
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 3, June 2024, pp. 2937~2944

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i3.pp2937-2944  2937

Journal homepage: http://ijece.iaescore.com

k-dStHash tree for indexing big spatio-temporal datasets

Meenakshi Hooda, Sumeet Gill
Department of Mathematics, Maharshi Dayanand University, Rohtak, India

Article Info ABSTRACT

Article history:

Received Feb 5, 2024

Revised Feb 24, 2024

Accepted Feb 25, 2024

 Today’s era is witness of tremendous ever growing spatial, temporal and

spatiotemporal data. The huge spatio-temporal data immensely pushes the

need for design and development of novel methods tailored for indexing

spatio-temporal data. In this research paper, we propose the design of a

novel spatio-temporal data indexing method, named as k-dStHash. We have

proposed the algorithm k-dStHashInsertion for inserting spatio-temporal

objects and an algorithm k-dStHashSrchPlaceTime has been used to search

for the objects at given location and time. It is able to handle datasets with

duplicate keys which has been ignored in many research works. Though the

algorithm k-dStHashInsertion takes 1.3-1.5 times longer time to insert data

in k-dStHash data structure as it needs to find a specific location to organize

data efficiently, but when it comes to search for required records it is even

more than 90 times faster when analyzed in comparison to brute force

method. It is generalized enough to organize any kind of k-dimensional data

and time-based data also including object finding, fleet management,

clustering, leader identification, nearest neighbor, human/animal tracking,

path finding and many more.

Keywords:

Brute force

Hash table

Indexing structure

Insertion algorithm

k-d tree

Linked list

Spatio-temporal data

This is an open access article under the CC BY-SA license.

Corresponding Author:

Meenakshi Hooda

Department of Mathematics, Maharshi Dayanand University

Rohtak, Haryana, India

Email: meenakshi.maths@mdurohtak.ac.in

1. INTRODUCTION

Different types of spatio-temporal indexing methods to organize big data introduced by researchers

in country and abroad can be categorized on the basis of application background and distributed or

centralized environment, and the main burning issues which needs attention in the near future, are proposed

for addressing everchanging application requirements [1]. In past few years, many surveys, which have been

made public, depict the progress in the field of research related to indexes for spatio-temporal records

[2], [3]. Surveys highlight that many of the spatial and time based indexing structures aim at centralized

indexing systems, i.e. where implementation is main memory based [4], [5]. Distributed computing systems

are mostly comprised of stream data processing systems, hybrid processing systems, and batch processing

systems [6]. Large spatio-temporal datasets are generated daily at never ever before rates [7], [8], because of

fast emerging applications, like location based web search, social networks with geo-tagged content,

surveillance systems. Prevailing NoSQL stores deliver restricted support for location based data and fail to

provide inherent support for data based on both location and time [9]. The researchers observed that many

times, in spatial datasets/databases, multiple entries exist for the same spatial location. Most of the research

work either does not include such type of spatial data or remains silent on how to handle multiple records

with same location-based key. The duplicate spatial keys are handled using the same method which is used to

organize the location-based keys with smaller key values in comparison to current location-based key value,

which means that the algorithm treats both equal to (=) and less than (<) relation among the keys in the same

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 2937-2944

2938

way [10]. In another research work, on finding a duplicate spatial key, the address of already existing node

with same key is returned back to the calling module [11]. In one other approach, the researchers first remove

duplicate spatial records and then rest of the data is considered for further processing [12]. Another method

uses context dimension awareness for creating multi-level index. It selects a proper partitioning technique

and splits the dataset into multiple balanced divisions [13]. STAQR algorithm takes altitude of a spatial

location point and time into consideration to index the data. Following multi-level indexing, this technique

indexes all unique codes got from four dimensional data [14]. Multi-scale spatio-temporal grid index

(MSTGI) uses Hilbert curves to obtain grid after global geospatial subdivision and then linearizes them [15].

In comparison to generalized linear models based on classical linear, graph regression model for spatial and

temporal environmental data results in more general regression relationships and flexibility [16]. In efficient

querying and indexing of moving data objects, a new data type based on spatio-temporal predicates results in

simple and easier queries [17]. In another technique, a globally coherent model for covariance was used.

Also, for better predictions, fixed effects estimation was used, though the predictions were made on local

nearest neighbors [18]. Another work proposed three-level spatial index on zone-grid-space for spatio-

temporal database based on geographic conditions and, analyzed and tested it over massive land cover data

[19]. Researchers divided spatial data by making use of six traditional spatial partitioning techniques and

further used machine-learned search within every division to support distance, range, point and even spatial

join queries [20]. Spatio-temporal meshing and coding method Hilbert-GeoSOT was proposed for efficient

spatio-temporal range queries on big trajectory data [21]. Hadoop cluster can make use of cloud platform’s

dynamic expansion ability for better expansion of system [22]. The performance measures of Base 64,

Base 32, Elias delta and Elias gamma codes on spatial temporal data and different encoding techniques have

been illustrated from the time and space complexity point of view [23]. A spatio-temporal data processing

system, distributed in nature, ST4ML was proposed to support scalable machine-learning applications [24].

Spatial data infrastructure system supports the use and management of geo-spatial data and resources related

to it [25]. A new indexing tree, k-dLst to index the spatial data records having duplicate keys was

implemented [26]. Researchers proposed a search algorithm based on k-dSLst tree for finding nearest

neighbor [27]. Here, we have proposed a data structure k-dStHash which is capable to index big spatio-

temporal datasets with duplicate keys which has been ignored by many researchers. The indexing structure is

generalized enough to organize big datasets with k-dimensional duplicate data keys in any field.

2. BRUTE FORCE METHOD

Brute force algorithm explains a style of programming in which no shortcut is used for improving

the performance of program. This method believes in absolute computing power and tries for every

possibility to find a solution, if exists. Algorithm 1 shows the algorithm bruteForceInsertion which is the

insertion algorithm to store spatio-temporal data using brute force method.

Algorithm 1. bruteForceInsertion
Algorithm prototype char bruteForceInsertion (struct dataSet

*spatioTemporalDataRecord)

Inputs to the algorithm spatioTemporalDataRecord [type: struct dataSet*]: dataset

record to be inserted

Output(s) of the algorithm SUCCESS [type-char]: Successful insertion or FAILURE [type-

char]: Could not insert

Algorithm:

BEGIN

 IF HEAD is NULL

 THEN

 Create a node HEAD

 IF ERROR

THEN

return FAILURE

END IF

 Update the dataRecord pointer of node HEAD with spatioTemporalDataRecord

Set HEAD → next  NULL

 Set TAIL  HEAD

 return SUCCESS

 ELSE

 Create a node NODE

 IF ERROR

THEN

return FAILURE

END IF

Int J Elec & Comp Eng ISSN: 2088-8708 

k-dStHash tree for indexing big spatio-temporal datasets (Meenakshi Hooda)

2939

 Set NODE → spatioTemporalDataRecord  spatioTemporalDataRecord

NODE → next  NULL

 TAIL → next  NODE

 TAIL  NODE

 return SUCCESS

 END IF

END

3. METHOD

The algorithm coded in language C and the experimental analysis has been done using “GNU

compiler collection (GCC) compiler - version 6.4.3 on Operating System Ubuntu-10.04.1-Desktop-amd64”

running on 2.0 GHz Intel (R) Core (TM) 2 Duo CPU T5750 processor with 5 GB installed memory. It is not

only organization of spatio-temporal data but also visualization of output of different queries is the demand

of the day. For graphical display of spatial locations of crime in spatio-temporal dataset and for the retrieved

data points according to user’s query, the authors have used “quantum geographic information system

(QGIS) desktop 2.12.1”. One additional layer with “Google Satellite option of Google Map OpenLayers

plugin in QGIS” has been used to show output images realistically. For spatial and spatio-temporal datasets

which do not include information in form of latitude and longitude coordinates, we need a geocoder to

convert any street address data in form of longitude and latitude coordinates. The researchers have used the

online freely available geo-coding sites to do this mapping, wherever required. In any dataset, if it contains a

street address only and other details like city name or zip code are missing, the researchers use a default city

name or fill the gap with city that is mostly used in that dataset.

3.1. k-dStHash: the proposed indexing structure

The researchers are introducing a novel indexing tree k-dStHash which is based on k-d tree, hash

table and linked list. This proposed indexing structure is capable of indexing duplicate spatio-temporal key

datasets efficiently. The n-dimensional spatial data has been indexed using k-d tree, hash table linked with

each k-d tree node indexes spatio-temporal spatioTemporalDataRecord using epoch value of timestamp. A

linked list is also attached with hash table for storing spatio-temporal records related to particular node for

given hash table key. Figure 1 depicts the structure for proposed k-dStHash indexing tree.

Figure 1. k-dStHash indexing structure

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 2937-2944

2940

3.2. Creation of k-dStHash tree structure

The authors propose an algorithm to create k-dStHash indexing structure and insert spatio-temporal

record in the same. A new record is read from spatio-temporal dataset and passed on to k-dStHashInsertion

module. The algorithm receives pointer to the root node k-dStHashRoot which points to the root node of the

k-dStHash indexing tree/sub-tree, spatialCoordinates pointer to spatial n-dimensional coordinates of the

record to be inserted, spatioTemporalDataRecord pointer to the record read from spatio-temporal dataset and

to be inserted, currentDimension to keep track of the dimension for the current level of spatio-temporal

indexing structure k-dStHash and maximum number of dimensions maxDimensions required for dataset

under consideration. Algorithm 2 k-dStHashInsertion gives the steps to create and insert a new node in

k-dStHash indexing tree. If k-dStHashRoot is NULL, then a new tree is created else the existing tree structure

is extended. Spatio-temporal data is organized in the k-dStHash tree on basis of spatialCoordinates and

currentDimension. If the coordinate key of already existing node for currentDimension is less than the

coordinate key of spatialCoordinates of next record to be inserted for same dimension, then it will traverse

towards left sub-tree; else, it will traverse towards right k-dStHash sub-tree on recursive basis until the

control reaches to a leaf node. The new node is inserted as left son of the leaf node coordinate value of

already existing node for currentDimension is less than the coordinate key of spatialCoordinates to be

inserted for same dimension else its inserted as right son of the leaf node. Also, if no node with equal key

exists in k-dStHash indexing tree, a new kdSTHashNode will be created and inserted at proper position and

spatioTemporalDataRecord will be inserted in hash table at index key generated by using epoch value of

temporal attribute associated with it; otherwise, to handle duplicate spatial keys spatioTemporalDataRecord

will be inserted in the list of matching kdSTHashNode i.e. node with equal n-dimensional keys at index key

generated by using epoch value of temporal attribute associated with it such that the list remains in sorted

order of epoch temporal values.

Algorithm 2. Proposed k-dStHashInsertion
Algorithm k-dStHashInsertion

Inputs to Algorithm - k-dStHashRoot [type - struct kdnode**]: Root node of k-dStHash
Indexing Tree

- spatialCoordinates [type - const double*]: N-dimensional
coordinates of current node

- spatioTemporalDataRecord [type - struct dataset*]: Data record
read from dataset under consideration

- currentDimension [type - int]: Dimension of current node

- maxDimensions [type - int]: Maximum number of dimensions of
spatio-temporal data

Output from Algorithm SUCCESS [type-char]: Successful insertion or FAILURE [type-char]:

Could not insert

BEGIN

 IF k-dStHashRoot is NULL

 THEN

 Allocate memory for new record and assign the pointer to k-dStHashRoot

 Allocate memory for Hash Table for k-dStHashRoot

 Initialize k-dStHashRoot→timeHash→timeChain table with NULL

 Generate timeHashId by using timeHashFunction based on epoch value of timestamp in

current spatioTemporalDataRecord

 Insert spatioTemporalDataRecord at generated timeHashId in k-dStHashRoot → timeHash

→ timeChain table

 SET k-dStHashRoot→left  k-dStHashRoot→right  NULL

 IF ERROR

 THEN

 return FAILURE

 ELSE

 return SUCCESS

 END IF

 END IF

 SET new_currentDimension  (node → currentDimension + 1) mod maxDimensions

 IF (spatialCoordinates[node → currentDimension] < node → spatialCoordinates[node →

currentDimension])

 THEN

 CALL k-dStHashInsertion with left pointer of current node and updated parameters

 END IF

 IF spatialCoordinates have duplicate keys

 THEN

 Generate timeHashId by using timeHashFunction based on epoch value of timestamp in

current

 IF no record on generated hash id

Int J Elec & Comp Eng ISSN: 2088-8708 

k-dStHash tree for indexing big spatio-temporal datasets (Meenakshi Hooda)

2941

 THEN

 Insert current record at generated hash id

 ELSE

 Insert current record in a linked chain at generated hash id in ascending order of

epoch time

 END IF

 IF ERROR then

 return FAILURE

 ELSE

 return SUCCESS

 END IF

 END IF

CALL k-dStHashInsertion with right pointer of current node and updated parameters

END

4. RESULTS AND DISCUSSION

The researchers have analyzed the algorithms on different synthetic spatio-temporal datasets. Crime

dataset contains the location and time of different types of crimes happened all over the earth in January,

2019. The format of crime dataset (source: https://catalog.data.gov) is as given in Table 1. For the dataset,

the researchers have queried the data for both types of queries i.e. spatial and spatio-temporal. In spatial

queries, the researches queried about the crimes at particular location i.e. at given latitude and longitude

values, while in spatio-temporal queries information is retrieved about crimes at particular latitude, longitude

and time as well.

Table 1. Format of crime dataset
Crime Id Country Area Longitude Latitude Crime details Date of

crime

Time of

crime

C74098 Afghanistan Kabul 34.516667 69.183334 BURGLARY FROM

VEHICLE

1-Jan-19 12:00

C74099 Afghanistan Kandahar 31.61 65.699997 BUNCO, GRAND
THEFT

3-Jan-19 11:42

C74100 Afghanistan Mazar-e Sharif 36.706944 67.112221 ROBBERY 3-Jan-19 21:00

First, the researchers have analyzed the performance of both insertion algorithms i.e.

bruteForceInsertion and k-dStHashInsertion. As, algorithm bruteForceInsertion simply inserts the record in

linked list without any comparison, it takes less time in insertion as compared to k-dStHashInsertion, in

which lot of comparisons and calculations are required to organize spatio-temporal data efficiently. But, as

we need to insert the data only once and retrieve it frequently, the time taken to insert the spatio-temporal

data in k-dStHash tree structure can be compromised against its fast retrieval time. Table 2 shows the

performance comparison with respect to time taken to insert 23,602 spatio-temporal data records of Crime

Dataset. The researchers executed both insertion algorithms 250 times in iteration using a script and picked

05 random iterations for analysis. It shows a comparative analysis if time taken to insert spatio-temporal data

records of Dataset using algorithms bruteForceInsertion and k-dStHashInsertion for iteration number 01, 99,

187, 203, 250. For every iteration, the analysis shows that time taken by algorithm k-dStHashInsertion is

more when compared with that of the other algorithm bruteForceInsertion. Figure 2 shows the performance

analysis of algorithms bruteForceInsertion and k-dStHashInsertion graphically as per Table 2. Figure 3 shows

data records related to given query location along with the information retrieved with respect to both spatial

and spatio-temporal queries.

Table 2. Performance analysis of insertion algorithms
Crime Dataset-Number of records: 23602

Algorithm bruteForceInsertion k-dStHashInsertion

Randomly picked iterations

(out of total 250 iterations)

Time taken (ms)

Iteration-01 (SET-A) 77,084 111,727
Iteration-99 (SET-B) 76,790 104,964

Iteration-187 (SET-C) 77,083 105,246

Iteration-203 (SET-D) 77,542 106,310
Iteration-250 (SET-E) 77,058 105,527

https://catalog.data.gov/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 2937-2944

2942

Figure 2. Performance analysis of algorithms bruteForceInsertion and k-dStHashInsertion

Figure 3. Crimes at location (Latitude: -72.0161133, Longitude: 19.6908333)

The performance analysis of algorithms bruteForceSearch and k-dStHashSrchPlaceTime in terms of

search time (in 𝑠) is illustrated in Table 3. Algorithm k-dStHashSrchPlaceTime takes extremely lesser time

to search for any object at any particular time. For example, for a query to search for object at location with

latitude 72.0161133 and longitude 19.6908333 on 1/19/2019 at 9:30 am, when bruteForceSearch algorithm

takes 516.8 s, k-dStHashSrchPlaceTime algorithm takes only 5.6 s which is approx. 92 times faster. It

depends not only on number of objects found but also the location of record at which spatio-temporal record

is saved in the indexing structure. Similarly, the table depicts comparison among different SET(s) A-E, and,

in every case k-dStHashSrchPlaceTime algorithm outperforms bruteForceSearch algorithm. Figure 4 shows

the comparison of search time taken by both algorithms graphically as per Table 3.

Table 3. Time performance analysis of algorithms bruteForceSearch and k-dStHashSrchPlaceTime
Search time comparison (in s) crime dataset (Number of records: 23602) randomly picked iterations

(out of total 250 iterations)

Latitude 72.0161133 50.8644447 50.8644447 70.987952 76.853736

Longitude 19.6908333 27.2038889 27.2038889 20.273855 23.216667
Time 1/19/2019

 9:30 AM

1/20/2019

12:34 PM

1/29/2019

12:34 PM

1/25/2019

 8:53 AM

1/28/2019

5:50 AM

SET A B C D E
bruteForceSearch (ms) 516.8 173.4 169.6 181 164.8

k-dStHashSrchPlaceTime (ms) 5.6 2.2 48.4 4 2.4

Int J Elec & Comp Eng ISSN: 2088-8708 

k-dStHash tree for indexing big spatio-temporal datasets (Meenakshi Hooda)

2943

Figure 4. Performance analysis of bruteForceSearch and k-dStHashSrchPlaceTime (crime dataset)

5. CONCLUSION

The research work introduced a new structure k-dStHash tree to index location and time-based data.

Though the insertion algorithm takes more time to organize the records according to both location and time,

but, when it comes to retrieval of required data, which is even more frequent, it outperforms the other

indexing method based on brute search. As illustrated in experimental analysis, when insertion time of k-

dStHashInsertion algorithm is 1.45, 1.37, 1.37, 1.37, 1.36 times more than time taken by bruteForceInsertion

algorithm for SET(s) A-E respectively, while retrieving is 92.28, 78.82, 3.50, 45.25 and 68.67 times faster for

same SET(s) A-E respectively. The experimental analysis demonstrates that the introduced indexing structure

can proficiently organize, store and maintain spatio-temporal records and retrieve the required records

speedly. The structure can be implemented for any research area with spatio-temporal data and even for

datasets with k-dimensional duplicate keys. Further, the work can be enhanced to retrieve spatio-temporal

objects within a given range and given time window. The time window can be static or sliding to suit real

time analysis.

REFERENCES
[1] R. Tian, H. Zhai, W. Zhang, F. Wang, and Y. Guan, “A survey of spatio-temporal big data indexing methods in distributed

environment,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 4132–4155,

2022, doi: 10.1109/JSTARS.2022.3175657.
[2] A. R. Mahmood, S. Punni, and W. G. Aref, “Spatio-temporal access methods: a survey (2010 - 2017),” GeoInformatica, vol. 23,

no. 1, pp. 1–36, Oct. 2018, doi: 10.1007/s10707-018-0329-2.

[3] K. Jitkajornwanich, N. Pant, M. Fouladgar, and R. Elmasri, “A survey on spatial, temporal, and spatio-temporal database research
and an original example of relevant applications using SQL ecosystem and deep learning,” Journal of Information and

Telecommunication, vol. 4, no. 4, pp. 524–559, Sep. 2020, doi: 10.1080/24751839.2020.1774153.

[4] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan, “LISA: a learned index structure for spatial data,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, May 2020, pp. 2119–2133, doi: 10.1145/3318464.3389703.

[5] E. Carneiro, A. V. de Carvalho, and M. A. Oliveira, “I2B+tree: interval B+ tree variant towards fast indexing of time-dependent
data,” 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), Seville, Spain, 2020, pp. 1-7,

doi: 10.23919/cisti49556.2020.9140897.

[6] W. P. Guo, Y. H. Zhao, G. R. Wang, and L. G. Wei, “Efficient fault-tolerant processing technology for Flink iterative
computing,” Jisuanji Xuebao/Chinese Journal of Computers, vol. 43, no. 11, pp. 2101–2118, 2020, doi:

10.11897/SP.J.1016.2020.02101.

[7] G. M. Santipantakis et al., “SPARTAN: semantic integration of big spatio-temporal data from streaming and archival sources,”
Future Generation Computer Systems, vol. 110, pp. 540–555, Sep. 2020, doi: 10.1016/j.future.2018.07.007.

[8] C. Yang, K. Clarke, S. Shekhar, and C. V. Tao, “Big spatiotemporal data analytics: a research and innovation frontier,”

International Journal of Geographical Information Science, vol. 34, no. 6, pp. 1075–1088, Jun. 2020, doi:
10.1080/13658816.2019.1698743.

[9] N. Koutroumanis and C. Doulkeridis, “Scalable spatio-temporal indexing and querying over a document-oriented NoSQL store,”

Advances in Database Technology - EDBT, pp. 611–622, 2021, doi: 10.5441/002/edbt.2021.71.
[10] R. A. Brown, “Building a balanced k-d tree in O(kn log n) time,” arXiv:1410.5420, Oct. 2014.

[11] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9,

pp. 509–517, Sep. 1975, doi: 10.1145/361002.361007.
[12] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches in logarithmic expected time,” ACM

Transactions on Mathematical Software, vol. 3, no. 3, pp. 209–226, Sep. 1977, doi: 10.1145/355744.355745.

[13] R. Tian, W. Zhang, F. Wang, and J. Xiong, “A context-aware method for indexing large-scale spatiotemporal data,” in 2022 IEEE
International Conference on Big Data (Big Data), Dec. 2022, pp. 6057–6065, doi: 10.1109/BigData55660.2022.10020916.

[14] P. Madhavi and K. P. Supreethi, “STAQR tree indexing for spatial temporal data with altitude,” GIS Science Journal, Nov. 2022,

doi: 10.21203/rs.3.rs-2238587/v1.
[15] H. Liu et al., “MSTGI: a multi-scale spatio-temporal grid index model for remote-sensing big data retrieval,” Remote Sensing

Letters, vol. 15, no. 1, pp. 44–54, Dec. 2023, doi: 10.1080/2150704x.2023.2293474.

[16] R. Tayewo, F. Septier, I. Nevat, and G. W. Peters, “Graph regression model for spatial and temporal environmental data—case of
carbon dioxide emissions in the United States,” Entropy, vol. 25, no. 9, Aug. 2023, doi: 10.3390/e25091272.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 2937-2944

2944

[17] S. Chaturvedi and T. Nagpal, “Efficient querying and indexing of moving data objects,” 2022 International Conference on

Futuristic Technologies (INCOFT), Belgaum, India, 2022, pp. 1-6, doi: 10.1109/incoft55651.2022.10094348.
[18] J. M. Ver Hoef, M. Dumelle, M. Higham, E. E. Peterson, and D. J. Isaak, “Indexing and partitioning the spatial linear model for

large data sets,” PLOS ONE, vol. 18, no. 11, Nov. 2023, doi: 10.1371/journal.pone.0291906.

[19] Y. Gao, H. Duo, J. Che, S. Zhao, and B. Zhao, “Research on efficient indexing of large-scale geospatial data based on multi-level
geographic grid,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 73–80, Dec. 2023,

doi: 10.5194/isprs-annals-x-1-w1-2023-73-2023.

[20] V. Pandey et al., “Enhancing in-memory spatial indexing with learned search,” arXiv:2309.06354, Sep. 2023.
[21] H. Liu, J. Yan, J. Wang, B. Chen, M. Chen, and X. Huang, “HGST: a Hilbert-GeoSOT spatio-temporal meshing and coding

method for efficient spatio-temporal range query on massive trajectory data,” ISPRS International Journal of Geo-Information,

vol. 12, no. 3, Mar. 2023, doi: 10.3390/ijgi12030113.
[22] J. Xu, B. Chen, and L. Sun, “Big data storage index mechanism based on spatiotemporal information cloud platform,” Security

and Communication Networks, vol. 2022, pp. 1–8, Aug. 2022, doi: 10.1155/2022/6774821.

[23] P. Madhavi and K. P. Supreethi, “A metaphorical analysis of different encoding techniques for spatial temporal data,”
International Journal of Intelligent Systems and Applications in Engineering, vol. 11, no. 11s, pp. 302–308, 2023.

[24] K. Liu, P. Tong, M. Li, Y. Wu, and J. Huang, “ST4ML: machine learning oriented spatio-temporal data processing at scale,”

Proceedings of the ACM on Management of Data, vol. 1, no. 1, pp. 1–28, May 2023, doi: 10.1145/3588941.
[25] K. Shahi, “Volunteered geographic information (VGI) in spatial data infrastructure (SDI) continuum,” EAI Endorsed

Transactions on Internet of Things, vol. 9, no. 1, May 2023, doi: 10.4108/eetiot.v9i1.2979.

[26] Meenakshi and S. Gill, “k-dLst tree: k-d Tree with linked list to handle duplicate keys,” in Emerging Trends in Expert
Applications and Security, Springer Singapore, 2019, pp. 167–175.

[27] M. Hooda and S. Gill, “Nearest neighbour search in k-dSLst tree,” Advances in Science, Technology and Engineering Systems

Journal, vol. 5, no. 4, pp. 160–166, Jul. 2020, doi: 10.25046/aj050419.

BIOGRAPHIES OF AUTHORS

Meenakshi Hooda did master degree in computer applications and M.Tech in

computer science. Then she completed her M.Phil. and Ph.D. in computer science. She has

worked with Bharti Telesoft (Comviva Technologies), Okhla, Delhi for approx. 3.5 years as

software developer and now working with Maharshi Dayanand University, Rohtak, Haryana as

an assistant professor for last 10 years. Her research areas are indexing, sptio-temporal

indexing, image processing, fuzzy logic, steganography and cryptography. She can be

contacted at email: meenakshi.maths@mdurohtak.ac.in.

Sumeet Gill has done Ph.D in computer science. He has taught in many reputed

technical institutes and has more than 25 years of experience in the field of system security and

artificial intelligence. His research papers have been published in different Journals of

International/National repute and the proceedings of the National/International Conferences.

He has delivered invited talks and chaired sessions in various conferences. Presently, he is

working with Maharshi Dayanand University, Rohtak, Haryana as professor. He can be

contacted at email: drSumeetGill@mdurohtak.ac.in.

https://orcid.org/0000-0002-6239-6093
https://scholar.google.com/citations?user=0hKTiU8AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57219247304
https://www.webofscience.com/wos/author/record/KBC-2174-2024
https://orcid.org/0000-0001-6471-1192
https://scholar.google.co.in/citations?user=odiT1gUAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57204831949

