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 With the rapid expansion of process mining implementation in global 
enterprises distributed across numerous branches, there is a critical 
requirement to develop an application qualified for real-time operation with 
fast and precise data integration. To address this challenge, computational 
parallelism emerges as a feasible solution to accelerate data analytics, with 
graphical processor unit (GPU) computing currently trending for achieving 
parallelism acceleration. In this study, we developed a process mining 
application to optimize parallel and distributed process discovery through a 
combination of central processing unit (CPU) and GPU computing. The use 
of this computing combination is leveraged for executing multi-windowing 
threads within multi-instruction, multiple data (MIMD) in the CPU for 
streaming distributed event logs, using multi-instruction, single data (MISD) 
within the CPU to deploy a large footprint pipeline to the GPU, and  
then utilizing single instruction, multiple data (SIMD) to execute global 
thread discovery within the GPU. This method significantly accelerates 
performance in real-time distributed discovery. By reducing branch 
divergence in SIMD on the global thread GPU parallelism, it outperformed 
local-thread CPU execution in deterministic discovery, speeding up from 10 
to 40 times under specific conditions using a novel min-max flag algorithm 
implemented within the main steps of the process discovery. 
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1. INTRODUCTION 

The In recent years, global business corporations have experienced significant growth, marked by a 
proliferation of interconnected branches online. This trend is observable across various sectors, including 
retail, industry, banking, and government services. For instance, in Indonesia, businesses in these sectors 
have established branches spanning urban, rural, and international locations. Moreover, government service 
networks have adopted integrated and distributed data operations seamlessly operating across different 
departments. To ensure effective management and supervision of global business processes across multiple 
branches, the support of business intelligence (BI) is essential. This support should facilitate the seamless 
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integration of data tabulation, evaluation, and real-time transaction monitoring, considering the distributed 
information systems within interconnected branches. In this context, process mining serves as a 
complementary technique to data mining [1]. Process mining intersects data science and process science [2], 
particularly in the context of process-aware information systems (PAISs) for BI purposes [3], [4]. It helps 
uncover and analyze underlying process flows and patterns within organizations, providing valuable insights 
[5] for business process analysis [6], business process monitoring [7], business process simulation [8], and 
workflow management systems [9], leading to decision-making systems [10]. 

The adoption of graphical processor unit (GPU) parallelism in data mining and machine learning 
aims to improve the performance of business intelligence (BI) [11] with efficient and low-cost high-
performance computing (HPC) [12]. This trend is prevalent in the field of deep learning for business 
analytics, where GPUs extensively accelerate the training and testing processes of complex neural networks 
[13]. They are widely implemented in fields such as internet of things (IoT) [14], autonomous vehicles [15], 
robotics [16], and exascale computing [17]. The use of GPUs has resulted in notable advancements in both 
accuracy and speed across diverse BI applications, highlighting their significant impact and versatility in 
GPU-accelerated computing, driving progress in computational research and data-driven disciplines [14]. 

In the realm of GPU implementation for fundamental computational tasks like matrix multiplication, 
GPU acceleration performance can achieve a speed-up twice as fast compared to using central processing 
units (CPUs) alone [18]. This heightened performance has been observed in diverse implementations of data 
mining algorithms operating on vectors, such as k-nearest neighbor (KNN) [19], association rule (AR) [20], 
and naïve Bayes [21], showcasing noteworthy speed-up enhancements. Current trends in machine learning, 
especially those rooted in deep learning [22], involve the widespread utilization of GPU-based libraries like 
TensorFlow [23], MATLAB [24], and Google Colab's cloud [25]. These libraries have substantiated their 
ability to amplify speed-up during the training and testing processes, establishing them as pivotal tools in the 
domains of data mining and image processing. 

Furthermore, the implementation of general-purpose GPU (GPGPU) computing offers numerous 
advantages, including fast parallel calculations, high data throughput, and extensive memory bandwidth. 
Additionally, GPGPU is supported by programming interfaces in multiple programming languages [12], [26]. 
However, when it comes to process mining, specific limitations hinder its efficient implementation due to the 
unique characteristics of process mining and GPU computing. These limitations include challenges such as 
branch divergence caused by loop truncation in branching conditions, difficulties in managing memory 
access patterns (especially with sparse matrices), and issues related to thread synchronization occupancy and 
dependencies on synchronous work in cluster stream processors [26]. 

The limitations of GPU parallelism in process mining, particularly in process discovery, are largely 
impacted by the constrained size of matrices and concurrency patterns [27]. The effectiveness of GPU 
parallelism is most evident when dealing with a significant number of event activities, often necessitating the 
use of dummy event logs containing thousands to millions of activities [28], [29]. However, finding such 
extensive event logs in real-life business processes can be challenging since business processes are tailored to 
specific scopes and goals. 

Considering the less effective process mining in managing real and static event log-ins [30], its 
impact on fully automated process mining for business activity monitoring from the value stream in the 
information system [31] is noteworthy. Enhancing GPU acceleration efficiency in real-time process mining 
within a multi-branch distributed system [32] provides advantages in generating a massive amount of diverse 
data with very high speed, termed as big data [33]. This approach allows for the effective aggregation of a 
large matrix for parallel CPU and GPU thread execution using multiple instruction multiple data (MIMD) 
and multi instruction single data (SIMD) strategy [34]. Additionally, algorithm reconfiguration is required to 
minimize conditional branching, memory latency, and thread synchronization [16], [35]. 

Parallelism characteristics in process mining utilizing GPUs emphasize three main categories 
through the incorporation of big data features, specifically volume, variety, and velocity. Volume denotes the 
capacity to tabulate data sources concurrently; variety encompasses the multitude of variations in trace event 
logs that can undergo parallel testing, and velocity quantifies the speed at which data flow can be processed 
in a parallel stream. These characteristics assess the effectiveness of executing MIMD and multiple 
instructions single data (MISD) using CPUs in comparison to single instruction multiple data (SIMD) using 
GPUs and various combinations of these architectures. 

Research endeavors focused on the advancement of parallel deterministic algorithms have 
showcased proficiency in executing multi-thread parallelism within a multi-windowing model through GPU 
acceleration [36]. The utilization of GPGPU parallel computation is integral in deterministic discovery, 
encompassing pre-discovery processes such as footprint arrangement, basic footprint causality pattern 
analysis, parallel reduction, and the determination of maximum paths [37]. The assessment of the optimal 
method for algorithm implementation involves two scenarios: independence and aggregation testing. In the 
independent scenario, employing the MIMD execution strategy, all stages of the mining process are executed 
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within local threads on both the CPU and GPU [38]. In contrast, the aggregation of data transformation 
scenario combines the use of MIMD for streaming data and MISD for constructing footprints in local CPU 
threads, while also finally leveraging SIMD in global GPU threads. The dual-scenario testing aims to 
evaluate the parallelism performance of both the CPU and GPU, with a specific focus on the discovery 
process within deterministic algorithms [39]–[41]. 

By employing Java Aparapi as an open GPGPU library, the testing results revealed substantial 
performance enhancement when utilizing the global thread GPU operating in SIMD compared to MIMD. 
The SIMD implementation demonstrated acceleration ranging from 2 to 40 times, contingent on the number 
of threads and the volume of footprints. Notably, higher thread counts and larger footprint volumes led to 
greater speedup. Specifically, the combination proved particularly effective in achieving acceleration when 
executing over 100 threads for more than 100 events of footprints. These findings underscore the 
effectiveness of employing SIMD implementation for real-time process mining within a multi-branch 
distributed system. Through harnessing the capabilities of the global thread GPU and optimizing thread and 
volume configurations, significant acceleration can be realized in the discovery process. 

Through the utilization of the global thread GPU in SIMD, we have achieved optimal parallel 
execution of footprints across multiple threads, leveraging the potent capabilities of the GPU stream 
processor. This parallelism has notably improved efficiency in balancing the workload between the CPU and 
GPU, resulting in accelerated computations compared to relying solely on the CPU. These findings 
underscore the substantial potential of GPGPU computing, particularly in the realm of deterministic 
discovery involving large-scale datasets. 
 
 
2. PROPOSED METHOD 

Through a systematic review of 450 papers spanning a 14-year research period, key techniques for 
enhancing GPU parallelism performance are highlighted. These techniques include memory coalesced 
access, the use of dedicated memories, reducing branch divergence, and autotuning. Memory coalesced 
access optimizes the utilization of global memory bandwidth by organizing vectorized matrix indices. 
Dedicated memories aim to synchronize random access memory (RAM), registers, local memory, and global 
memory to optimize the kernel's lifecycle and enable optimal operation between the CPU and GPU. 
Reducing branch divergence involves modifying algorithms to ensure convergence in program branching 
paths, facilitating the simultaneous execution of parallel threads. Autotuning involves hardware and software 
tuning during GPU installation and firmware configuration [26]. 

In the field of process mining, limited research has been conducted on GPU acceleration to enhance 
performance, specifically in the discovery process. Kundra conducted a study utilizing the implicit 
parallelism provided by the parallel computing toolbox (PCT) in MATLAB to execute deterministic 
discovery stages such as tuple formation, footprint assembly, and maximum path determination. The test 
results demonstrated that GPU parallelism accelerated the discovery process 39 times faster than CPU 
parallelism, achieving a maximum acceleration of only 10 times [28]. Another study by Santos [29] explored 
the application of GPU-accelerated control-flow algorithms, resulting in acceleration up to 8 times faster 
when testing large event logs containing 10,000,000 stream data. However, for smaller datasets with fewer 
than 10,000 event logs, no acceleration improvement was observed, and parallel GPU threads tended to be 
slower compared to the CPU [18]. 

Improving process discovery performance relies not only on parallel computing acceleration 
mechanisms but also on the event log streaming process. Typically, a discovery resource is performed on 
static event logs. For minimizing time and space complexity, event log execution can be managed using 
streaming windowing methods, as exemplified in Burattin's work [30]. Therefore, in this research, we 
contribute to improving the parallelization performance of process mining, starting from the preprocessing 
stage of event-log streaming from distributed resources to the primary process in the discovery phase. 

After analyzing the studies conducted by Kundra et al. [28] and Santos [29] on GPU acceleration in 
process mining, notable differences in their results become evident. Santos's study exhibits realistic outcomes 
and a clear methodology, although it does not demonstrate excessively high acceleration in the discovery 
process. On the other hand, Kundra's study showcases significant acceleration results without providing 
specific details on the methods employed. There is considerable skepticism regarding the direct 
parallelization of a sequential algorithm with concurrency content in the process discovery to achieve a 
substantial increase in performance speed-up. Nevertheless, the execution of parallel programs on GPUs is 
particularly prone to various limitations, especially concerning branch divergence. 

Both studies, however, did not identify the dominant factors influencing the performance of GPU 
parallelism in process discovery. Therefore, the objective of this research is to explore optimization 
techniques that can enhance GPU parallelism performance, with a specific focus on three key factors: the 
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influence of threading, memory coalesced access, and branch divergence. By addressing these issues, we aim 
to improve the efficiency and effectiveness of GPU acceleration in process mining, particularly in the 
discovery process. 
 Based on previous research, it has been observed that achieving performance improvement in 
process discovery on GPU requires a notably large execution footprint, a challenge often encountered in 
practical field implementations [28], [29]. In this study, simulations were conducted on a distributed system 
using a real-live event-log from BPI to illustrate the effectiveness of accessing substantial event-log 
footprints that align with real-world field requirements. The implementation on the distributed system 
involves threading on the CPU using MIMD mechanisms, facilitating the streaming of data from the 
distributed network, and forming event-log data windows to generate large footprints through MISD 
processes. Subsequently, the data is directed for execution in SIMD GPU parallelization as figured in  
Figure 1. To obtain the best threading mechanism, we used three combinations of threading scenarios in the 
testing, namely: i) combination of MIMD CPU threading and MIMD GPU for sequential algorithm,  
ii) combination of MIMD CPU threading and MIMD GPU for parallel algorithm, iii) MIMD CPU threading 
and SIMD GPU for sequential algorithm, and iv) MIMD CPU threading and SIMD GPU for parallel 
algorithm. 

Through these three threading combinations, speed measurements for the discovery process were 
conducted to assess the performance acceleration of parallel computing in a distributed system. Regarding 
the parallelization algorithm for discovery on SIMD GPU, there are three optimized stages in the discovery 
process: footprint construction, parallel reduction, and maximum path optimization. In the testing scenario, 
the data utilized consists of both real-live and artificial event logs collected by the Business Process Institute, 
serving as the material for annual testing and contests. From the various event log variants used, they are 
classified based on two perspectives: 
− Event-log file volume: Indicates the number of event traces within the event log. This perspective is 

employed to measure the performance in the formation of causality matrix footprints. 
− Number of activities: Represents the size of the footprint matrix dimension, implying the complexity of 

concurrency in causality tuples. This perspective is utilized to measure the performance in parallel 
reduction and maximum path aspects. 

 
 

 
 

Figure 1. Data transformation scenario with combination of MIMD, MISD, and SIMD 
 
 

3. METHOD  
In facilitating the development of real-time discovery processing, our method has specifically 

focused on the pre-discovery and discovery stages. We have devised multiple algorithmic approaches that 
utilize multi-windowing threading to compare the efficient execution of streaming footprints on both the 
CPU and GPU. During the pre-discovery phase, our approach involves reading tuples from a distributed 
event log stream. This initial step leads us to construct a footprint that serves as a foundation for subsequent 
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processes. In the discovery phase, we undertake several essential steps to extract valuable insights from the 
data. These steps include assessing the causality of the footprint, performing parallel reduction, and 
determining the maximum path. By combining the computing power of the CPU and GPU using the MIMD 
and SIMD strategy, we aim to optimize the efficiency and speed of the real-time discovery process in a 
distributed system. 
 
3.1.  Contextual model  

In our real-time multi-window system design, we have developed a model for the real-time 
discovery system, as illustrated in Figure 2 of the data flow diagram (DFD). The primary data source for the 
process discovery is the event-log, which consists of activity transactions recorded in the information 
system's data logger. To conduct experimentation and testing, we obtained event-logs from real-data 
collections provided by the business process institute. Additionally, we created dummy event-logs by 
duplicating the existing data and distributing them across multiple client computers connected to the local 
network. Accessing the event-logs in various formats, such as MXML, XES, and CSV, was made possible 
through the HTTP port. It was observed that the CSV format had approximately 75% smaller file size 
compared to the other formats, primarily due to the replacement of various XML tags with punctuation. This 
reduction in size makes CSV files more efficient for streaming event-logs. 

By utilizing CSV files and buffer streaming, sequential data reading to form the footprint matrix 
does not require a large memory consumption. It operates through a read-release operation, where the 
memory is released to the Garbage Collector after being read, making it available for reuse. This approach 
allows for continuous real-time data streaming. For the multi-windowing process, parallel CPU thread 
execution is executed using MIMD local threads. To maintain data consistency and the functionality of local 
threads, objects are constructed as represented in the class diagram shown in Figure 3. Class Schedule is used 
to schedule the streaming process, executing the Stream class, thereby ensuring that the Ithread loop thread 
runs in a scheduled manner. Class Ithread collects the aggregation of footprints based on the principles of the 
factory design pattern. 
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Figure 2. Contextual diagram model for real time discovery stream 
 
 

 
 

Figure 3. Class diagram model for real time discovery stream  
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3.2.  Parallelism strategy 
Two strategies are deployed for their research: independent and aggregation. As shown in  

Figure 4(a), by employing the independent multi-window strategy, the entire process, including pre-
discovery, discovery, post-discovery, and monitoring and evaluation, is performed in a MIMD strategy 
approach. On the other hand, aggregation is utilized to optimize the effective use of the GPU for processing 
large datasets by tabulating footprints within a big-footprint matrix and then executing the discovery process 
using global threads through a SIMD approach as shown in Figure 4(b). 

By employing the MIMD strategy, local-thread processes are executed on the static local memory of 
the GPU's processor registers. The maximum number of parallel threads is heavily influenced by the number 
of processors, clock speed, and memory bandwidth according to the specifications of the GPU being used. 
Table 1 is a memory and processor specifications of the NVIDIA GPU utilized for the testing phase. The 
hardware specifications exclusively employ low to medium specifications for testing, aiming to demonstrate 
that the algorithm used in the balanced specifications can effectively compare multithread performance on 
both CPU and GPU in a proportional manner for executing different strategy on MIMD, MISD, and SIMD 
approach. 

 
 

 
(a) (b) 

 
Figure 4. Two strategies parallelism MIMD and SIMD: (a) independent local threads windowing in MIMD 
strategy for overall stages and (b) aggregation local thread MIMD to MISD use CPU and SIMD use GPU 

 
 

Table 1. CPU-GPU specification for testing 
Tipe Cuda core Memori Clock speed Bandwidth 

CPU Core I7 4 core 8 threads 16 Gb 3800 MHz DDR3 2800 MHz 
GTX 960 1024 2 Gb 1300 Mhz 7 Gbps 

GTX 1080 2800 8 Gb 2000 Mhz 10 Gbps 
 
 
3.3.  Pre-discovery 

In the independent multi-window pattern as Figure 4(a), each thread operates locally, optimizing the 
performance of the multi-threaded CPU using the multi-instruction multi data (MIMD) mechanism, the 
thread loop algorithm as shown in Algorithm 1. The results of each process are stored in a Map Footprint, 
allowing them to be independently utilized in subsequent stages of the process. MIMD data streamer is 
applied to create a collection of multiple footprint matrices ∀𝑀𝑀𝑙𝑙 has size 𝑡𝑡2, which are executed using 
pseudocode within Algorithm 2. Afterwards, the file parsing is performed using pseudocode Algorithm 3 to 
generate a collection of footprint matrices 𝐹𝐹∀𝑀𝑀𝐿𝐿.  

 
𝐹𝐹∀𝑀𝑀𝑙𝑙 = ∑ ∑ ∀𝐿𝐿𝑀𝑀[𝑡𝑡𝑎𝑎,𝑡𝑡𝑏𝑏] ←𝑖𝑖−1

𝑡𝑡=0 𝑏𝑏 + 1𝑛𝑛−1
𝐿𝐿=0    

 
where 𝐹𝐹∀𝑀𝑀𝑙𝑙 is collection map of matrix footprint from event log; 𝑀𝑀 is footprint matrix; 𝐿𝐿 is event log; 𝑛𝑛 is 
numbers of event log; 𝑡𝑡 is task activity, encode {A…L} →{ 0…11}; 𝑖𝑖 is numbers of activity; and 𝑎𝑎, 𝑏𝑏 is tuple 
of task, follow tuple 𝑎𝑎 → 𝑏𝑏. 
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On the other hand, Figure 4(b) shows the aggregation pattern use the big footprint ⋀𝑀𝑀𝑙𝑙 has same 
updated within the Algorithm 3. This aggregation pattern address for efficient processing in large volumes of 
data. In this case, data tabulation in the large matrix follows the multi-instruction single data (MISD) 
mechanism, which enables multiple thread instructions to be executed on the single footprint simultaneously 
by local thread in Algorithm 2. 

As for the big-footprint 𝐹𝐹⋀𝑀𝑀𝐿𝐿 has size 𝑛𝑛 ∗ 𝑡𝑡2, where:  
 

𝐹𝐹⋀𝑀𝑀𝑙𝑙 = ∑ ∑ 𝑀𝑀[𝐿𝐿∗𝑖𝑖+𝑡𝑡𝑎𝑎][ 𝑡𝑡𝑏𝑏] ←𝑖𝑖−1
𝑡𝑡=0 𝑏𝑏 + 1𝑛𝑛−1

𝐿𝐿=0    
 
Algorithm 1. Stream thread 
Input 
     𝑀𝑀𝑙𝑙: matrix of byte [Number of event logs*Number of tasks] [Number of tasks] 
Void Stream 
     𝑅𝑅 : Thread local 
     𝑈𝑈𝑈𝑈𝑖𝑖: Set<String> of URL 
     For uri: Uri 
            R= new I𝑡𝑡ℎ𝑈𝑈𝑟𝑟𝑎𝑎𝑟𝑟(counterId, uri, 𝑀𝑀𝑙𝑙) 
           Start Thread Local (R) 
             counterId++ 
 
Algorithm 2. Discovery thread 
Class Ithread implementation of runnable thread 
     𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: create new thread local 
     𝐹𝐹: footprint 
      𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑡𝑡𝑟𝑟𝑈𝑈 : int of thread counter 
constructor Ithread (id, uri, footprint) 
     Set F 
Void run thread 
     stream footprint 
     f = create Footprint (id, uri, footprint) 
     𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 set thread setFootprint 
     𝑈𝑈𝑈𝑈𝑖𝑖: Set<String> of URL 
     If 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙<>Null   
            Counter++ 
            Discovery MIMD for 𝑓𝑓 ∈  𝐹𝐹∀𝑀𝑀𝑙𝑙  
            Update F as big foot print 
      If Counter% Size of Uri 
             Discovery SIMD for 𝑓𝑓 ∈  𝐹𝐹⋀𝑀𝑀𝑙𝑙

 
 

By directly working with large-scale data, the computation of the discovery process can be 
significantly accelerated within parallelism, especially using GPU, through footprint vectorization. In various 
discovery process methods, especially deterministic approaches, the majority of computational resources are 
consumed during the pre-discovery stage, which involves streaming and constructing footprints. This is 
because the retrieval of causality patterns during the discovery phase involves low computational complexity 
and executes limited matrix dimension.  

 
Algorithm 3. Footprint writer 
Void setFootprint (id, url) 
     𝑎𝑎: String as predecessor task 
     𝑏𝑏: String as successor tak 
     𝜏𝜏: String of event log trace 
     𝑈𝑈𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑈𝑈: input stream buffer 
     𝑏𝑏𝐶𝐶𝑓𝑓𝑓𝑓𝑟𝑟𝑈𝑈: tokenize reader from event log 
     While line of reader <> NUll 
          Set of tasks ← tokenize line 
          If length of task > 0 
             𝜏𝜏 = task [0] 
             𝑎𝑎 = task [1] 
             If 𝑏𝑏𝐶𝐶𝑓𝑓𝑓𝑓𝑟𝑟𝑈𝑈 = 𝜏𝜏 
                𝑈𝑈𝐶𝐶𝑟𝑟 = id* length of task+code number of 𝑎𝑎 
                𝑐𝑐𝐶𝐶𝑙𝑙  = code number of 𝑏𝑏 
                Set Footprint F[row][col] = a+1 
                a = b 
                𝑏𝑏𝐶𝐶𝑓𝑓𝑓𝑓𝑟𝑟𝑈𝑈 = 𝜏𝜏 
      close 𝑈𝑈𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑈𝑈 
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3.4.  Discovery 
The discovery process is performing within the graphical processor unit (GPU). As an initial step, 

the construction of the basic causal logic matrix is performed, consisting of the Input (𝐼𝐼𝑛𝑛), Output (𝑂𝑂𝐶𝐶𝑡𝑡), 
Oneloop (⍚), Twoloop (∆), and Parallel (||) matrices. All these features serve to construct a pattern of 
deterministic for achieving the SWF-network gateway boundary. The execution of MIMD on CPU and CPU-
GPU forms a multithreaded local single windowing that directly executes the discovery on the collection 
matrix of footprints 𝐹𝐹∀𝑀𝑀𝐿𝐿. 

Since the size of the footprint matrix is determined by the limited number of tasks, sequential 
kernels can be executed directly. In this kernel, the determination of the maximum path is done by 
subtracting the content of tuple 𝑂𝑂𝐶𝐶𝑡𝑡 [𝑖𝑖][𝑗𝑗] that has a smaller index from the maximum index 𝐼𝐼𝑛𝑛[𝑖𝑖][𝑘𝑘], and 
vice versa. As shown in Algorithm 4, this kernel has a computational complexity on 𝑂𝑂(𝑛𝑛3) with branch 
divergence caused by one of the loops inside a branching condition.  

In CPU MIMD parallelism, where the computing units of the processor can perform independent 
multithreading, the impact of branch divergence is minimal. However, in GPU MIMD parallelism, which is 
formed by a cluster of stream processors with limited logic capabilities, the synchronization of warp threads 
on the stream processor causes significant delays for synchronization. The determination of the maximum 
path uses MIMD as shown in pseudocode Algorithm 4. 

 
Algorithm 4. Find maximum path MIMD 
Input 
     𝐼𝐼𝑛𝑛,𝑂𝑂𝐶𝐶𝑡𝑡: matrix footprint reduction 
     row: matrix row dimension 
     col: matrix column dimension  
 
Void MaxPathLocal  
     For index of i<row 

For index of j<column 
 If In[i][j]>0  

for index k=j+1, k<column, k++ 
If In[i][k]>0 

if Out[j][i]>0) 
Out[j][i]←0 

if Out[k][i]>0) 
Out[k][i] ←0 

    Do reverse reduce Out to In     
 

As for the SIMD strategy that optimizes the Global thread in single-windowing of GPU, the 
optimization is performed through two steps: 
− Memory coalesced access, by configuring the tuple vectors into a unidirectional pattern for the Out, 

Parallel, and ∆ footprint features by using matrix reflection transpose. In Algorithm 5, the matrix 𝐼𝐼𝑛𝑛 is 
initialized to be equal to the 𝐹𝐹⋀𝑀𝑀𝑙𝑙 footprint, which is copied from CPU memory to GPU memory, while 
𝑂𝑂𝐶𝐶𝑡𝑡 is the transposed matrix of 𝐼𝐼𝑛𝑛. To overcome II, inverse row-column relationship checking is 
performed. The parallel global threads run in two-dimensional multi-windowing matrix for constructing 
the Out, Parallel, and ∆ within the global GPU memory. 

 
Algorithm 5. Transpose of matrix output 
Input 
     In: Footprint Matrix   
Output 
      
void setOutTranspose (number of columns, Matrix In, Matrix Out) 
       row: GlobalId (0)  
       col: GlobalId (1) 
                xrow = (row/column) * column + col 
                xcol = row%column; 
                If In[xcol] [xrow]>0 
                     Out[xrow][xcol] ← xcol+1 
        In[xcol][xrow] ← 0           
 
− Reduce branch divergence, by configuring the loop structure and branching, the loops executed within the 

global threads can be parallelized in asynchronous works without any loops waiting for conditional 
requirements. To optimize memory access speed, vectorization is applied by converting the matrix data 
dimensions into a one-dimensional stream vector using division and modulus operations, as shown in 
Algorithm 6.  
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Algorithm 6. Maximum path SIMD 
Input 
     Min: vector array of predecessor flags 
     Max: vector array of successor flags 
 
void MaxpathOutGlobal (number row, number col, matrix In, Matrix Out) 
       row: GlobalId (0)  
       int m = row/col; 
       int n = row % col; 
       For counter i <col                 
                  If In[i*m+n] [i]>0 
                         Max [i*m+n] = In[i*m+n] [i];  
                         If Min [i*m+n] <> 0 
                         If Max [i*m+n] <> Min [i*m+n] 
                              If Out [Min [i*m+n]-1] [i*m+n] <> Min [i*m+n] 
                                    Out [Min [i*m+n]-1] [i*m+n] ← 0 
                              If Out [Max [i*m+n]-1] [i*m+n] <> Max [i*m+n] 
                                    Out [Max [i*m+n]-1] [i*m+n] ← 0  
                         Min [i*m+n] = Max [i*m+n]; 
       Do reverse reduce Out to In             

 
The modification of the algorithm to reduce branch divergence in parallelism GPU over replacing 

the logic pattern from FOR-IF-FOR loops to FOR-FOR-IF, both in parallel reduction and maximum path 
determination. In the case of the pseudocode in Algorithm 6 for determining maximum-paths, when a loop is 
started by an IF statement, the FOR loop contained inside the IF statement cannot execute global memory 
warp in parallel asynchronously. So, each FOR loop will be executed on a sequential synchronously depend 
on IF condition, as shown in Illustration Figure 5(a).  

The inefficiency of GPGPU parallelism arises from the failure of parallel global thread execution, 
resulting in slower execution speed on the GPU stream core compared to the CPU core for execution 
sequencial thread. Consequently, GPGPU utilization becomes inefficient, causing to higher time complexity 
of approximately 𝑂𝑂(𝑛𝑛3. 𝐼𝐼𝐹𝐹) ≈ 𝑂𝑂(𝑛𝑛4). Moreover, the computational load addition with library load, data 
transfer between the CPU and GPU, also the allocation of matrices in GPU memory.  

For reducing the high complexity caused by FOR-IF-FOR statements above, algorithm modification 
is necessary to shift the FOR loop within the IF statement. This adjustment reconfigures the tuple reading 
sequence in the matrix to become FOR-FOR-IF, allowing for asynchronous parallelism. Figure 5(b) 
illustrates the execution of the MIN-MAX algorithm in the parallel reduction and maximum path discovery 
processes. 

 
 

 
(a) (b) 

Figure 5. Pattern for reduction branch divergence (a) Synchronous Sequencial loop influenced by branch 
For-If-For-If, and (b) Asynchronous parallel loop after modification branch to For-For-If-If 
 
 
During the execution of the processing loop 𝐹𝐹𝑂𝑂𝑅𝑅(1) − 𝐹𝐹𝑂𝑂𝑅𝑅(2) − 𝐼𝐼𝐹𝐹, as 𝐹𝐹𝑂𝑂𝑅𝑅(1) represents a 

global thread on the stream processor that operates asynchronously within the global memory GlobalId (0), 
resulting in a time complexity of 𝑂𝑂(1). Then 𝐹𝐹𝑂𝑂𝑅𝑅(2) is a vector loop that iterates through each row index, it 
is achieved a time complexity in 𝑂𝑂(𝑛𝑛) since there are no nested loops within the IF statement. Also, for IF 
statement evaluates the number of non-zero values in the sparse matrix, resulting in a time complexity of 
𝑂𝑂(𝑛𝑛). Through the reduction of branch divergence, the algorithm effectively overcome low complexity in 
𝑂𝑂(𝑛𝑛2). 
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The algorithm operates in a sparse footprint matrix by iterating through each vector 𝑉𝑉𝚤𝚤𝑛𝑛[𝑛𝑛]����������⃗ ∈ 𝐼𝐼𝑛𝑛[𝑚𝑚,𝑛𝑛] 
matrice. For the initial instruction, state of flag vectors 𝑀𝑀𝑀𝑀𝑛𝑛[𝑚𝑚]��������������⃗ ,𝑀𝑀𝑎𝑎𝑀𝑀[𝑚𝑚]���������������⃗ = 0. If value of 𝑉𝑉𝚤𝚤𝑛𝑛[𝑛𝑛]����������⃗ > 0 that lead 
vector successor flag updated 𝑀𝑀𝑎𝑎𝑀𝑀[𝑚𝑚]���������������⃗ ← 𝑉𝑉𝚤𝚤𝑛𝑛[𝑛𝑛]����������⃗  and then reduce 𝑂𝑂𝐶𝐶𝑡𝑡[𝑀𝑀𝑖𝑖𝑛𝑛[𝑚𝑚],𝑛𝑛] tuple by set to zero if certain 
conditions is fulfilled. With the last looping order is always updating predecessor 𝑀𝑀𝑀𝑀𝑛𝑛[𝑛𝑛]�������������⃗ ← 𝑀𝑀𝑎𝑎𝑀𝑀[𝑛𝑛]��������������⃗ , after 
loop is incremented then find again value 𝑉𝑉𝚤𝚤𝑛𝑛[𝑛𝑛]����������⃗ > 0 so updated 𝑀𝑀𝑎𝑎𝑀𝑀[𝑚𝑚]���������������⃗ ← 𝑉𝑉𝚤𝚤𝑛𝑛[𝑛𝑛]����������⃗  that made value of 
successor 𝑀𝑀𝑎𝑎𝑀𝑀[𝑚𝑚] ≠ 𝑀𝑀𝑖𝑖𝑛𝑛[𝑚𝑚]. The decrepancy value of successor and predecessor drives to set task tuples 
𝑂𝑂𝐶𝐶𝑡𝑡[𝑀𝑀𝑖𝑖𝑛𝑛[𝑚𝑚],𝑛𝑛] = 0 that ensuring a smaller output index is reduced. Because 𝑂𝑂𝐶𝐶𝑡𝑡[𝑚𝑚,𝑛𝑛] = 𝑇𝑇𝑈𝑈𝑎𝑎𝑛𝑛𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝑟𝑟(𝐼𝐼𝑛𝑛[𝑚𝑚,𝑛𝑛]) 
reducing the smaller index lead no redundancy relation between 𝐼𝐼𝑛𝑛/𝑂𝑂𝐶𝐶𝑡𝑡 matrices also select the maximum 
path tuples that construct the optimum relation in split and join XOR control flow. 
 
3.5.  Post-discovery 

Following the completion of the discovery process, GPGPU was employed to conduct conformance 
similarity testing of the discovery results using cosine similarity. Cosine similarity involves performing 
vector dot products and is well-suited for leveraging GPU parallelism. By utilizing the standardize operation 
procedure (SOP) matrix as a reference, the similarity of the discovery matrix is measured to quantify the 
variations in business processes. This information can then be utilized for purposes such as classification or 
clustering. This paper session does not delve into the post-discovery section in detail, as it is the main focus 
of our future paper. 
 
 
4. RESULTS AND DISCUSSION  

To examine the performance of SIMD and MIMD in the CPU-GPU combination, we have 
conducted the testing use many combinations of event logs and threads scenarios. The event logs included  
of real-life BPI event logs such as: credit application (12 activities), hospital billing (45 activities), BPI11 
(640 activities), and a dummy event log (1,000 activities). The thread counts ranged from single-threaded to a 
local multi-thread count of 1,000,000. As shown in Table 2, even on short task, SIMD demonstrated 
significant performance acceleration when executed with numerous threads. 

 
 

Table 2. Comparison of execution times for a real time of distributed discovery for credit  
application (12 activities) 

Processor Type 1 10 100 1000 10000 50000 100000 1000000 
CPU MIMD I 1 6 30 40 124 450 1400 18000 

GPU 1 960 MIMD II 130 260 600 1200 ∞ ∞ ∞ ∞ 
GPU 1 960 MIMD III 150 200 400 800 ∞ ∞ ∞ ∞ 

GPU 1 960 SIMD 100 110 130 140 250 520 820 2700 
GPU 2 1080 MIMD I 80 180 320 800 ∞ ∞ ∞ ∞ 
GPU 2 1080 MIMD II 90 120 210 520 ∞ ∞ ∞ ∞ 

GPU 2 1080 SIMD 70 80 100 110 140 180 270 1100 
 
 
The single and low thread testing results showed that CPU discovery on MIMD I without data 

transfer between PC memory and GPU memory achieved the best result, with a mere 1 ms execution time. 
This can be attributed to the simplicity of the deterministic discovery algorithm, despite its time complexity 
on the CPU. However, when utilizing the GPU, there was a minimal initialization time required to load the 
class model and Java Native Interface (JNI) when using the OpenCL library, resulting in an execution time 
close to 100 ms. 

For the CPU-GPU combination, thread-local multi-windowing was controlled by the multi-thread 
CPU using MIMD. Three combinations were used for the GPU that are: conventional MIMD II without 
branch divergence reduction, MIMD III with branch divergence reduction, and SIMD with branch 
divergence reduction. The testing revealed that MIMD II without branch divergence reduction performed the 
worst and quickly encountered faults, as highlighted in Table 2. The GPU stream processors have struggled 
with synchronization due to the thread differentiation on stream cores. In this case, serialization multi thread 
CPU without branch divergence reduction has become the best result for short activities compared to GPU 
parallelization as shown as Figure 6(a) dan 6(b). Moreover, MIMD III outcome poor performance due to the 
GPU stream cores had significantly lower performance compared to the CPU cores on single works, they 
quickly reached saturation and fault outputs were observed from the OpenCL compiler. 

In contrast, SIMD demonstrated remarkably high performance due to the division of executing 
stages, leveraging the optimal specifications of the CPU processor cores to handle numerous threads in the 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 4, August 2024: 4214-4227 

4224 

pre-discovery process, while the GPU stream processor specifically handled the discovery. The highest 
performance was achieved with SIMD due to optimal workload distribution and the significant impact of 
branch divergence reduction on large data clusters. This enabled the stream processor to maintain 
asynchronous parallelism. Table 3 shows that the workload approach in SIMD, as opposed to MIMD in 
GPU, can accelerate the discovery speed by 10 to 40 times for event-logs containing over 45 to 500 activities 
and thread counts ranging from 100 to 1,000. This shows that the implementation of GPU parallelism in real-
live discovery is more realistic because it does not depend on the size of the activity which must be large as 
in previous studies [28], [29], where the result as shown as Figure 6(c) and 6(d) by using 100 activities as 
event-log task input, the performance of SIMD GPU can be performed to achieve significant speedup. By 
utilizing real-world event logs with a limited composition of event occurrences from distributed sources, it 
demonstrates the effectiveness of the parallel computing performance employed. 

 
 

Table 3. Comparison of execution times for a real time of distributed discovery for  
BPI challenge 18 (100 activities) 

Processor Type 1 10 100 1000 10000 50000 100000 1000000 
CPU MIMD I 6 8 300 800 3200 20000 80000 ∞ 

GPU 1 960 MIMD II 370 820 ∞ ∞ ∞ ∞ ∞ ∞ 
GPU 1 960 MIMD III 400 640 1200 ∞ ∞ ∞ ∞ ∞ 

GPU 1 960 SIMD 170 180 200 380 620 2400 8800 ∞ 
GPU 2 1080 MIMD I 240 570 2600 ∞ ∞ ∞ ∞ ∞ 
GPU 2 1080 MIMD II 300 440 950 ∞ ∞ ∞ ∞ ∞ 

GPU 2 1080 SIMD 120 140 160 190 240 780 2600 ∞ 
 
 

  
(a) 

 
(b) 

  
(c) (d) 

 
Figure 6. Comparison of discovery results between MIMD and SIMD architectures: (a) performing short 

tasks with low thread count, (b) performing short tasks with high thread count, (c) executing long tasks with 
low thread count, and (d) executing long tasks with high thread count  
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Regarding hardware specifications, the NVIDIA GTX 960 is old NVIDIA architecture which has a 
low-specification GPU with 16 compute units of stream multi-processors (SMs), experiences a bottleneck 
with limited acceleration power, averaging under 10 times. The number of SMs and bandwidth speed has the 
most significant influence on determining GPGPU performance as they coordinate the synchronization of 
parallelism between GPU and CPU threads. On the other hand, the NVIDIA GTX 1080, a high-performance 
GPU with 20 SMs, achieves significantly higher performance compared to the GTX 1080 for activation 
thread clusters. 

 
 

5. CONCLUSION  
The conducted study has determined that integrating parallelism in both the CPU and GPU, by 

employing local thread multi-windowing with a combination strategy using MIMD in the CPU for reading 
streaming data, utilizing MISD in the CPU for constructing footprints, and finally executing in global thread 
SIMD in the GPU within the discovery process, significantly accelerates the speed of real-time distributed 
discovery. These results indicate that even with a low to medium-specification PC and open-source software, 
high-performance outcomes can be achieved. Therefore, this approach is highly recommended as an efficient 
best practice. The observed high-performance results are attributed to effectively managing the convergence 
of branching logic and memory on the GPGPU, despite potential limitations of the GPU when operating 
under concurrency and sparse matrix conditions. The method of hiding branch divergence using the Min-
Max flag to reduce branch divergence is a novelty in this study, proving to accelerate the performance for 
parallelism in GPU SIMD. 
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