles as ground truth labels. Statistical results confirmed that 405 out of 410 cervicothoracic curves and 

409 out of 415 thoracolumbar curves were successfully detected and finely located, as shown in Table 3. The 

localization accuracy is close to 99%. Besides, the experiment results proved that our method is time efficient 

also, it only takes less than 30 milliseconds on average to process X-ray images with different sizes. It has been 

reported that the computer-assisted semi-automatic measurement method takes approximately 10 minutes to 

process each X-ray image, with 3 minutes allocated for human-computer interaction. In comparison, the time 

expenditure of our method for curve localization can be considered negligible. What’s more, for some images 

with blurred boundaries, our program can still identify relatively larger curves. 

Figure 9 visually displayed 16 result images illustrating the localization of curve centers. In each 

image, green lines represent line contours, red circles represent curve centers automatically identified through 

our method, and the blue ellipses represent the curve centers annotated by hand. Figures 9(a) to 9(k) are 

X-ray images with relatively high quality, all the curve centers marked by hands were searched out. 

Figures 9(l) to 9(p) are X-ray images with relatively low quality, and among them, Figure 9(n) represents an 

image that should be excluded according to our principle. Besides, some curve centers unmarked by hand 

were also found, as shown in red circles without intersection with blue ellipses in Figures 9(b), 9(d), 9(e), 

9(n), and 9(o). Experiments result verified that our algorithm is robust and can locate spinal curves well in 

images that should have been excluded. 
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Table 3. Statistical result of spinal curve detection 
Scoliosis region Ground truth centers Detected centers Accuracy  

Cervicothoracic 410 405 0.99  

Thoracolumbar 415 409 0.99  

 

 

    
(a) (b) (c) (d) 

 

    
(e) (f) (g) (h) 

 

    
(i) (j) (k) (l) 

 

    
(m) (n) (o) (p) 

 

Figure 9. Ground-truth curve centers (marked in blue circle) and predicted curve centers (marked in red 

circle) in X-ray images (a) to (p) 

 

 

4.5.  Comparison and discussion 

Table 4 is a summary of the comparison of 42 articles related to the automated analysis of spinal 

disorders with our method. It can be seen from Table 4 that our DTQL-LS-based method is the only one to 

address the problem of localization for different spinal curves and its centers on segmented spine. Besides, 
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our algorithm is fully-automatic, thoroughly free from manual intervention. Although the initial goal is to 

locate the spinal curve and its centers, our DTQL-LS-based method also can be used on other occasions 

where curve localization is required. 

 

 

Table 4. Comparison of automatic localization in various scoliosis assessment 
Index Automation level Localization target Manual operation Research objective 

[10], [11] Semi-automatic Upper and lower distal vertebrae 

of each curve 

Mouse draw rectangle Cobb angles of all curves 

[12] Automatic Each vertebra and its upper and 

lower edges 

No Cobb angle of biggest curve 

[13] Semi-automatic i) 2 ends of a spine and 

ii) 2 intersection points 

Mouse click points Cobb angle of biggest curve 

[14] Semi-automatic Tendency changes points Mouse click 4 reference points Cobb angle of all curves 

[15] Semi-automatic Each vertebra and its center Mouse click alignment point Cobb angle of all curves 

[16]–[18] Automatic 4 corners of each vertebra no Cobb angle of all curves 

[19]–[21] Semi-automatic Calibrated ROI Sensor field-of-view calibration 

manually 

Cobb angle of biggest curve 

[22] Semi-automatic Left 2 corners of each vertebra Mouse click research center Vertebral mobility 

[23] Automatic 4 corners of each vertebra No Landmark localization 

[24] Automatic Center of each vertebra No Vertebrae localization 

[25], [26], [35]–[42], 

[27]–[34] 

Semi-automatic Contour of vertebrae Mouse click initial position Vertebrae segmentation 

[43]–[45] Automatic Contour of vertebrae No Vertebrae segmentation 

[46]–[48] Automatic Each vertebra No Vertebrae segmentation 

[49]–[51] Semi-automatic ROI Mouse draw rectangle Scoliosis level prediction 

Ours’ Full-automatic Each curve and its center No spinal curve and its center 

positioning 

 

 

5. CONCLUSION  

In this study, we proposed a custom DTQL-LS-based model to differentiate and position different 

spinal curves and their concave centers from automatically segmented spine. Our method models the spine 

central line as a combination of line sequences with different polarities while preserving its changing 

tendency. It categorizes spinal curves into 11 curve types and formulates corresponding empirical formulas 

to estimate the concave center of each spinal curve. The custom DTQL algorithm consists of adapted 

distance transform and quadratic fitting for detecting the spine central line from the segmented spine and 

extracting secant line segments in the spinal central line respectively. We also developed a fully automatic 

system to implement and verify our DTQL-LS-based model, which contains 3 main modules for spine 

central line extraction, secant line sequence extraction, and curve localization in turn. The experiment 

results indicated that our method has agreeable performance with positioning accuracy close to 99%, and 

has only a slight increase in time overhead (less than 30 milliseconds). Additionally, our algorithm 

exhibited a certain level of robustness, as it can effectively locate spinal curves in some images that should 

have been excluded. 
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