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 Task scheduling in the edge computing environment poses significant 

challenges due to its inherent NP-hard nature. Several researchers 

concentrated on minimizing simple makespan, disregarding the reduction of 

the mean time to complete all tasks, resulting in uneven distributions of 

mean completion times. To address this issue, this study proposes a novel 

mean makespan task scheduling strategy (MMTSS) to minimize simple and 

mean makespan. MMTSS optimizes the utilization of virtual machine 

capacity and uses the mean makespan optimization to minimize the 

processing time of tasks. In addition, it reduces imbalance by evenly 

distributing tasks among virtual machines, which makes it easier to schedule 

batches subsequently. Using genetic algorithm optimization, MMTSS 

effectively lowers processing time and mean makespan, offering a viable 

approach for effective task scheduling in the edge computing environment. 

The simulation results, obtained using cloudlets ranging from 500 to 2000, 

explicitly demonstrate the improved performance of our approach in terms 

of both simple and mean makespan metrics. 
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1. INTRODUCTION 

The extensive deployment of internet of things (IoT) applications has led to the development of edge 

computing, offering low latency and fast response times for time-sensitive applications, including healthcare, 

emergency services, and traffic monitoring. The edge layer integrates edge and cloud resources to offer 

services and streamline data flow management [1]. The diversity of edge computing necessitates the use of 

efficient techniques to effectively optimize user requests or workloads. Load balancing is essential in edge 

computing to handle the growing number of users and effectively handle all user requests [2]. Adequate load 

balancing is crucial for improving resource utilization [3], minimizing makespan [4], and optimizing the 

overall performance of edge computing systems [5]. Two approaches for evenly distributing cloud load 

monitoring are virtual machines (VMs) and task scheduling. In edge computing, task scheduling is 

considered an NP-hard problem [6] due to the diverse configurations of hosts and VMs, which can quickly 

adapt to fluctuating user requests. It is very challenging to identify every prospective mapping among tasks 

and resources in the edge computing paradigm. Consequently, there is an imperative requirement for an 

efficient task-scheduling technique that prioritizes the strategic allocation of tasks. The goal is to prevent any 

VM from being underloaded or overloaded, ensuring an evenly distributed workload across all VMs. 

https://creativecommons.org/licenses/by-sa/4.0/
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Existing heuristics and machine learning approaches designed for task scheduling in edge computing 

have issues with limited relevance and quick adaptability, which hinder their capacity to solve problems 

optimally [7]–[10]. Furthermore, these techniques have challenges in identifying temporal workload patterns 

and are predominantly suitable for centralized deployments. To address these limitations, academics and 

researchers have diligently investigated several methods to find the optimal solutions in task scheduling  

[11]–[14]. Shukri et al. [15] developed the enhanced multi-verse optimizer (EMVO) to enhance task-

scheduling efficiency. They evaluated the impact of EMVO on makespan time, throughput, and resource 

utilization. EMVO achieved a reduced makespan and improved throughput and resource utilization compared 

to the original multi-verse optimizer (MVO) and particle swarm optimization (PSO). However, the 

performance of EMVO degraded the system performance due to an increase in makespan time. Turkeš et al. 

[16] performed a meta-analysis on the adaptive layer in adaptive large neighborhood search (ALNS) and 

identified that it could enhance performance by 0.14%. The meta-analysis studies differ in several 

characteristics that may impact the significance of the adaptive layer.  

Sun et al. [17] emphasized reducing the makespan in workflow scheduling within complex networks 

in edge computing. They introduced the improved greedy search (IGS) and improved composite heuristic 

(ICH) methods, surpassing current scheduling algorithms. This technique had a restricted energy capacity for 

each device and was interdependent among processing tasks. Li et al. [18] introduced a mixed-integer linear 

programming (MILP) model for task scheduling in a toy-edge-cloud architecture, resulting in notable 

reductions in solution time. Zhang [19] focused on the concurrent connection between tasks and applied the 

ant colony method to improve task parallelism and decrease task delays. Although this approach revealed 

significant global optimization performance, it had a poor convergence pace. Agarwal et al. [20] presented a 

cloud-distributed scheduling model that considers multiple optimization objectives such as makespan, cost, 

energy consumption, resource utilization, and load. They designed an expert advisor (EA) using the sine 

function to achieve the best solutions for this framework. However, despite these algorithms offering benefits 

in accomplishing optimal solutions with reduced makespan and energy consumption compared to existing 

approaches, they have limitations in lacking a thorough quantitative examination of the benefits of makespan 

minimization compared to conventional techniques. 

To address these limitations, researchers began to explore the combination and improvement of 

metaheuristic algorithms. For instance, Vispute and Vashisht [21] devised a hybrid algorithm combining 

genetic algorithm (GA) and particle swarm optimization (PSO) to minimize energy consumption in user-

terminal devices. Mangalampalli et al. [22] presented a heuristic algorithm called GAWOA that utilized 

genetic and whale optimization algorithms to reduce the total cost. In the context of comprehensive resource 

scheduling, An et al. [23] introduced an improved reference vector-guided evolutionary algorithm that 

employed a standard distribution angle penalty distance strategy to select the optimal solution, considering 

factors such as makespan, cost, load, user expectation, and task completion rate. Wang et al. [24] introduced 

a two-stage joint optimization model that deals with the flexible job shop scheduling issue and preventive 

maintenance. This approach helped to save costs in dynamic production environments with frequent product 

changes. The proposed model has shown effectiveness, but its scalability and broader applicability in other 

industrial situations need further investigation. The multi-objective crow search algorithm (CSAMOMC) 

devised by Akraminejad et al. [25] efficiently reduced costs and makespan in scientific cloud operations. It 

outperforms heterogeneous earliest finish time (HEFT) and time-cost compromise (TC3pop) by an average 

of 4.42% and 4.77%, respectively. Despite the favorable results, the study predominantly relies on a 

comparative examination. It fails to meticulously investigate the wider environmental ramifications or 

contemplate compromises in other facets, such as energy efficiency.  

The literature evaluation emphasized the significance of conducting in-depth quantitative 

evaluations to determine the effectiveness of novel task-scheduling optimization algorithms in reducing 

makespan compared to traditional methods. The existing literature primarily focuses on minimizing simple 

makespan through various strategies and algorithms, without addressing the current resource utilization and 

workload of edge servers. This omission may result in uneven distribution of workloads and inefficient 

resource utilization, primarily due to the dynamic nature of the computing resources in the edge 

environments. Based on previous research, we examined and devised a methodology to reduce the simple 

makespan and processing time by minimizing the mean makespan of individual tasks across all VMS. We 

designed our approach to establish a task scheduling strategy using the GA, which optimizes parameters such 

as simple makespan, processing time, optimal resource utilization, and imbalance across VMs by minimizing 

the mean makespan of individual tasks across all VMs. We have organized this paper as follows: Section 2 

explains the proposed research method, while section 3 discusses the findings of this study. Section 4 

concludes the paper. To provide readers with a comprehensive grasp of the organization of the work, Table 1. 

presents a compilation of acronyms that will frequently appear throughout this study. 
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Table 1. List of acronyms 
Symbol Description 

NP-hard Non-deterministic polynomial time 
MMTSS Mean makespan task scheduling strategy  

IoT Internet of things 

VMs 
EMVO 

Virtual machines 
Enhanced multi-verse optimizer 

ALNS Adaptive large neighborhood search 

IGS Improved greedy search 
ICH Improved composite heuristic 

MILP Mixed-integer linear programming 

EA Expert advisor 
GA Genetic algorithm 

PSO Particle swarm optimization 

GAWOA Genetic algorithm and whale optimization algorithm 

CSAMOMC Multiobjective crow search algorithm 

HEFT Heterogeneous earliest finish time 

TC3pop Time-cost compromised 
AET Average execution time 

 

 

2. PROPOSED METHOD  

The proposed work addresses the challenge of minimizing makespan in edge computing. The main 

objective of this study is to maximize the efficient utilization of VM capacity in the edge environment. The 

primary intent is to decrease the simple makespan by strategically allocating tasks among several VMs. The 

proposed work involves optimizing resource utilization and maintaining a uniform workload distribution. 

Subsection 2.1 describes the problem formulation for achieving the objective of this study. Subsequently, 

Subsection 2.2 outlines the proposed strategy.  

 

2.1.  Problem formulation 

The primary goal of this study is to reduce the simple makespan by efficiently utilizing the VM 

capacity. This optimization ensures efficient VM utilization and offers additional benefits such as reduced 

processing times, simple makespan, low imbalance on each VM, simplified batch task scheduling in 

subsequent iterations, and improved accuracy compared to directly reducing makespan. In edge computing, 

task scheduling involves allocating tasks to the most suitable VMs in data centres to meet user requirements. 

Consider a set of n tasks 𝑇 = {𝑇1, 𝑇2, 𝑇3, … … … , 𝑇𝑛}, and a set of 𝑚 virtual machines 𝑉𝑀 =
{𝑀1, 𝑀2, 𝑀3, … … , 𝑀𝑚}. Let 𝑃𝑖𝑗  be the processing time of task 𝑖 on the virtual machine 𝑀𝑗 and 𝐶𝑖𝑗  be the 

completion time of task i when assigned to the virtual machine 𝑀𝑗. A binary decision variable 𝑥𝑖𝑗  

representing whether task 𝑇𝑖  is assigned to the virtual machine 𝑀𝑗, with a value of 1 indicating assignment 

and 0 indicating no assignment. Each task is assigned to each VM, aiming to minimize the fitness of the 

objective function. Consequently, the proposed strategy minimizes the simple makespan by reducing the 

mean makespan across all VMs. The formulation of the objective and associated constraints is defined as (1). 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

𝑚
 ∑ 𝐶𝑚𝑎𝑥

(𝑗)𝑚
𝑗=1  (1) 

 

subject to  𝐶𝑖𝑗 =  
1

𝑚
 ∑ 𝑃𝑖𝑗

𝑚
𝑗=1  (1a) 

 

𝐶𝑚𝑎𝑥 = max
1 ≤𝑖 ≤𝑛

 { 𝐶𝑖𝑗  | 1 ≤ 𝑗 ≤ 𝑚 }  (1b) 

 
∑ 𝑥𝑖𝑗 = 1, ∀𝑖 ∈ {1,2,3, … . . , 𝑛}𝑚

𝑗=1   (1c) 

 

 ∈ {0,1} , ∀𝑖 ∈ {1,2,3, … , 𝑛}, ∀𝑗 ∈ {1,2,3, … . . , 𝑚}  (1d) 

 

Constraints (1a) indicate that each task is assigned to precisely one VM. Constraint (1b) calculates 

the simple makespan as the maximum completion time across all tasks and VMs. Constraint (1c) ensures that 

each task is assigned to precisely one VM, and constraint (1d) defines that the decision variable 𝑥𝑖𝑗  are 

binary.  

 

2.2.  Mean makespan task scheduling strategy 

This section outlines a strategic approach for minimizing the simple makespan in an edge computing 

environment. Our strategy reduces the mean makespan, which assists in addressing issues related to the 
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uneven distribution of the mean completion time of tasks. Every random variable approaches the mean 

and provides a better path for optimal solutions. Our technique stipulates the most effectively utilized 

elucidation for this problem.  

Consider an assortment of n tasks and m virtual machines, where each task is evenly 

distributed across the VMs. The completion time 𝐶𝑖𝑗 of the task 𝑇𝑖  on each virtual machine 𝑀𝑗  can be 

represented as (2). 

 

𝐶𝑖𝑗 =  
1

𝑚
 ∑ 𝑃𝑖𝑗

𝑚
𝑗=1   (2) 

 

where 𝑃𝑖𝑗   is the processing time of the task 𝑇𝑖  on virtual machine 𝑀𝑗. Makespan 𝐶𝑚𝑎𝑥 is the maximum 

completion time for all tasks. It can be expressed as (3). 

 

𝐶𝑚𝑎𝑥 =  max
1 ≤𝑖 ≤𝑛

 { 𝐶𝑖𝑗  | 1 ≤ 𝑗 ≤ 𝑚 }  (3) 

 

The mean makespan 𝐶�̅� is the mean completion time for all tasks. It can be expressed as (4). 

 

𝐶�̅�  =  
1

𝑛
 ∑ 𝐶𝑖𝑗

𝑛
𝑖=1   (4) 

 

On substituting the value of completion time into the mean makespan expression, we get (5) to (7). 

 

𝐶�̅�  =  
1

𝑛
 ∑ (

1

𝑚
 ∑ 𝑃𝑖𝑗

𝑚
𝑗=1 )𝑛

𝑖=1  (5) 

 

𝐶�̅�  =  
1

𝑚𝑛
 ∑  ∑ 𝑃𝑖𝑗

𝑚
𝑗=1

𝑛
𝑖=1   (6) 

 

𝐶�̅�  =  
1

𝑚𝑛
 ∑  ∑ 𝑃𝑖𝑗

𝑛
𝑖=1

𝑚
𝑗=1   (7) 

 

Since each task is evenly allocated to each VM, the values of processing time 𝑃𝑖𝑗  remains constant ∀ 𝑖 and 𝑗. 

Therefore, this expression can be rewritten as (8) and (9). 

 

𝐶�̅� =  
1

𝑚𝑛
 (𝑚𝑛)(𝑃𝑖𝑗)  (8) 

 

𝐶�̅� =  𝑃𝑖𝑗   (9) 

 

This demonstrates that the mean makespan is directly proportional to the processing time of tasks on 

the VM. Thus, by lowering the mean makespan, the processing time and completion time for all tasks on all 

VMs will also be minimized. As the simple makespan 𝐶𝑚𝑎𝑥 represents the maximum completion time across 

all VMs, reducing the completion time 𝐶�̅� of any task on any VM will correspondingly decrease the 𝐶𝑚𝑎𝑥. 

Therefore, achieving a minimum in the mean makespan assures a minimum in the simple makespan. 

 

 

3. RESULTS AND DISCUSSION  

In this section, we assess and contrast the performance of the proposed MMTSS strategy in terms of 

i) simple makespan and ii) mean makespan. We carried out the simulation using CloudSim [26]. We 

evaluated the proposed strategy using the NASA Ames iPCS/860 log dataset, which contains real-world 

workloads from [27] that CloudSim recognized. Parameters are discussed in Table 2. The results of our study 

demonstrate that our approach effectively minimizes the simple makespan and enhances the performance of 

individual tasks by reducing processing time. Furthermore, our strategy of minimizing the mean makespan 

leads to a decrease in the overall simple makespan. However, with an increase in the number of tasks, there is 

a higher degree of volatility. Table 3 represents a comprehensive analysis of the simple makespan (AET) and 

mean makespan (AET) metrics, which span a range of cloudlet quantities from 500 to 2000. This analysis 

aims to clarify the distinctions in the mean execution time observed across the two metrics over different 

numbers of cloudlets. This comparison is optimized by Figure 1, which visually depicts the experimental 

analysis of simple and mean makespan. It provides a visual depiction of their performance in terms of task 

allocation on VMs in the edge computing environment. 
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Table 2. Configuration of parameters in the CloudSim simulator 
Entities Parameters Values 

Cloudlets Number of cloudlets 500-2,000 
 File size 100 

 Output size 100 

VM Number of VMs 6 
 Bandwidth 1,000 Mbps 

 RAM 512 MB 

 VMM Xen 
 Number of CPU 1 

 VM Image size 10,000 MB 

 

 

Table 3. Comparison of simple and mean metrics 
Number of cloudlets Simple makespan (AET) Mean makespan (AET) 

500 50658.23333 93267.3 

1000 105172.8333 186218.3667 

1500 166021.9 296522.0667 
2000 207495 403255.7333 

 

 

 
 

Figure 1. Comparative analysis of simple makespan and mean makespan 

 

 

During our investigation, we observed an unforeseen pattern in our analysis of the correlation 

between the mean makespan and the measurements of the simple makespan. Generally, we expect the mean 

makespan values to decrease in comparison to the simple makespan, signifying an overall optimization in the 

scheduling process. However, the results of our study demonstrated a deviation from the predicted trend, 

indicating a complete reversal in the expected direction. After carefully analyzing the data, it became clear 

that the mean makespan readings demonstrated more significant variations than the simple makespan values. 

This disparity prompted an in-depth investigation of the fundamental elements that contributed to this 

observed pattern. 

The subsequent study revealed a potential relationship between the significant variation in the mean 

makespan observations and the impact of outlier observations within the dataset. Outliers, which are data 

points that deviate significantly from many observations, have the potential to disproportionately affect the 

estimation of the mean. Due to their exceptional characteristics, outliers significantly impact the mean value 

of a dataset, which in turn increases the observed variability in the mean makespan values. Therefore, the 

difference between the expected and actual results highlights the significance of carefully examining the data 

and considering possible anomalies in statistical analysis. Let’s consider a hypothetical scenario where we 

introduce four tasks, T1 (70 s), T2 (10 s), T3 (5 s), and T4 (15 s). These assignments have a total duration of 

100 seconds, resulting in an average or mean value of 25 seconds. There are significant fluctuations, 

especially at extreme values like 70 seconds. Outliers have an impact on the mean, so devising a solution to 

address this issue is critical. Hence, developing a system that can effectively reduce the impact of outlier 

values and provide a more resilient optimization methodology is crucial. Despite these results, further studies 

will prioritize exploring alternate parameters and approaches to reduce the impact of outliers on the mean 

makespan computations. 

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500 1000 1500 2000

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e

Number of Cloudlets

Simple Makespan Vs. Mean Makespan 

Simple Makespan (AET) Mean Makespan (AET)



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Mean makespan task scheduling approach for the edge computing environment (Nisha Saini) 

4719 

4. CONCLUSION AND FUTURE SCOPE 

The paper presents the MMTSS, a novel approach for minimizing makespan in the edge computing 

environment. This study deviates from previous literature by optimizing parameters such as simple 

makespan, processing time, and imbalance across VMs. This is achieved by minimizing the mean makespan 

of individual tasks across all VMs. Our proposed approach aims to alleviate the challenges associated with 

the uneven distribution of the mean completion time for tasks.  The objective is to minimize tasks' simple 

makespan and processing time by implementing a GA technique to reduce the mean makespan across all 

VMs. The method enhances overall performance by optimizing processing times and lowering the simple 

makespan through a uniform distribution of tasks among VMs. Moreover, the paper highlights the need to 

effectively utilize VM capacity to ensure adequate workload allocation, minimize imbalance, and enhance 

task scheduling accuracy in subsequent iterations. As part of future work, we aim to incorporate additional 

metrics for better convergence of the metaheuristic algorithms. In addition, we also plan to extend the task 

scheduling strategy to the hybrid cloud environment. 
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