
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 14, No. 4, August 2024, pp. 4214~4227
ISSN: 2088-8708, DOI: 10.11591/ijece.v14i4.pp4214-4227  4214

Journal homepage: http://ijece.iaescore.com

Accelerating real-time deterministic discovery through single
instruction multiple data graphical processor unit for executing

distributed event logs

Hermawan Fauzan1,2, Riyanarto Sarno3, Ahmad Saikhu3
1Department of Informatics, Faculty of Engineering, Universitas Trunojoyo Madura, Bangkalan, Indonesia

2Doctoral Student at Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh
Nopember, Surabaya, Indonesia

3Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember,
Surabaya, Indonesia

Article Info ABSTRACT
Article history:

Received Feb 9, 2024
Revised Mar 8, 2024
Accepted Mar 15, 2024

 With the rapid expansion of process mining implementation in global
enterprises distributed across numerous branches, there is a critical
requirement to develop an application qualified for real-time operation with
fast and precise data integration. To address this challenge, computational
parallelism emerges as a feasible solution to accelerate data analytics, with
graphical processor unit (GPU) computing currently trending for achieving
parallelism acceleration. In this study, we developed a process mining
application to optimize parallel and distributed process discovery through a
combination of central processing unit (CPU) and GPU computing. The use
of this computing combination is leveraged for executing multi-windowing
threads within multi-instruction, multiple data (MIMD) in the CPU for
streaming distributed event logs, using multi-instruction, single data (MISD)
within the CPU to deploy a large footprint pipeline to the GPU, and
then utilizing single instruction, multiple data (SIMD) to execute global
thread discovery within the GPU. This method significantly accelerates
performance in real-time distributed discovery. By reducing branch
divergence in SIMD on the global thread GPU parallelism, it outperformed
local-thread CPU execution in deterministic discovery, speeding up from 10
to 40 times under specific conditions using a novel min-max flag algorithm
implemented within the main steps of the process discovery.

Keywords:

General programming
Graphical processing units
Graphical processor unit
Multi instruction multiple data
Multi instruction single data
Process discovery
Single instruction multiple data

This is an open access article under the CC BY-SA license.

Corresponding Author:

Riyanarto Sarno
Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi
Sepuluh Nopember
Surabaya, East Java, Indonesia
Email: riyanarto@if.its.ac.id

1. INTRODUCTION

The In recent years, global business corporations have experienced significant growth, marked by a
proliferation of interconnected branches online. This trend is observable across various sectors, including
retail, industry, banking, and government services. For instance, in Indonesia, businesses in these sectors
have established branches spanning urban, rural, and international locations. Moreover, government service
networks have adopted integrated and distributed data operations seamlessly operating across different
departments. To ensure effective management and supervision of global business processes across multiple
branches, the support of business intelligence (BI) is essential. This support should facilitate the seamless

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708 

 Accelerating real-time deterministic discovery through Single instruction … (Hermawan Fauzan)

4215

integration of data tabulation, evaluation, and real-time transaction monitoring, considering the distributed
information systems within interconnected branches. In this context, process mining serves as a
complementary technique to data mining [1]. Process mining intersects data science and process science [2],
particularly in the context of process-aware information systems (PAISs) for BI purposes [3], [4]. It helps
uncover and analyze underlying process flows and patterns within organizations, providing valuable insights
[5] for business process analysis [6], business process monitoring [7], business process simulation [8], and
workflow management systems [9], leading to decision-making systems [10].

The adoption of graphical processor unit (GPU) parallelism in data mining and machine learning
aims to improve the performance of business intelligence (BI) [11] with efficient and low-cost high-
performance computing (HPC) [12]. This trend is prevalent in the field of deep learning for business
analytics, where GPUs extensively accelerate the training and testing processes of complex neural networks
[13]. They are widely implemented in fields such as internet of things (IoT) [14], autonomous vehicles [15],
robotics [16], and exascale computing [17]. The use of GPUs has resulted in notable advancements in both
accuracy and speed across diverse BI applications, highlighting their significant impact and versatility in
GPU-accelerated computing, driving progress in computational research and data-driven disciplines [14].

In the realm of GPU implementation for fundamental computational tasks like matrix multiplication,
GPU acceleration performance can achieve a speed-up twice as fast compared to using central processing
units (CPUs) alone [18]. This heightened performance has been observed in diverse implementations of data
mining algorithms operating on vectors, such as k-nearest neighbor (KNN) [19], association rule (AR) [20],
and naïve Bayes [21], showcasing noteworthy speed-up enhancements. Current trends in machine learning,
especially those rooted in deep learning [22], involve the widespread utilization of GPU-based libraries like
TensorFlow [23], MATLAB [24], and Google Colab's cloud [25]. These libraries have substantiated their
ability to amplify speed-up during the training and testing processes, establishing them as pivotal tools in the
domains of data mining and image processing.

Furthermore, the implementation of general-purpose GPU (GPGPU) computing offers numerous
advantages, including fast parallel calculations, high data throughput, and extensive memory bandwidth.
Additionally, GPGPU is supported by programming interfaces in multiple programming languages [12], [26].
However, when it comes to process mining, specific limitations hinder its efficient implementation due to the
unique characteristics of process mining and GPU computing. These limitations include challenges such as
branch divergence caused by loop truncation in branching conditions, difficulties in managing memory
access patterns (especially with sparse matrices), and issues related to thread synchronization occupancy and
dependencies on synchronous work in cluster stream processors [26].

The limitations of GPU parallelism in process mining, particularly in process discovery, are largely
impacted by the constrained size of matrices and concurrency patterns [27]. The effectiveness of GPU
parallelism is most evident when dealing with a significant number of event activities, often necessitating the
use of dummy event logs containing thousands to millions of activities [28], [29]. However, finding such
extensive event logs in real-life business processes can be challenging since business processes are tailored to
specific scopes and goals.

Considering the less effective process mining in managing real and static event log-ins [30], its
impact on fully automated process mining for business activity monitoring from the value stream in the
information system [31] is noteworthy. Enhancing GPU acceleration efficiency in real-time process mining
within a multi-branch distributed system [32] provides advantages in generating a massive amount of diverse
data with very high speed, termed as big data [33]. This approach allows for the effective aggregation of a
large matrix for parallel CPU and GPU thread execution using multiple instruction multiple data (MIMD)
and multi instruction single data (SIMD) strategy [34]. Additionally, algorithm reconfiguration is required to
minimize conditional branching, memory latency, and thread synchronization [16], [35].

Parallelism characteristics in process mining utilizing GPUs emphasize three main categories
through the incorporation of big data features, specifically volume, variety, and velocity. Volume denotes the
capacity to tabulate data sources concurrently; variety encompasses the multitude of variations in trace event
logs that can undergo parallel testing, and velocity quantifies the speed at which data flow can be processed
in a parallel stream. These characteristics assess the effectiveness of executing MIMD and multiple
instructions single data (MISD) using CPUs in comparison to single instruction multiple data (SIMD) using
GPUs and various combinations of these architectures.

Research endeavors focused on the advancement of parallel deterministic algorithms have
showcased proficiency in executing multi-thread parallelism within a multi-windowing model through GPU
acceleration [36]. The utilization of GPGPU parallel computation is integral in deterministic discovery,
encompassing pre-discovery processes such as footprint arrangement, basic footprint causality pattern
analysis, parallel reduction, and the determination of maximum paths [37]. The assessment of the optimal
method for algorithm implementation involves two scenarios: independence and aggregation testing. In the
independent scenario, employing the MIMD execution strategy, all stages of the mining process are executed

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 4, August 2024: 4214-4227

4216

within local threads on both the CPU and GPU [38]. In contrast, the aggregation of data transformation
scenario combines the use of MIMD for streaming data and MISD for constructing footprints in local CPU
threads, while also finally leveraging SIMD in global GPU threads. The dual-scenario testing aims to
evaluate the parallelism performance of both the CPU and GPU, with a specific focus on the discovery
process within deterministic algorithms [39]–[41].

By employing Java Aparapi as an open GPGPU library, the testing results revealed substantial
performance enhancement when utilizing the global thread GPU operating in SIMD compared to MIMD.
The SIMD implementation demonstrated acceleration ranging from 2 to 40 times, contingent on the number
of threads and the volume of footprints. Notably, higher thread counts and larger footprint volumes led to
greater speedup. Specifically, the combination proved particularly effective in achieving acceleration when
executing over 100 threads for more than 100 events of footprints. These findings underscore the
effectiveness of employing SIMD implementation for real-time process mining within a multi-branch
distributed system. Through harnessing the capabilities of the global thread GPU and optimizing thread and
volume configurations, significant acceleration can be realized in the discovery process.

Through the utilization of the global thread GPU in SIMD, we have achieved optimal parallel
execution of footprints across multiple threads, leveraging the potent capabilities of the GPU stream
processor. This parallelism has notably improved efficiency in balancing the workload between the CPU and
GPU, resulting in accelerated computations compared to relying solely on the CPU. These findings
underscore the substantial potential of GPGPU computing, particularly in the realm of deterministic
discovery involving large-scale datasets.

2. PROPOSED METHOD

Through a systematic review of 450 papers spanning a 14-year research period, key techniques for
enhancing GPU parallelism performance are highlighted. These techniques include memory coalesced
access, the use of dedicated memories, reducing branch divergence, and autotuning. Memory coalesced
access optimizes the utilization of global memory bandwidth by organizing vectorized matrix indices.
Dedicated memories aim to synchronize random access memory (RAM), registers, local memory, and global
memory to optimize the kernel's lifecycle and enable optimal operation between the CPU and GPU.
Reducing branch divergence involves modifying algorithms to ensure convergence in program branching
paths, facilitating the simultaneous execution of parallel threads. Autotuning involves hardware and software
tuning during GPU installation and firmware configuration [26].

In the field of process mining, limited research has been conducted on GPU acceleration to enhance
performance, specifically in the discovery process. Kundra conducted a study utilizing the implicit
parallelism provided by the parallel computing toolbox (PCT) in MATLAB to execute deterministic
discovery stages such as tuple formation, footprint assembly, and maximum path determination. The test
results demonstrated that GPU parallelism accelerated the discovery process 39 times faster than CPU
parallelism, achieving a maximum acceleration of only 10 times [28]. Another study by Santos [29] explored
the application of GPU-accelerated control-flow algorithms, resulting in acceleration up to 8 times faster
when testing large event logs containing 10,000,000 stream data. However, for smaller datasets with fewer
than 10,000 event logs, no acceleration improvement was observed, and parallel GPU threads tended to be
slower compared to the CPU [18].

Improving process discovery performance relies not only on parallel computing acceleration
mechanisms but also on the event log streaming process. Typically, a discovery resource is performed on
static event logs. For minimizing time and space complexity, event log execution can be managed using
streaming windowing methods, as exemplified in Burattin's work [30]. Therefore, in this research, we
contribute to improving the parallelization performance of process mining, starting from the preprocessing
stage of event-log streaming from distributed resources to the primary process in the discovery phase.

After analyzing the studies conducted by Kundra et al. [28] and Santos [29] on GPU acceleration in
process mining, notable differences in their results become evident. Santos's study exhibits realistic outcomes
and a clear methodology, although it does not demonstrate excessively high acceleration in the discovery
process. On the other hand, Kundra's study showcases significant acceleration results without providing
specific details on the methods employed. There is considerable skepticism regarding the direct
parallelization of a sequential algorithm with concurrency content in the process discovery to achieve a
substantial increase in performance speed-up. Nevertheless, the execution of parallel programs on GPUs is
particularly prone to various limitations, especially concerning branch divergence.

Both studies, however, did not identify the dominant factors influencing the performance of GPU
parallelism in process discovery. Therefore, the objective of this research is to explore optimization
techniques that can enhance GPU parallelism performance, with a specific focus on three key factors: the

Int J Elec & Comp Eng ISSN: 2088-8708 

 Accelerating real-time deterministic discovery through Single instruction … (Hermawan Fauzan)

4217

influence of threading, memory coalesced access, and branch divergence. By addressing these issues, we aim
to improve the efficiency and effectiveness of GPU acceleration in process mining, particularly in the
discovery process.
 Based on previous research, it has been observed that achieving performance improvement in
process discovery on GPU requires a notably large execution footprint, a challenge often encountered in
practical field implementations [28], [29]. In this study, simulations were conducted on a distributed system
using a real-live event-log from BPI to illustrate the effectiveness of accessing substantial event-log
footprints that align with real-world field requirements. The implementation on the distributed system
involves threading on the CPU using MIMD mechanisms, facilitating the streaming of data from the
distributed network, and forming event-log data windows to generate large footprints through MISD
processes. Subsequently, the data is directed for execution in SIMD GPU parallelization as figured in
Figure 1. To obtain the best threading mechanism, we used three combinations of threading scenarios in the
testing, namely: i) combination of MIMD CPU threading and MIMD GPU for sequential algorithm,
ii) combination of MIMD CPU threading and MIMD GPU for parallel algorithm, iii) MIMD CPU threading
and SIMD GPU for sequential algorithm, and iv) MIMD CPU threading and SIMD GPU for parallel
algorithm.

Through these three threading combinations, speed measurements for the discovery process were
conducted to assess the performance acceleration of parallel computing in a distributed system. Regarding
the parallelization algorithm for discovery on SIMD GPU, there are three optimized stages in the discovery
process: footprint construction, parallel reduction, and maximum path optimization. In the testing scenario,
the data utilized consists of both real-live and artificial event logs collected by the Business Process Institute,
serving as the material for annual testing and contests. From the various event log variants used, they are
classified based on two perspectives:
− Event-log file volume: Indicates the number of event traces within the event log. This perspective is

employed to measure the performance in the formation of causality matrix footprints.
− Number of activities: Represents the size of the footprint matrix dimension, implying the complexity of

concurrency in causality tuples. This perspective is utilized to measure the performance in parallel
reduction and maximum path aspects.

Figure 1. Data transformation scenario with combination of MIMD, MISD, and SIMD

3. METHOD
In facilitating the development of real-time discovery processing, our method has specifically

focused on the pre-discovery and discovery stages. We have devised multiple algorithmic approaches that
utilize multi-windowing threading to compare the efficient execution of streaming footprints on both the
CPU and GPU. During the pre-discovery phase, our approach involves reading tuples from a distributed
event log stream. This initial step leads us to construct a footprint that serves as a foundation for subsequent

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 4, August 2024: 4214-4227

4218

processes. In the discovery phase, we undertake several essential steps to extract valuable insights from the
data. These steps include assessing the causality of the footprint, performing parallel reduction, and
determining the maximum path. By combining the computing power of the CPU and GPU using the MIMD
and SIMD strategy, we aim to optimize the efficiency and speed of the real-time discovery process in a
distributed system.

3.1. Contextual model

In our real-time multi-window system design, we have developed a model for the real-time
discovery system, as illustrated in Figure 2 of the data flow diagram (DFD). The primary data source for the
process discovery is the event-log, which consists of activity transactions recorded in the information
system's data logger. To conduct experimentation and testing, we obtained event-logs from real-data
collections provided by the business process institute. Additionally, we created dummy event-logs by
duplicating the existing data and distributing them across multiple client computers connected to the local
network. Accessing the event-logs in various formats, such as MXML, XES, and CSV, was made possible
through the HTTP port. It was observed that the CSV format had approximately 75% smaller file size
compared to the other formats, primarily due to the replacement of various XML tags with punctuation. This
reduction in size makes CSV files more efficient for streaming event-logs.

By utilizing CSV files and buffer streaming, sequential data reading to form the footprint matrix
does not require a large memory consumption. It operates through a read-release operation, where the
memory is released to the Garbage Collector after being read, making it available for reuse. This approach
allows for continuous real-time data streaming. For the multi-windowing process, parallel CPU thread
execution is executed using MIMD local threads. To maintain data consistency and the functionality of local
threads, objects are constructed as represented in the class diagram shown in Figure 3. Class Schedule is used
to schedule the streaming process, executing the Stream class, thereby ensuring that the Ithread loop thread
runs in a scheduled manner. Class Ithread collects the aggregation of footprints based on the principles of the
factory design pattern.

Event Logs

Streaming
Event Trace

GPU
Global Thread

URL
Multi Thread

Stream

Footprint Matrix GRAPH MAP

Read Tuples Sequence

Causality RetrievalConstruct Causality
Patterns

Optimize Retrieval

Mapping Tuples

Work Flow
SWF - Net

Create
Graph Presentation

Figure 2. Contextual diagram model for real time discovery stream

Figure 3. Class diagram model for real time discovery stream

Int J Elec & Comp Eng ISSN: 2088-8708 

 Accelerating real-time deterministic discovery through Single instruction … (Hermawan Fauzan)

4219

3.2. Parallelism strategy
Two strategies are deployed for their research: independent and aggregation. As shown in

Figure 4(a), by employing the independent multi-window strategy, the entire process, including pre-
discovery, discovery, post-discovery, and monitoring and evaluation, is performed in a MIMD strategy
approach. On the other hand, aggregation is utilized to optimize the effective use of the GPU for processing
large datasets by tabulating footprints within a big-footprint matrix and then executing the discovery process
using global threads through a SIMD approach as shown in Figure 4(b).

By employing the MIMD strategy, local-thread processes are executed on the static local memory of
the GPU's processor registers. The maximum number of parallel threads is heavily influenced by the number
of processors, clock speed, and memory bandwidth according to the specifications of the GPU being used.
Table 1 is a memory and processor specifications of the NVIDIA GPU utilized for the testing phase. The
hardware specifications exclusively employ low to medium specifications for testing, aiming to demonstrate
that the algorithm used in the balanced specifications can effectively compare multithread performance on
both CPU and GPU in a proportional manner for executing different strategy on MIMD, MISD, and SIMD
approach.

(a) (b)

Figure 4. Two strategies parallelism MIMD and SIMD: (a) independent local threads windowing in MIMD
strategy for overall stages and (b) aggregation local thread MIMD to MISD use CPU and SIMD use GPU

Table 1. CPU-GPU specification for testing
Tipe Cuda core Memori Clock speed Bandwidth

CPU Core I7 4 core 8 threads 16 Gb 3800 MHz DDR3 2800 MHz
GTX 960 1024 2 Gb 1300 Mhz 7 Gbps

GTX 1080 2800 8 Gb 2000 Mhz 10 Gbps

3.3. Pre-discovery

In the independent multi-window pattern as Figure 4(a), each thread operates locally, optimizing the
performance of the multi-threaded CPU using the multi-instruction multi data (MIMD) mechanism, the
thread loop algorithm as shown in Algorithm 1. The results of each process are stored in a Map Footprint,
allowing them to be independently utilized in subsequent stages of the process. MIMD data streamer is
applied to create a collection of multiple footprint matrices ∀𝑀𝑀𝑙𝑙 has size 𝑡𝑡2, which are executed using
pseudocode within Algorithm 2. Afterwards, the file parsing is performed using pseudocode Algorithm 3 to
generate a collection of footprint matrices 𝐹𝐹∀𝑀𝑀𝐿𝐿.

𝐹𝐹∀𝑀𝑀𝑙𝑙 = ∑ ∑ ∀𝐿𝐿𝑀𝑀[𝑡𝑡𝑎𝑎,𝑡𝑡𝑏𝑏] ←𝑖𝑖−1

𝑡𝑡=0 𝑏𝑏 + 1𝑛𝑛−1
𝐿𝐿=0

where 𝐹𝐹∀𝑀𝑀𝑙𝑙 is collection map of matrix footprint from event log; 𝑀𝑀 is footprint matrix; 𝐿𝐿 is event log; 𝑛𝑛 is
numbers of event log; 𝑡𝑡 is task activity, encode {A…L} →{ 0…11}; 𝑖𝑖 is numbers of activity; and 𝑎𝑎, 𝑏𝑏 is tuple
of task, follow tuple 𝑎𝑎 → 𝑏𝑏.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 4, August 2024: 4214-4227

4220

On the other hand, Figure 4(b) shows the aggregation pattern use the big footprint ⋀𝑀𝑀𝑙𝑙 has same
updated within the Algorithm 3. This aggregation pattern address for efficient processing in large volumes of
data. In this case, data tabulation in the large matrix follows the multi-instruction single data (MISD)
mechanism, which enables multiple thread instructions to be executed on the single footprint simultaneously
by local thread in Algorithm 2.

As for the big-footprint 𝐹𝐹⋀𝑀𝑀𝐿𝐿 has size 𝑛𝑛 ∗ 𝑡𝑡2, where:

𝐹𝐹⋀𝑀𝑀𝑙𝑙 = ∑ ∑ 𝑀𝑀[𝐿𝐿∗𝑖𝑖+𝑡𝑡𝑎𝑎][𝑡𝑡𝑏𝑏] ←𝑖𝑖−1
𝑡𝑡=0 𝑏𝑏 + 1𝑛𝑛−1

𝐿𝐿=0

Algorithm 1. Stream thread
Input
 𝑀𝑀𝑙𝑙: matrix of byte [Number of event logs*Number of tasks] [Number of tasks]
Void Stream
 𝑅𝑅 : Thread local
 𝑈𝑈𝑈𝑈𝑖𝑖: Set<String> of URL
 For uri: Uri
 R= new I𝑡𝑡ℎ𝑈𝑈𝑟𝑟𝑎𝑎𝑟𝑟(counterId, uri, 𝑀𝑀𝑙𝑙)
 Start Thread Local (R)
 counterId++

Algorithm 2. Discovery thread
Class Ithread implementation of runnable thread
 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: create new thread local
 𝐹𝐹: footprint
 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑡𝑡𝑟𝑟𝑈𝑈 : int of thread counter
constructor Ithread (id, uri, footprint)
 Set F
Void run thread
 stream footprint
 f = create Footprint (id, uri, footprint)
 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 set thread setFootprint
 𝑈𝑈𝑈𝑈𝑖𝑖: Set<String> of URL
 If 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙<>Null
 Counter++
 Discovery MIMD for 𝑓𝑓 ∈ 𝐹𝐹∀𝑀𝑀𝑙𝑙
 Update F as big foot print
 If Counter% Size of Uri
 Discovery SIMD for 𝑓𝑓 ∈ 𝐹𝐹⋀𝑀𝑀𝑙𝑙

By directly working with large-scale data, the computation of the discovery process can be
significantly accelerated within parallelism, especially using GPU, through footprint vectorization. In various
discovery process methods, especially deterministic approaches, the majority of computational resources are
consumed during the pre-discovery stage, which involves streaming and constructing footprints. This is
because the retrieval of causality patterns during the discovery phase involves low computational complexity
and executes limited matrix dimension.

Algorithm 3. Footprint writer
Void setFootprint (id, url)
 𝑎𝑎: String as predecessor task
 𝑏𝑏: String as successor tak
 𝜏𝜏: String of event log trace
 𝑈𝑈𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑈𝑈: input stream buffer
 𝑏𝑏𝐶𝐶𝑓𝑓𝑓𝑓𝑟𝑟𝑈𝑈: tokenize reader from event log
 While line of reader <> NUll
 Set of tasks ← tokenize line
 If length of task > 0
 𝜏𝜏 = task [0]
 𝑎𝑎 = task [1]
 If 𝑏𝑏𝐶𝐶𝑓𝑓𝑓𝑓𝑟𝑟𝑈𝑈 = 𝜏𝜏
 𝑈𝑈𝐶𝐶𝑟𝑟 = id* length of task+code number of 𝑎𝑎
 𝑐𝑐𝐶𝐶𝑙𝑙 = code number of 𝑏𝑏
 Set Footprint F[row][col] = a+1
 a = b
 𝑏𝑏𝐶𝐶𝑓𝑓𝑓𝑓𝑟𝑟𝑈𝑈 = 𝜏𝜏
 close 𝑈𝑈𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑈𝑈

Int J Elec & Comp Eng ISSN: 2088-8708 

 Accelerating real-time deterministic discovery through Single instruction … (Hermawan Fauzan)

4221

3.4. Discovery
The discovery process is performing within the graphical processor unit (GPU). As an initial step,

the construction of the basic causal logic matrix is performed, consisting of the Input (𝐼𝐼𝑛𝑛), Output (𝑂𝑂𝐶𝐶𝑡𝑡),
Oneloop (⍚), Twoloop (∆), and Parallel (||) matrices. All these features serve to construct a pattern of
deterministic for achieving the SWF-network gateway boundary. The execution of MIMD on CPU and CPU-
GPU forms a multithreaded local single windowing that directly executes the discovery on the collection
matrix of footprints 𝐹𝐹∀𝑀𝑀𝐿𝐿.

Since the size of the footprint matrix is determined by the limited number of tasks, sequential
kernels can be executed directly. In this kernel, the determination of the maximum path is done by
subtracting the content of tuple 𝑂𝑂𝐶𝐶𝑡𝑡 [𝑖𝑖][𝑗𝑗] that has a smaller index from the maximum index 𝐼𝐼𝑛𝑛[𝑖𝑖][𝑘𝑘], and
vice versa. As shown in Algorithm 4, this kernel has a computational complexity on 𝑂𝑂(𝑛𝑛3) with branch
divergence caused by one of the loops inside a branching condition.

In CPU MIMD parallelism, where the computing units of the processor can perform independent
multithreading, the impact of branch divergence is minimal. However, in GPU MIMD parallelism, which is
formed by a cluster of stream processors with limited logic capabilities, the synchronization of warp threads
on the stream processor causes significant delays for synchronization. The determination of the maximum
path uses MIMD as shown in pseudocode Algorithm 4.

Algorithm 4. Find maximum path MIMD
Input
 𝐼𝐼𝑛𝑛,𝑂𝑂𝐶𝐶𝑡𝑡: matrix footprint reduction
 row: matrix row dimension
 col: matrix column dimension

Void MaxPathLocal
 For index of i<row

For index of j<column
 If In[i][j]>0

for index k=j+1, k<column, k++
If In[i][k]>0

if Out[j][i]>0)
Out[j][i]←0

if Out[k][i]>0)
Out[k][i] ←0

 Do reverse reduce Out to In

As for the SIMD strategy that optimizes the Global thread in single-windowing of GPU, the
optimization is performed through two steps:
− Memory coalesced access, by configuring the tuple vectors into a unidirectional pattern for the Out,

Parallel, and ∆ footprint features by using matrix reflection transpose. In Algorithm 5, the matrix 𝐼𝐼𝑛𝑛 is
initialized to be equal to the 𝐹𝐹⋀𝑀𝑀𝑙𝑙 footprint, which is copied from CPU memory to GPU memory, while
𝑂𝑂𝐶𝐶𝑡𝑡 is the transposed matrix of 𝐼𝐼𝑛𝑛. To overcome II, inverse row-column relationship checking is
performed. The parallel global threads run in two-dimensional multi-windowing matrix for constructing
the Out, Parallel, and ∆ within the global GPU memory.

Algorithm 5. Transpose of matrix output
Input
 In: Footprint Matrix
Output

void setOutTranspose (number of columns, Matrix In, Matrix Out)
 row: GlobalId (0)
 col: GlobalId (1)
 xrow = (row/column) * column + col
 xcol = row%column;
 If In[xcol] [xrow]>0
 Out[xrow][xcol] ← xcol+1
 In[xcol][xrow] ← 0

− Reduce branch divergence, by configuring the loop structure and branching, the loops executed within the

global threads can be parallelized in asynchronous works without any loops waiting for conditional
requirements. To optimize memory access speed, vectorization is applied by converting the matrix data
dimensions into a one-dimensional stream vector using division and modulus operations, as shown in
Algorithm 6.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 4, August 2024: 4214-4227

4222

Algorithm 6. Maximum path SIMD
Input
 Min: vector array of predecessor flags
 Max: vector array of successor flags

void MaxpathOutGlobal (number row, number col, matrix In, Matrix Out)
 row: GlobalId (0)
 int m = row/col;
 int n = row % col;
 For counter i <col
 If In[i*m+n] [i]>0
 Max [i*m+n] = In[i*m+n] [i];
 If Min [i*m+n] <> 0
 If Max [i*m+n] <> Min [i*m+n]
 If Out [Min [i*m+n]-1] [i*m+n] <> Min [i*m+n]
 Out [Min [i*m+n]-1] [i*m+n] ← 0
 If Out [Max [i*m+n]-1] [i*m+n] <> Max [i*m+n]
 Out [Max [i*m+n]-1] [i*m+n] ← 0
 Min [i*m+n] = Max [i*m+n];
 Do reverse reduce Out to In

The modification of the algorithm to reduce branch divergence in parallelism GPU over replacing

the logic pattern from FOR-IF-FOR loops to FOR-FOR-IF, both in parallel reduction and maximum path
determination. In the case of the pseudocode in Algorithm 6 for determining maximum-paths, when a loop is
started by an IF statement, the FOR loop contained inside the IF statement cannot execute global memory
warp in parallel asynchronously. So, each FOR loop will be executed on a sequential synchronously depend
on IF condition, as shown in Illustration Figure 5(a).

The inefficiency of GPGPU parallelism arises from the failure of parallel global thread execution,
resulting in slower execution speed on the GPU stream core compared to the CPU core for execution
sequencial thread. Consequently, GPGPU utilization becomes inefficient, causing to higher time complexity
of approximately 𝑂𝑂(𝑛𝑛3. 𝐼𝐼𝐹𝐹) ≈ 𝑂𝑂(𝑛𝑛4). Moreover, the computational load addition with library load, data
transfer between the CPU and GPU, also the allocation of matrices in GPU memory.

For reducing the high complexity caused by FOR-IF-FOR statements above, algorithm modification
is necessary to shift the FOR loop within the IF statement. This adjustment reconfigures the tuple reading
sequence in the matrix to become FOR-FOR-IF, allowing for asynchronous parallelism. Figure 5(b)
illustrates the execution of the MIN-MAX algorithm in the parallel reduction and maximum path discovery
processes.

(a) (b)

Figure 5. Pattern for reduction branch divergence (a) Synchronous Sequencial loop influenced by branch
For-If-For-If, and (b) Asynchronous parallel loop after modification branch to For-For-If-If

During the execution of the processing loop 𝐹𝐹𝑂𝑂𝑅𝑅(1) − 𝐹𝐹𝑂𝑂𝑅𝑅(2) − 𝐼𝐼𝐹𝐹, as 𝐹𝐹𝑂𝑂𝑅𝑅(1) represents a

global thread on the stream processor that operates asynchronously within the global memory GlobalId (0),
resulting in a time complexity of 𝑂𝑂(1). Then 𝐹𝐹𝑂𝑂𝑅𝑅(2) is a vector loop that iterates through each row index, it
is achieved a time complexity in 𝑂𝑂(𝑛𝑛) since there are no nested loops within the IF statement. Also, for IF
statement evaluates the number of non-zero values in the sparse matrix, resulting in a time complexity of
𝑂𝑂(𝑛𝑛). Through the reduction of branch divergence, the algorithm effectively overcome low complexity in
𝑂𝑂(𝑛𝑛2).

Int J Elec & Comp Eng ISSN: 2088-8708 

 Accelerating real-time deterministic discovery through Single instruction … (Hermawan Fauzan)

4223

The algorithm operates in a sparse footprint matrix by iterating through each vector 𝑉𝑉𝚤𝚤𝑛𝑛[𝑛𝑛]����������⃗ ∈ 𝐼𝐼𝑛𝑛[𝑚𝑚,𝑛𝑛]
matrice. For the initial instruction, state of flag vectors 𝑀𝑀𝑀𝑀𝑛𝑛[𝑚𝑚]��������������⃗ ,𝑀𝑀𝑎𝑎𝑀𝑀[𝑚𝑚]���������������⃗ = 0. If value of 𝑉𝑉𝚤𝚤𝑛𝑛[𝑛𝑛]����������⃗ > 0 that lead
vector successor flag updated 𝑀𝑀𝑎𝑎𝑀𝑀[𝑚𝑚]���������������⃗ ← 𝑉𝑉𝚤𝚤𝑛𝑛[𝑛𝑛]����������⃗ and then reduce 𝑂𝑂𝐶𝐶𝑡𝑡[𝑀𝑀𝑖𝑖𝑛𝑛[𝑚𝑚],𝑛𝑛] tuple by set to zero if certain
conditions is fulfilled. With the last looping order is always updating predecessor 𝑀𝑀𝑀𝑀𝑛𝑛[𝑛𝑛]�������������⃗ ← 𝑀𝑀𝑎𝑎𝑀𝑀[𝑛𝑛]��������������⃗ , after
loop is incremented then find again value 𝑉𝑉𝚤𝚤𝑛𝑛[𝑛𝑛]����������⃗ > 0 so updated 𝑀𝑀𝑎𝑎𝑀𝑀[𝑚𝑚]���������������⃗ ← 𝑉𝑉𝚤𝚤𝑛𝑛[𝑛𝑛]����������⃗ that made value of
successor 𝑀𝑀𝑎𝑎𝑀𝑀[𝑚𝑚] ≠ 𝑀𝑀𝑖𝑖𝑛𝑛[𝑚𝑚]. The decrepancy value of successor and predecessor drives to set task tuples
𝑂𝑂𝐶𝐶𝑡𝑡[𝑀𝑀𝑖𝑖𝑛𝑛[𝑚𝑚],𝑛𝑛] = 0 that ensuring a smaller output index is reduced. Because 𝑂𝑂𝐶𝐶𝑡𝑡[𝑚𝑚,𝑛𝑛] = 𝑇𝑇𝑈𝑈𝑎𝑎𝑛𝑛𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝑟𝑟(𝐼𝐼𝑛𝑛[𝑚𝑚,𝑛𝑛])
reducing the smaller index lead no redundancy relation between 𝐼𝐼𝑛𝑛/𝑂𝑂𝐶𝐶𝑡𝑡 matrices also select the maximum
path tuples that construct the optimum relation in split and join XOR control flow.

3.5. Post-discovery

Following the completion of the discovery process, GPGPU was employed to conduct conformance
similarity testing of the discovery results using cosine similarity. Cosine similarity involves performing
vector dot products and is well-suited for leveraging GPU parallelism. By utilizing the standardize operation
procedure (SOP) matrix as a reference, the similarity of the discovery matrix is measured to quantify the
variations in business processes. This information can then be utilized for purposes such as classification or
clustering. This paper session does not delve into the post-discovery section in detail, as it is the main focus
of our future paper.

4. RESULTS AND DISCUSSION

To examine the performance of SIMD and MIMD in the CPU-GPU combination, we have
conducted the testing use many combinations of event logs and threads scenarios. The event logs included
of real-life BPI event logs such as: credit application (12 activities), hospital billing (45 activities), BPI11
(640 activities), and a dummy event log (1,000 activities). The thread counts ranged from single-threaded to a
local multi-thread count of 1,000,000. As shown in Table 2, even on short task, SIMD demonstrated
significant performance acceleration when executed with numerous threads.

Table 2. Comparison of execution times for a real time of distributed discovery for credit
application (12 activities)

Processor Type 1 10 100 1000 10000 50000 100000 1000000
CPU MIMD I 1 6 30 40 124 450 1400 18000

GPU 1 960 MIMD II 130 260 600 1200 ∞ ∞ ∞ ∞
GPU 1 960 MIMD III 150 200 400 800 ∞ ∞ ∞ ∞

GPU 1 960 SIMD 100 110 130 140 250 520 820 2700
GPU 2 1080 MIMD I 80 180 320 800 ∞ ∞ ∞ ∞
GPU 2 1080 MIMD II 90 120 210 520 ∞ ∞ ∞ ∞

GPU 2 1080 SIMD 70 80 100 110 140 180 270 1100

The single and low thread testing results showed that CPU discovery on MIMD I without data

transfer between PC memory and GPU memory achieved the best result, with a mere 1 ms execution time.
This can be attributed to the simplicity of the deterministic discovery algorithm, despite its time complexity
on the CPU. However, when utilizing the GPU, there was a minimal initialization time required to load the
class model and Java Native Interface (JNI) when using the OpenCL library, resulting in an execution time
close to 100 ms.

For the CPU-GPU combination, thread-local multi-windowing was controlled by the multi-thread
CPU using MIMD. Three combinations were used for the GPU that are: conventional MIMD II without
branch divergence reduction, MIMD III with branch divergence reduction, and SIMD with branch
divergence reduction. The testing revealed that MIMD II without branch divergence reduction performed the
worst and quickly encountered faults, as highlighted in Table 2. The GPU stream processors have struggled
with synchronization due to the thread differentiation on stream cores. In this case, serialization multi thread
CPU without branch divergence reduction has become the best result for short activities compared to GPU
parallelization as shown as Figure 6(a) dan 6(b). Moreover, MIMD III outcome poor performance due to the
GPU stream cores had significantly lower performance compared to the CPU cores on single works, they
quickly reached saturation and fault outputs were observed from the OpenCL compiler.

In contrast, SIMD demonstrated remarkably high performance due to the division of executing
stages, leveraging the optimal specifications of the CPU processor cores to handle numerous threads in the

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 4, August 2024: 4214-4227

4224

pre-discovery process, while the GPU stream processor specifically handled the discovery. The highest
performance was achieved with SIMD due to optimal workload distribution and the significant impact of
branch divergence reduction on large data clusters. This enabled the stream processor to maintain
asynchronous parallelism. Table 3 shows that the workload approach in SIMD, as opposed to MIMD in
GPU, can accelerate the discovery speed by 10 to 40 times for event-logs containing over 45 to 500 activities
and thread counts ranging from 100 to 1,000. This shows that the implementation of GPU parallelism in real-
live discovery is more realistic because it does not depend on the size of the activity which must be large as
in previous studies [28], [29], where the result as shown as Figure 6(c) and 6(d) by using 100 activities as
event-log task input, the performance of SIMD GPU can be performed to achieve significant speedup. By
utilizing real-world event logs with a limited composition of event occurrences from distributed sources, it
demonstrates the effectiveness of the parallel computing performance employed.

Table 3. Comparison of execution times for a real time of distributed discovery for
BPI challenge 18 (100 activities)

Processor Type 1 10 100 1000 10000 50000 100000 1000000
CPU MIMD I 6 8 300 800 3200 20000 80000 ∞

GPU 1 960 MIMD II 370 820 ∞ ∞ ∞ ∞ ∞ ∞
GPU 1 960 MIMD III 400 640 1200 ∞ ∞ ∞ ∞ ∞

GPU 1 960 SIMD 170 180 200 380 620 2400 8800 ∞
GPU 2 1080 MIMD I 240 570 2600 ∞ ∞ ∞ ∞ ∞
GPU 2 1080 MIMD II 300 440 950 ∞ ∞ ∞ ∞ ∞

GPU 2 1080 SIMD 120 140 160 190 240 780 2600 ∞

(a)

(b)

(c) (d)

Figure 6. Comparison of discovery results between MIMD and SIMD architectures: (a) performing short

tasks with low thread count, (b) performing short tasks with high thread count, (c) executing long tasks with
low thread count, and (d) executing long tasks with high thread count

Int J Elec & Comp Eng ISSN: 2088-8708 

 Accelerating real-time deterministic discovery through Single instruction … (Hermawan Fauzan)

4225

Regarding hardware specifications, the NVIDIA GTX 960 is old NVIDIA architecture which has a
low-specification GPU with 16 compute units of stream multi-processors (SMs), experiences a bottleneck
with limited acceleration power, averaging under 10 times. The number of SMs and bandwidth speed has the
most significant influence on determining GPGPU performance as they coordinate the synchronization of
parallelism between GPU and CPU threads. On the other hand, the NVIDIA GTX 1080, a high-performance
GPU with 20 SMs, achieves significantly higher performance compared to the GTX 1080 for activation
thread clusters.

5. CONCLUSION
The conducted study has determined that integrating parallelism in both the CPU and GPU, by

employing local thread multi-windowing with a combination strategy using MIMD in the CPU for reading
streaming data, utilizing MISD in the CPU for constructing footprints, and finally executing in global thread
SIMD in the GPU within the discovery process, significantly accelerates the speed of real-time distributed
discovery. These results indicate that even with a low to medium-specification PC and open-source software,
high-performance outcomes can be achieved. Therefore, this approach is highly recommended as an efficient
best practice. The observed high-performance results are attributed to effectively managing the convergence
of branching logic and memory on the GPGPU, despite potential limitations of the GPU when operating
under concurrency and sparse matrix conditions. The method of hiding branch divergence using the Min-
Max flag to reduce branch divergence is a novelty in this study, proving to accelerate the performance for
parallelism in GPU SIMD.

ACKNOWLEDGEMENTS

The authors gratefully to the Lembaga Pengelolah Dana Pendidikan (LPDP) of the Indonesian
Ministry of Finance for providing financial support for this study. The authors would also give appreciation
to the supervisors, reviewers, and editors for their valuable feedback, insightful comments, and suggestions,
which have greatly enhanced the overall presentation of the paper. Their contributions have been
instrumental in improving the quality and clarity this research.

REFERENCES
[1] W. van der Aalst, “Data science in action,” in Process Mining, Springer Berlin Heidelberg, 2016, pp. 3–23, doi: 10.1007/978-3-

662-49851-4_1.
[2] W. M. P. van der Aalst, “Process mining: A 360 degree overview,” in Lecture Notes in Business Information Processing,

vol. 448, Springer International Publishing, 2022, pp. 3–34, doi: 10.1007/978-3-031-08848-3_1.
[3] A. Adriansyah, B. F. Van Dongen, and W. M. P. Van Der Aalst, “Towards robust conformance checking,” in Lecture Notes in

Business Information Processing, vol. 66 LNBIP, Springer Berlin Heidelberg, 2011, pp. 122–133, doi: 10.1007/978-3-642-20511-
8_11.

[4] A. H. M. Rashed, N. E. El-Attar, D. S. Abdelminaam, and M. Abdelfatah, “Analysis the patients’ careflows using process
mining,” PLoS ONE, vol. 18, no. 2 February, p. e0281836, Feb. 2023, doi: 10.1371/journal.pone.0281836.

[5] A. Rozinat and W. M. P. Van Der Aalst, “Conformance checking of processes based on monitoring real behavior,” Information
Systems, vol. 33, no. 1, pp. 64–95, Mar. 2008, doi: 10.1016/j.is.2007.07.001.

[6] M. Jans and M. Laghmouch, “Process mining for detailed process analysis,” in Advanced Digital Auditing, Springer International
Publishing, 2023, pp. 237–256, doi: 10.1007/978-3-031-11089-4_9.

[7] C. Di Francescomarino and C. Ghidini, “Predictive process monitoring,” in Lecture Notes in Business Information Processing,
vol. 448, Springer International Publishing, 2022, pp. 320–346, doi: 10.1007/978-3-031-08848-3_10.

[8] M. Camargo, M. Dumas, and O. González-Rojas, “Automated discovery of business process simulation models from event logs,”
Decision Support Systems, vol. 134, Art. no. 113284, Jul. 2020, doi: 10.1016/j.dss.2020.113284.

[9] A. Adriansyah, N. Sidorova, and B. F. Van Dongen, “Cost-based fitness in conformance checking,” in Proceedings - International
Conference on Application of Concurrency to System Design, ACSD, Jun. 2011, pp. 57–66, doi: 10.1109/ACSD.2011.19.

[10] M. De Leoni and W. M. P. Van Der Aalst, “Data-aware process mining: Discovering decisions in processes using alignments,” in
Proceedings of the ACM Symposium on Applied Computing, Mar. 2013, pp. 1454–1461, doi: 10.1145/2480362.2480633.

[11] A. Cano, “A survey on graphic processing unit computing for large-scale data mining,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 8, no. 1, Nov. 2018, doi: 10.1002/widm.1232.

[12] L. Shi, H. Chen, J. Sun, and K. Li, “VCUDA: GPU-accelerated high-performance computing in virtual machines,” IEEE
Transactions on Computers, vol. 61, no. 6, pp. 804–816, Jun. 2012, doi: 10.1109/TC.2011.112.

[13] M. Kraus, S. Feuerriegel, and A. Oztekin, “Deep learning in business analytics and operations research: Models, applications and
managerial implications,” European Journal of Operational Research, vol. 281, no. 3, pp. 628–641, Mar. 2020, doi:
10.1016/j.ejor.2019.09.018.

[14] A. N. Sisyukov, O. S. Yulmetova, and V. A. Kuznecov, “GPU accelerated industrial data analysis in private cloud environment,”
in Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus
2019, Jan. 2019, pp. 348–352, doi: 10.1109/EIConRus.2019.8656751.

[15] A. Díaz-Toro, P. Mosquera-Ortega, G. Herrera-Silva, and S. Campaña-Bastidas, “Path planning for assisting blind people in
purposeful navigation,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 26, no. 1, pp. 450–461, Apr.
2022, doi: 10.11591/ijeecs.v26.i1.pp450-461.

[16] M. S. Nguyen, T. T. Than, T. N. Do, and H. N. Nguyen, “Design of elderly-assistant mobile servant robot,” Indonesian Journal of

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 4, August 2024: 4214-4227

4226

Electrical Engineering and Computer Science, vol. 26, no. 3, pp. 1338–1350, Jun. 2022, doi: 10.11591/ijeecs.v26.i3.pp1338-
1350.

[17] S. J. Kamble and M. R. Kounte, “Application of improved you only look once model in road traffic monitoring system,”
International Journal of Electrical and Computer Engineering, vol. 13, no. 4, pp. 4612–4622, Aug. 2023, doi:
10.11591/ijece.v13i4.pp4612-4622.

[18] R. G. Balagafshe, A. Akoushideh, and A. Shahbahrami, “Matrix-matrix multiplication on graphics processing unit platform using
tiling technique,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 28, no. 2, pp. 1012–1019, Nov. 2022,
doi: 10.11591/ijeecs.v28.i2.pp1012-1019.

[19] M. Bali, A. S. Pichandi, and J. H. Duraisamy, “Biomedical-named entity recognition using CUDA accelerated KNN algorithm,”
Telkomnika (Telecommunication Computing Electronics and Control), vol. 21, no. 4, pp. 825–835, Aug. 2023, doi:
10.12928/TELKOMNIKA.v21i4.24065.

[20] N. P. More, V. B. Nikam, and B. Banerjee, “Novel approach of association rule mining for tree canopy assessment,” IAES
International Journal of Artificial Intelligence, vol. 10, no. 3, pp. 771–779, Sep. 2021, doi: 10.11591/ijai.v10.i3.pp771-779.

[21] M. Jaiswal, S. Das, and Khushboo, “Detecting spam e-mails using stop word TF-IDF and stemming algorithm with naïve Bayes
classifier on the multicore GPU,” International Journal of Electrical and Computer Engineering, vol. 11, no. 4, pp. 3168–3175,
Aug. 2021, doi: 10.11591/ijece.v11i4.pp3168-3175.

[22] R. D. Darmawan, W. A. Kusuma, and H. Rahmawan, “Deep learning optimization for drug-target interaction prediction in
COVID-19 using graphic processing unit,” International Journal of Electrical and Computer Engineering, vol. 13, no. 3,
pp. 3111–3123, Jun. 2023, doi: 10.11591/ijece.v13i3.pp3111-3123.

[23] K. Adam, I. I. Mohd, and Y. Ibrahim, “Analyzing the instructions vulnerability of dense convolutional network on GPUS,”
International Journal of Electrical and Computer Engineering, vol. 11, no. 5, pp. 4481–4488, Oct. 2021, doi:
10.11591/ijece.v11i5.pp4481-4488.

[24] B. K. O. C. Alwawi and A. F. Y. Althabhawee, “Towards more accurate and efficient human iris recognition model using deep
learning technology,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 20, no. 4, pp. 817–824, Aug.
2022, doi: 10.12928/TELKOMNIKA.v20i4.23759.

[25] H. Kimm, I. Paik, and H. Kimm, “Performance comparision of TPU, GPU, CPU on Google colaboratory over distributed deep
learning,” in Proceedings - 2021 IEEE 14th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip,
MCSoC 2021, Dec. 2021, pp. 312–319, doi: 10.1109/MCSoC51149.2021.00053.

[26] P. Hijma, S. Heldens, A. Sclocco, B. Van Werkhoven, and H. E. Bal, “Optimization techniques for GPU programming,” ACM
Computing Surveys, vol. 55, no. 11, pp. 1–81, Mar. 2023, doi: 10.1145/3570638.

[27] P. Xu, M. Y. Sun, Y. J. Gao, T. J. Du, J. M. Hu, and J. J. Zhang, “Influence of data amount, data type and implementation
packages in GPU coding,” Array, vol. 16, p. 100261, Dec. 2022, doi: 10.1016/j.array.2022.100261.

[28] D. Kundra, P. Juneja, and A. Sureka, “Vidushi: Parallel implementation of alpha miner algorithm and performance analysis on
CPU and GPU architecture,” in Lecture Notes in Business Information Processing, vol. 256, Springer International Publishing,
2016, pp. 230–241, doi: 10.1007/978-3-319-42887-1_19.

[29] R. M. M. P. dos Santos, “Parallel computing for process mining,” Thesis, Tecnico Lisboa, 2016.
[30] A. Burattin, “Streaming process mining,” in Lecture Notes in Business Information Processing, vol. 448, Springer International

Publishing, 2022, pp. 349–372, doi: 10.1007/978-3-031-08848-3_11.
[31] J. Rudnitckaia, H. S. Venkatachalam, R. Essmann, T. Hruska, and A. W. Colombo, “Screening process mining and value stream

techniques on industrial manufacturing processes: Process modelling and bottleneck analysis,” IEEE Access, vol. 10,
pp. 24203–24214, 2022, doi: 10.1109/ACCESS.2022.3152211.

[32] J. Wang, S. Jia, G. Wang, Z. Pan, and X. Yu, “An improved CPU–GPU parallel framework for real-time interactive cutting
simulation of deformable objects,” Computers and Graphics (Pergamon), vol. 114, pp. 59–72, Aug. 2023, doi:
10.1016/j.cag.2023.05.013.

[33] M. M. Rathore, H. Son, A. Ahmad, A. Paul, and G. Jeon, “Real-time big data stream processing using GPU with spark over
hadoop ecosystem,” International Journal of Parallel Programming, vol. 46, no. 3, pp. 630–646, Jun. 2018, doi: 10.1007/s10766-
017-0513-2.

[34] L. C. Sim, G. Leedham, L. C. Jian, and H. Schroder, “Fast solution of large N × N matrix equations in an MIMD-SIMD Hybrid
System,” Parallel Computing, vol. 29, no. 11-12 SPEC.ISS., pp. 1669–1684, Nov. 2003, doi: 10.1016/j.parco.2003.05.011.

[35] E. A. Träff, A. Rydahl, S. Karlsson, O. Sigmund, and N. Aage, “Simple and efficient GPU accelerated topology optimisation:
Codes and applications,” Computer Methods in Applied Mechanics and Engineering, vol. 410, Art. no. 116043, May 2023, doi:
10.1016/j.cma.2023.116043.

[36] X. Limón, A. Guerra-Hernández, N. Cruz-Ramírez, H. G. Acosta-Mesa, and F. Grimaldo, “A Windowing strategy for Distributed
Data Mining optimized through GPUs,” Pattern Recognition Letters, vol. 93, pp. 23–30, Jul. 2017, doi:
10.1016/j.patrec.2016.11.006.

[37] M. De Leoni, W. M. P. Van Der Aalst, and M. Dees, “A general process mining framework for correlating, predicting and
clustering dynamic behavior based on event logs,” Information Systems, vol. 56, pp. 235–257, Mar. 2016, doi:
10.1016/j.is.2015.07.003.

[38] B. Adeleye and S. M. Jiddah, “Analysis of parallel architectures: SIMD, tightly-coupled MIMD, and loosely-coupled MIMD,”
International Journal of Computer Trends and Technology, vol. 53, no. 1, pp. 6–8, Nov. 2017, doi: 10.14445/22312803/ijctt-
v53p102.

[39] J. Li, D. Liu, and B. Yang, “Process mining: Extending α-algorithm to mine duplicate tasks in process logs,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4537
LNCS, Springer Berlin Heidelberg, 2007, pp. 396–407, doi: 10.1007/978-3-540-72909-9_43.

[40] Hermawan and R. Sarno, “A more efficient deterministic algorithm in process model discovery,” International Journal of
Innovative Computing, Information and Control, vol. 14, pp. 971–995, Jun. 2018.

[41] R. Sarno, W. A. Wibowo, Kartini, Y. Amelia, and K. Rossa, “Determining process model using time-based process mining and
control-flow pattern,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 14, no. 1, pp. 349–359, Mar.
2016, doi: 10.12928/TELKOMNIKA.v14i1.3257.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Accelerating real-time deterministic discovery through Single instruction … (Hermawan Fauzan)

4227

BIOGRAPHIES OF AUTHORS

Hermawan Fauzan received his B.Eng. degree in electrical engineering from
Brawijaya University, Indonesia, in 2002, and his M.Com. degree from Institute Technology
Sepuluh Nopember Surabaya, Indonesia, in 2011. He is currently a Ph.D. candidate in
Computer Science at Institute Technology Sepuluh Nopember Surabaya, Indonesia. He serves
as a lecturer at Universitas Trunojoyo Madura, Indonesia. His research interesting areas,
including data structures, web programming, distributed systems, retrieval engineering,
internet of things, data mining, and process mining. He can be contacted via email:
hermawan@trunojoyo.ac.id.

Riyanarto Sarno professor in Department of Informatics, Institut Teknologi
Sepuluh Nopember, Indonesia. Get Master and Ph.D. degree from News Brunswick
University, Canada. He is currently a head of the Informatics Management Intelligent
Laboratory. His interests include internet of things, business process management, process
aware information systems, knowledge engineering, and smart grids. He can be contacted via
email: riyanarto@if.its.ac.id, riyanarto@gmail.com.

Ahmad Saikhu received Ph.D. degrees in computer science Institut Teknologi
Sepuluh Nopember, Indonesia. He is currently a head office of the Department of Informatics
Institut Teknologi Sepuluh Nopember, Indonesia. His interests include data mining, computer
vision, and machine learning. He can be contacted via email: saikhu@if.its.ac.id.

https://orcid.org/0000-0003-0752-4766
https://scholar.google.com/citations?user=jVvM1TQAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57202373728
https://orcid.org/0000-0001-5373-660X
https://scholar.google.co.id/citations?user=QOMOtp0AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=53264815700
https://orcid.org/0000-0001-8753-263X
https://scholar.google.co.id/citations?user=g3SEGgkAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=56165675200

