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 A novel approach that combines segmented fundus images (FIs) and optical 

coherence tomography image (OCTIs) are presented here, by incorporating 

deep learning network (DLN) techniques, to address the imperative need for 

advanced diagnostic algorithms in detecting and classifying glaucoma. By 

combining these two images, glaucoma diagnoses are made to improve the 

accuracy with more reliability. Multi modal convolutional neural networks 

(MMCNNs) are proposed for automatically extracting discriminatory 

features from both segmented FIs and OCTIs, allowing for comprehensive 

ocular analysis. A significant improvement in glaucoma diagnosis is 

achieved through segmentation of both FIs and OCTIs, ensuring robustness 

generalization to diverse clinical scenarios, DLN models are trained on 

datasets encompassing a wide range of glaucoma cases. The integrated 

approach outperforms individual modalities in terms of early detection of 

glaucoma and accurate classification. This method demonstrates promising 

potential in early glaucoma detection due to its effectiveness. By combining 

segmented features from both FIs and OCTIs through MMCNNs, improved 

efficiency in diagnosing predominant ocular glaucoma disorder is achieved 

compared to existing methods. Within the scope of this research, GoogLeNet 

(GN) is applied to independently classify glaucoma (uni-modal) in 

segmented FIs and OCTIs, providing a basis for comparison with the 

evaluation of MMCNNs. 
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1. INTRODUCTION 

Glaucoma, characterized by its progressive nature, poses a risk of permanent vision impairment if 

not identified and managed promptly. Recognizing and preventing glaucoma early is essential in addressing 

this severe eye ailment, which can lead to vision loss and irreversible blindness. Traditional diagnostic 

approaches for glaucoma are time-consuming, subject to human error, and inefficient, emphasizing the need 

for automated diagnosis to improve precision and streamline the process. Multiple research articles have been 

published, each proposing different approaches to detect glaucoma. Introduces deep learning network (DLN) 

technology for early glaucoma detection, utilizing U-Net combined with transfer learning frameworks for 

https://creativecommons.org/licenses/by-sa/4.0/
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optic cup segmentation [1]. DenseNet-201 is employed for feature extraction from retinal fundus images 

(FIs). The proposed model achieves high accuracy rates, with 98.82% accuracy rate (AR) during training. 

A comparison is made with convolutional neural network (CNN) based deep learning (DL) approaches, 

highlighting the efficacy of the proposed method in identifying glaucoma before symptoms manifest, 

potentially improving patient diagnosis and management. The transfer learning technique offers versatility 

across diverse fields like manufacturing, transportation engineering, and industrial imaging. Further it can 

explore the integration of fuzzy and semi-supervised techniques to enhance its applicability and 

effectiveness. CNN's offer a robust method for automated glaucoma diagnosis, leveraging a dataset of 1113 

FIs [2]. A 13-layer CNN algorithm implemented via Google Colab facilitated the process. The dataset was 

partitioned into 70% for training, 20% for validation, and 10% for testing to evaluate the algorithm's 

performance. The model achieved impressive metrics, including sensitivity rate (SER) of 85.42%, specificity 

rate (SPR) of 100%, and precision rate (PR) of 100%, demonstrating its effectiveness in diagnosing 

glaucoma accurately. Enhancing performance involves integrating advanced transfer learning technology to 

refine classification outcomes. By adopting upgraded approaches, better classification results can be 

achieved. Various machine learning algorithms, such as support vector machines (SVMs), neural networks 

(NNs), and adaptive neuro fuzzy inference system (ANFISs), are utilized for glaucoma detection based on 

FIs [3]. The ANFIS demonstrates strong performance, achieving a PR of 97.56%, RR of 97.81% in glaucoma 

detection. Disadvantages of ANFIS machine learning classifiers include their complexity in model design 

and optimization, which can demand substantial expertise and computational resources. ANFIS models may 

lack interpretability compared to simpler algorithms, making it challenging to understand their decision-

making process. DCNN and fusion classifiers are developed for fundus image stage classification, utilizing 

pre-trained models like ResNet50 and DenseNet-201 [4]. The model is evaluated across four public datasets: 

ACRIMA, RIM-ONE, HVD, and Drishti. Classifier fusion via maximum voting is employed to combine 

CNN models. Results show promising performance with 97.57% AR on the ACRIMA dataset, 97% AUC on 

HVD. To enhance the glaucoma diagnosis model by incorporating larger, more diverse datasets to improve 

generalizability. Integration of clinical data such as patient age, sex, and medical history could enrich 

diagnostic accuracy and relevance.  

The three pre-trained CNNs-ResNet, VGGNet, and GoogleNet-for glaucoma FIs categorization [5]. 

Performance evaluation on five datasets demonstrates the model. The ensemble architecture achieves 91.11% 

AR, 85.555% SER, and 95.20% SPR on PSGIMSR, while achieving 95.63% AR on DRIONS-DB, 98.67% 

AR on HRF, 95.64% AR on DRISHTI-GS, and an overall AR of 88.96% on combined datasets. The deep 

architecture of these networks may pose challenges in interpretability, making it difficult to understand how 

specific features contribute to classification decisions. Fine-tuning pre-trained CNNs for new tasks may be 

intensive and require expertise in hyperparameter tuning. Utilizing optical coherence tomography image 

(OCTIs), glaucoma diagnostics are enhanced through a novel cross-sectional i.e., segmented optic nerve head 

(ONH) feature. DL techniques are employed, focusing on the four most significant features identified 

through statistical analysis [6]. Automated glaucoma detection using DL yields optimal results, achieving a 

highly accurate AUC of 0.98 and 98.6% AR on test data. The accuracy of the segmented ONH cup area is 

critical; any inaccuracies in this process could lead to erroneous diagnoses and compromise the reliability of 

the model. Utilizing FIs, an automatic glaucoma diagnosis system is developed based on an adapted version of 

GoogleNet [7]. The system employs a sliding-window approach in conjunction with the network, 

incorporating manually extracted FI structures and region of interest (ROI) sub-images for training. Following 

training, the algorithm demonstrates good accuracy even when using images from data augmentation or 

databases of poor quality. Implementing pre-processing steps for database images adds computational 

overhead, potentially slowing down the overall workflow and increasing resource requirements. The model 

evaluates various CNN schemes to assess the impact of dataset size, architecture, and transfer learning on 

glaucoma classification performance [8]. It investigates the influence of both FIs and clinical history data from 

patients. Employing transfer learning with VGG19, the model achieves notable metrics, including an AUC of 

0.94, SER of 93%, and SPR of 93.18%, highlighting the effectiveness of the approach in enhancing glaucoma 

detection accuracy. Assessments of architectural approaches are crucial to address evolving challenges and 

improve the performance of computer-aided diagnosis (CAD) systems for FIs analysis in glaucoma detection. 

Utilizing CNN in conjunction with pre-trained efficientNet-b0 [9], glaucoma detection is performed 

on FIs with or without demographics information. The model trained on 1539 FIs achieves notable metrics 

including a 0.98 AUC, 86% AR, 91% PR, 86% SER, and 0.86 F1-score without demographic information. 

Incorporating demographics information, the model achieves a 0.98 AUC, 87% AR, 87% PR, 87% SER, and 

0.87 F1-score. Lack of comprehensive comparison between deep learning systems (DLS) using red-free color 

FIs, potentially overlooking important differences in performance and diagnostic accuracy. Advanced 

classification, segmentation, and detection methods for glaucoma utilizing FIs have been developed [10], 

notably employing deep learning convolutional neural networks (DLCNNs) and their variants. The 
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architecture for glaucoma classification incorporates ImageNet pre-trained Deep CNN architectures, 

including InceptionResNetV2 and NasNet-Large. NasNet-Large exhibits superior performance with metrics 

such as 98.1% SER, 98.4% SPR, 98.3% AR, and an AUC of 0.97, showcasing its effectiveness in glaucoma 

detection. Training more robust glaucoma classifiers using deep features may exacerbate the risk of 

overfitting, particularly if the models are not properly regularized or validated on diverse datasets. A CNN-

based architecture is employed to differentiate between glaucoma and non-glaucoma patterns in FIs [11]. The 

hierarchical structure of FIs is utilized within the CNN framework, consisting of six layers with dropout 

mechanisms. Evaluation on the SCES and ORIGA datasets yields high accuracy rates of 95.67% and 96%, 

respectively, demonstrating the effectiveness of the proposed approach in glaucoma pattern classification. 

Deep CNNs are susceptible to overfitting, especially with small datasets, which may lead to poor 

generalization performance on unseen data. Glaucoma classification into mild or severe types using FIs is 

investigated [12], employing 3,200 images from the MESSIDOR dataset. Six deep learning models, 

including VGG16, VGG19, InceptionV3, InceptionResNetV2, ResNet50, and DenseNet169, are utilized for 

classification. Among these models, DenseNet169 achieves an accuracy rate (AR) of 85.19%, demonstrating 

its effectiveness in distinguishing between mild and severe glaucoma. DenseNet169 is a deep neural network 

with a large number of parameters, making it computationally intensive to train and requiring significant 

computational resources. 

In a study, 940 FIs along with clinical notes and demographic data [13] were collected from an Eye 

Hospital, focusing on glaucomatous optic neuropathy (GON). VGGNet is employed to detect GON in FIs, 

with a SVM integrated for final classification when the CNN provides low confidence ratings. Advanced 

scoring of GON is utilized to minimize missed instances, and the CNN classifier's performance is evaluated 

using datasets from TVGH and Drishti-GS. A multi-task DL model is developed based on the similarities 

between eye-fundus tasks and measurements used in glaucoma diagnosis [14]. This model is designed to 

simultaneously learn various segmentation and classification tasks, leveraging the shared characteristics 

among them. Trained on 1,200 images from diverse sources within the retinal fundus glaucoma dataset, the 

model outperforms other multi-task learning approaches, demonstrating improved effectiveness compared to 

training each task independently. With multiple tasks being learned simultaneously, there is an increased risk 

of overfitting, particularly if the model is not properly regularized or if tasks have varying levels of data 

availability or complexity. DLCNN and machine learning (ML) methods [15] are employed to develop three 

distinct approaches for glaucoma detection. Features such as cup-to-disc ratio (CDR) and rim-to-disc ratio 

(RDR) are computed from FIs and classified using SVMs and the k-nearest neighbor strategy. Notably, the 

VGG-16 DLCNN achieves an impressive accuracy rate, showcasing its effectiveness in glaucoma detection 

compared to traditional ML methods. SVMs and k-nearest neighbor strategies rely on hyperparameter tuning 

for optimal performance, requiring careful selection and validation to prevent overfitting or underfitting, 

which can be time-consuming and computationally intensive. Efficient Net is evaluated for glaucoma disease 

classification using transfer learning techniques [16]. Public datasets including RIM-ONE V2 and V3, 

ORIGA, DRISHTI-GS1, HRF, and ACRIMA are utilized for model comparison against frameworks such as 

VGG16, InceptionV3, and Xception. EfficientNetB4 emerges as the top-performing model, surpassing others 

with a remarkable 98.38% accuracy. Additionally, it achieves superior results for metrics like F1-score, 

Kappa score, and area under the curve (AUC) compared to alternative methods. These models may lack the 

adaptability to capture intricate patterns and variations in diverse datasets, potentially leading to suboptimal 

performance when faced with complex data distributions or novel classes. The study evaluates CAD 

frameworks with DLN for unbiased analysis of glaucoma patients [17]. It discusses recent advancements in 

AI techniques, highlighting the superiority of DL over traditional machine learning in eliminating the need 

for manual feature extraction. CAD frameworks, aiding social professionals in glaucoma screenings, achieve 

a high accuracy rate of 96% in glaucoma classification, demonstrating their potential utility in examining 

various eye conditions during glaucoma testing. CAD frameworks with DLN require large and diverse 

datasets for effective training, which may be challenging to acquire and annotate, particularly for rare 

conditions or specific patient populations. A computationally lightweight CNN system is developed [18] for 

automated glaucoma detection, optimized for efficiency. Utilizing color fundus photographs, the CNN 

efficiently identifies glaucoma indicators, aiming to streamline diagnosis and enable earlier intervention, 

crucial for preventing irreversible blindness. Regular updates and refinement of the model is necessary to 

maintain its effectiveness. Utilize deep learning algorithms proficient with hybrid in recognizing the intricate 

features essential for classification tasks [19], which encompass microaneurysms, exudate, and retinal 

hemorrhage. Exploit the predictive capabilities [20] of artificial intelligence (AI), introduce two deep 

learning (DL) networks based on vision transformers (ViT). Initially, refine a spatiotemporal ViT to 

categorize the rate of glaucoma progression (GP) utilizing only three baseline visual fields (VFs). The 

investigation spans the threshold mean deviation (MD) rate of change from -0.3 to -1.5 dB/year, achieving an 

impressive 89% accuracy in detecting GP. 
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Glaucoma, a leading cause of irreversible blindness worldwide, necessitates early and accurate 

diagnosis for effective management. While FIs and OCTIs are routinely utilized for glaucoma diagnosis, each 

modality offers unique insights into ocular pathology. However, integrating information from both modalities 

to enhance diagnostic accuracy remains a challenge. To address these challenges, this paper focuses an 

optimized glaucoma diagnosis framework utilizing FIs and OCTIs fusion based on a multi-modal CNN 

approach. This paper presents designing a glaucoma detection system focused on early diagnosis, utilizing a 

fusion approach with both FIs and OCTIs. The research work highlights how combining data from different 

imaging modalities enhances diagnostic accuracy for glaucoma detection. The multi modal convolutional 

neural networks (MMCNNs) analysis is applied in this work to integrate the segmented FIs and OCTIs to 

intensify the precision of glaucoma diagnosis. Utilizing segmented images from both FIs and OCTIs 

substantially enhances diagnostic accuracy. The integration of multiple imaging modalities, allows for a more 

comprehensive analysis by capturing complementary information. This fusion of features enhances the model 

ability to detect subtle abnormalities associated with glaucoma. When segmented FIs and OCTIs are 

combined using MMCNNs, SER and SPR are significantly enhanced, enabling significantly more AR in 

detection and classification than when detected independently using GoogLeNet (GN). 

 

 

2. DETAILED DESCRIPTION OF DATASETS 

Datasets of FIs and OCTIs are essential for developing and testing algorithms for diagnosis. Kaggle 

publicly available datasets includes 1000 FIs and OCTIs normal and 1000 FIs and OCTIs glaucoma diseased 

eyes. The 2D images size 500×500. An optic nerve and retina are visible in fundus photography, while OCT 

provides detailed cross-sectional images of the retina. These datasets are valuable for studying vascular 

abnormalities and diseases. FIs involves capturing images of the back of the eye, including the retina, optic 

disc, and blood vessels, provides image texture feature information for various eye conditions such as 

glaucoma. OCTIs is a non-invasive imaging technique that captures high-resolution cross-sectional images 

with respect to retinal layers (RLs). The OCTIs are comprehensively used to diagnose and monitor RLs 

diseases, including glaucoma. 

 

 

3. PROPOSED RESEARCH METHOD 

Designing an efficient fusion method to integrate FIs and OCTIs information for enhanced 

glaucoma diagnostic accuracy. Developing a multi-modal CNN architecture capable of effectively perform 

fusion features for glaucoma diagnosis. Evaluating the performance of the proposed approach against 

existing methods using diverse datasets to demonstrate its effectiveness in terms of accuracy, sensitivity, 

specificity, and computational efficiency. The introduction of MMCNNs represents a significant leap in 

automated feature extraction from segmented FIs and OCTIs, enabling a holistic analysis of ocular health. By 

integrating features from both images remarkable advancement is achieved in the diagnosis of glaucoma, 

offering unparalleled accuracy and depth in ocular assessment. The robustness and adaptability of DLN 

models, trained on diverse glaucoma datasets, ensure that the proposed MMCNNs can effectively handle a 

wide range of clinical scenarios, fostering confidence in their diagnostic capabilities. With the integration of 

data from segmented FIs and OCTIs, the MMCNNs not only enhance the early detection of glaucoma but 

also provide a comprehensive understanding of ocular pathology, revolutionizing the field of ophthalmic 

diagnostics. Through the synergistic combination of advanced neural network architectures and multi-modal 

imaging techniques, the proposed MMCNNs pave the way for more accurate, efficient, and versatile 

glaucoma diagnosis, offering hope for improved outcomes and vision preservation. This paper presents a  

uni-model, utilizing GN architecture independently for FIs and OCTIs, to validate MMCNNs. 

 

3.1.  Retinal layers segmentation in OCTIs 

Segmenting retinal layers (RLs) [21] in OCTIs are a critical step in the reasoning of inflammation in 

eye, such as glaucoma. Accurate segmentation allows extraction of essential information about the various 

RLs aiding in disease diagnosis. There is degradation in OCTIs scan quality and resolution. This work 

applied interference reduction strategy as a median filtering, to reduce the interference and to improve 

perceptibility using histogram equalization. Segmentation of RLs exploitation the technique as Sobel edge 

detection. Detect edges in the OCTIs and use them as boundaries for retinal layers and compute gradients to 

find boundaries between layers. Applied adaptive thresholding techniques to separate different layers based 

on intensity that evolve to the boundaries of the RLs with energy minimization. The layers are as shown in 

Figure 1(a) is the input image to system and Figure 1(b) OCTI is the segmented into 7-layers. The process 

involves input an OCT image into the system, as shown in Figure 1(a). This image is then subjected to 

segmentation, dividing it into seven distinct layers, as depicted in Figure 1(b). The segmentation allows for 
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the detailed analysis and characterization of each layer, providing valuable insights into the tissue structure 

and pathology. This method enables precise identification and measurement of various features within the 

OCT image. The seven-layer OCT image typically reveals distinct anatomical features within different layers 

of tissue. The vitreous is a transparent gel-like substance that fills the central cavity of the eye between the 

lens and the retina. The layer features include the retinal nerve fiber layer (NFL), representing axons of 

retinal ganglion cells. The layer ganglion cell layer (GCL), contains cell bodies of ganglion cells. The nuclear 

layer (INL) is the cell bodies of bipolar, horizontal, and amacrine cells. The outer plexiform layer (OPL) 

contains synapses between photoreceptors and bipolar cells. The outer nuclear layer (ONL) contains the cell 

bodies of photoreceptors. The outer segment (OS) layer typically exhibits moderate reflectivity compared to 

other retinal layers due to the presence of the tightly packed photoreceptor outer segments. Finally, the retinal 

pigment epithelium (RPE) layer, the outermost layer, contains pigmented cells that support and nourish the 

retina. Analyzing these features aids in diagnosing of glaucoma in this research work. 

 

 

  
(a) (b) 

 

Figure 1. Segmentation of OCTI (a) input image and (b) segmented image 

 

 

3.2.  Segmentation of FIs  

Segmentation of retinal blood vessels in FIs are achieved using active contour techniques with 

matched filters using Hessian matrix-based features. Utilized a Hessian matrix [22] and matched filters to 

segment retinal vessels. In order to segment retinal vessels, used matched filters and Hessian matrices 

eigenvalues. The parameter tuning and fine-tuning of the algorithms are necessary to achieve accurate 

segmentation results with the influence of distinctive blood vessels of FIs. A matched filter is designed to 

enhance specific features in an image by convolving the image with a filter kernel that matches the desired 

feature. To extract vessel features from a FIs using the Hessian matrix, compute the eigenvalues of the 

Hessian matrix at each pixel location. The eigenvalues represent the curvature of the intensity surface around 

each pixel, and they used to enhance vessel-like structures. A fundus image captures the interior surface of 

the eye, including the retina, optic disc, and blood vessels. Retinal vessel segmentation involves extracting 

the vascular network from the fundus image, crucial for diagnosing conditions of glaucoma. Figures 2(a) 

depicts a fundus input image through Figure 2(b), the corresponding retinal vessel segmentation highlights 

the extracted blood vessel network, aiding in quantitative analysis and disease detection. 

 

 

  
(a) (b) 

 

Figure 2. Segmentation of FI (a) input image (b) segmented image 
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3.3.  Classification techniques 

Classifying medical images is crucial for accurate and timely diagnosis in medical diagnostics, 

enabling healthcare professionals to analyze medical images automatically. With a view to classify glaucoma 

and healthy, two unlike DLN techniques are employed in this work, for instance a GN in contemplation of 

segmented FIs and OCTIs separately (uni-modal) and a multi-modal (MM) CNNs with combination of 

segmented FIs and OCTIs. The utilization of two different image data within CNN architectures holds great 

promise for refining the classification of glaucoma, influencing the unique advantages of each modality to 

improve accuracy and clinical relevance. 

 

3.3.1. GoogLeNet architecture 

As part of the TensorFlow open-source machine learning library, Google has developed deep 

learning frameworks. While TensorFlow itself does not constitute a NN architecture but ML models and 

NNs, are deployed in flexible platform [23]. A paradigm for capturing features at multiple scales is also 

invoked by inception networks, a GN system that uses parallel convolutions of different filter sizes. Several 

advancements in GN architectures have occurred since the introduction of Inception, which have 

significantly influenced the exploitation of DL techniques for image classification. Using inception modules, 

it allows for simultaneous processing of multiple scales of features. The network comprises 144 layers in 

deep, including convolutional, pooling, and fully connected layers. This architecture addresses the 

phenomenon as gradient problem and promotes efficient feature learning.  

 

3.3.2. Multi-modal CNN  

With the intention of improve the system performance, robustness and nuanced understanding of the 

underlying data, multi-modal CNNs [24] integrate and leverage many different information sources. Images 

from multiple modalities and heterogeneous datasets make this method particularly useful. This article 

introduced a MMCNN in classifying glaucoma or healthy. By processing each modality and extracting its 

features, the architecture is designed to make accurate predictions by combining these features. CNN with 

multi-input is a neural network architecture as shown in Figure 3, comprising 8 unique layers for every input, 

with the fusion section incorporating 4 layers. This is designed to handle multiple input sources simultaneously 

such as segmented FIs and OCTIs. It involves sliding a small filter (as a kernel size 5×5) over the input data to 

extract features. In the context of MMCNNs, each stream of input source networks has their individual set of 

convolutional layers (CLs) filters. In pooling layers (PLs) part of the network, down-sampling operation that 

reduces the spatial dimensions for an image input data. This includes max pooling and average pooling is 

applied independently to each input source. The parameters of the MMCNN, including the convolutional filter 

weights and biases, are updated during the training process using an optimization algorithm like gradient 

descent. Back-propagation is used to compute gradients and update the parameters to minimize a defined loss 

function. In the forward pass, input data is passed through the network layer by layer. For each input source, the 

data goes through CLs, PLs, and other types of layers like fully connected layers. The information from output 

of each layer becomes the input for the next layer. After the forward pass-through individual branches of the 

network corresponding to each input source, the outputs are aggregated involves in this work is concatenation 

with fully connected classification layer (FCCL). The final aggregated output is compared to the ground truth 

(target) using a loss function, that measures the differences obtained from predicted output and the actual target. 

The loss function includes the cross-entropy for classification tasks.  

 

 

 
 

Figure 3. MMCNN layer structure 
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CNNs are a class of deep neural networks particularly effective in image analysis tasks. They 

consist of convolutional layers that automatically learn hierarchical representations of features from input 

images. The ability of CNNs to automatically extract relevant features makes them well-suited for complex 

tasks like medical image classification. The training process involves feeding labeled FIs and OCTIs into the 

CNN. The network learns to recognize patterns indicative of various eye conditions through iterations. Data 

augmentation techniques may be employed to increase the diversity of the training dataset and enhance the 

model's robustness. Exploration of multi modal approaches, combining information from FIs and OCTIs, 

may further enhance the accuracy of diagnostic models. The application of CNNs in the classification of FIs 

and OCTIs are seizing a good assurance for progressive ophthalmic diagnostics to significantly improve 

patient outcomes in the field of ophthalmology. 

 

 

4. MEASUREMENT OF SYSTEM METRICS 

When evaluating the intended results and performance of DLN models [25], several measures are 

commonly used. Some of the most fundamental performance measures include accuracy, F1-score, recall, 

precision, specificity and confusion matrix (CM). The CM summarizes the performance of the system with 

respect to classification algorithm. It compares the actual with predicted labels in the data sets. The CM 

relates attributes such as i) true negatives (TN): instances in which the outcome is negative (belonging to the 

negative class) and are correctly predicted as negative by the model; ii) false positives (FP): instances in 

which the outcome is negative but are incorrectly predicted as positive by the model; iii) true positives (TP): 

a true positive occurs when the model correctly predicts a positive instance as positive; and iv) false 

negatives (FN): in neural networks, a false negative occurs when the model incorrectly predicts a negative 

instance as positive. Accuracy: this measures the proportion based on the total number of instances, there 

were instances that were correctly classified as in (1). 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (1) 

 

Precision: as in (2) measures the proportion based on a total of all positive instances, the percentage of true 

positive predictions (correctly predicted positives) is calculated. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (2) 

 

Recall (sensitivity): This measures the proportion of predictions of true positives based on all actual positives 

as in (3). 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (3) 

 

F1-score: the F1-score is the harmonic mean of precision and recall. It provides a balance between precision 

and recall as in (4). 
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (4) 

 

Specificity: also known as the true negative rate is a measure used in binary classification tasks. It quantifies 

the proportion of true negatives (correctly predicted negatives) out of all actual negatives in the data set. It is 

particularly useful when the cost of false positives is high as in (5). 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (5) 

 

 

5. RESULTS AND DISCUSSION 

5.1.  Training process  

The GN [26] architecture is created to address an issue in the training process by utilizing DLNs, 

which allows using filters of multiple sizes in parallel, capturing both fine and coarse features. Training a 

neural network like GN for tasks such as FIs and OCTIs classification involves several steps: feed segmented 

dataset of FIs and OCTIs to the network with labeled to the corresponding classes as normal and glaucoma. 

Fragmented the dataset into training, validation and test sets. Resize images to a consistent input size 

224×224 suitable for the network to normalize pixel values to bring into a similar range. Augment the dataset 

with techniques like rotation to increase the diversity in the image texture and improved in significant feature 
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generalization. The model architecture GN consists of multiple inception modules for classification of 

glaucoma or normal. Modify the output layer to match the number of classes in dataset. Define an 

appropriate loss function for the task, such as cross-entropy loss for classification problems. The optimizer as 

stochastic gradient descent (SGD) [27] to minimize the loss during training. Calculated the loss and back 

propagate the gradients to update the weights of the NNs using optimizer. Monitored the validation image 

sets to ensure the model generalizes well to unseen data and does not overfit. The training options such as 

initial learn rate 0.0001, mini batch size 6, max epoch 8, validation frequency is 5. Training NNs often 

benefits from particularized graphics processing unit (GPU) hardware for highly parallel processors capable 

of handling complex computational tasks with less time. The Figure 4 shows accuracy and loss of training 

and validation process for FIs input with 90% dataset is used to training gives validation accuracy 95.36%. 

 

 

 
 

Figure 4. Accuracy and loss of training and validation process of GNN 

 

 

5.2.  Multimodal fusion of fundus and OCT training process 

Training multi-modal CNNs [28] with segmented FIs and OCTIs involves by fusion of image 

texture features from both modalities to improve the model's performance on specific tasks. The training 

process includes paired Fundus and OCT images for the input to the network. Each pair to be associated with 

a specific label normal and glaucoma for classification. Preprocess the segmented Fundus and OCT images 

separately to ensure they have consistent dimensions and pixel values. Normalize pixel values and applied 

augmentation techniques to increase the heterogeneity features in the image data using rotation. 

The architecture might include separate branches for each modality, with shared layers or 

connections at deeper layers to facilitate information fusion. Define an appropriate loss function for the 

chosen task. For classification tasks, cross-entropy loss [29] is commonly used. Select an optimizer as SGD 

to minimize the loss during training. Incorporated mechanisms for feature fusion to combine information 

from both modalities. This process involves as concatenation fusion strategy. The training options such as 

initial learn rate 0.0001, mini batch size 6, max epoch 8, validation frequency is 5. Figure 5 shows accuracy 

and loss of training and validation process with input with 90% dataset is used to training gives validation 

accuracy 95.51%. 

 

5.3.  GoogleNet testing process 

The testing process involves evaluating its performance on a separate dataset that it has not seen 

during training. Here is a step-by-step explanation of the testing process for FIs and OCTIs classification 

using GoogleNet. Prepared the segmented test dataset by re-sizing images to the same dimensions used 

during training and normalizing pixel values. Load the pre-trained GoogleNet framework that was trained on 

the OCTIs and FIs dataset. Pass the segmented test images through the trained GoogleNet model. Obtain the 

model's predictions for each image. The uni-modal for FIs (500 images) results more efficient than the 

OCTIs (500 images). Table 1 demonstrates the split of image data set for experimental verification of uni-

modal and multi-modal system. There is a 10%, 20%, and 30% percentage image data set allocation is 

dedicated to testing and a remaining allocation is considered for training. 

The model performance for FIs without segmentation is shown in Table 2 for different percentage of 

test data. Using 10% allocation data for testing yields better results than using 20% or 30% of the test data, 

and Table 3 illustrates the performance of the system without segmentation. According to Table 4, CM can 
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be applied to FIs with segmentation. In Table 5, we show system performance with segmented input images. 

This is because the images themselves contain significant texture information, which results in better results. 

 

 

 
 

Figure 5. Accuracy and loss of training and validation process of MMCNN 

 

 

Table 1. Split of image data set 
Total number of samples =1000 (500 FIs + 500 OCTIs) 

Image data Train samples Test samples 

10% 900 100 

20% 800 200 
30% 700 300 

 

 

Table 2. Classification results without segmentation of FIs 
Image data TP FP TN FN 

10% 41 9 42 8 
20% 78 22 79 21 

30% 115 35 118 32 

 

 

Table 3. Evaluation metrics without segmentation of FIs 
Image data PR SPR SER F1-score AR AUC 

10% 82% 82% 84% 83% 83% 0.84 

20% 78% 78% 79% 78% 79% 0.78 

30% 77% 77% 78% 77% 78% 0.77 

 

 

Table 4. Classification results with segmentation of FIs 
Image data TP FP TN FN 

10% 45 5 46 4 

20% 87 13 83 17 
30% 125 25 128 22 

 

 

Table 5. Evaluation metrics with segmentation of FIs 
Image data PR SPR SER F1-score AR AUC 

10% 90% 90% 92% 91% 91% 0.91 
20% 87% 86% 84% 85% 85% 0.85 

30% 83% 83% 85% 84% 84% 0.83 

 

 

5.4.  Multimodal fusion of fundus and OCT testing process 

Testing trained MMCNNs with segmented input of FIs and OCTIs involves evaluating its 

performance on a separate dataset that it has not seen during training. Here is a step-by-step explanation of 

the testing process. Segmented test dataset containing FIs and OCTIs pairs, normalize pixel values and 

ensure that the dimensions data match the input requirements of the trained multi-modal CNN. Load the pre-

trained multi-modal CNN that accomplished high-grade validation accuracy during training. Pass the pairs of 
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FIs and OCTIs through the loaded multi-modal CNN model. Obtain the prediction classification labels of 

model for the specific datasets and compare the predicted labels with the target labels for each image pairs. 

As shown in Table 6, CM for multi-modal is demonstrated without segmentation and in Table 7, illustrated 

the system performance without segmentation. However, MMCNNs gives better results than uni-modal. 

According to Table 8, classification results for MMCNNs are demonstrated for segmented inputs. In 

case, TP=49, meaning the model correctly identified 49 instances as positive out of the total 50. Here, TN=50, 

indicating that the model correctly identified 50 instances as negative out of the total 50. In scenario, FP=1, 

indicating that the model mistakenly classified 1 instance as positive when it was actually negative. In FN=0, 

indicating that the model did not mistakenly classify any positive instances as negative for allocation of 10% 

image data for testing. Nevertheless, the model outperforms the classification results achieved less in case of 

20% and 30%.  

Table 9 illustrates MMCNNs evaluation metrics with segmentation. However, over all MMCNNs 

with segmentation inputs gives better results than uni-modal for allocation of 10% image data for testing. 

With an AR of 99%, it means that 99% of the instances were correctly classified by the model. SER, also 

known as recall rate, with a sensitivity of 98%, it indicates that the model correctly identified 98% of the 

positive instances. A SPR of 98% means that the model correctly identified 98% of the negative instances. 

With PR of 98% indicates that 98% of the instances predicted as positive by the model were indeed true 

positives. An F1-score of 98% suggests a good balance between precision and recall, with high values 

indicating both high precision and high recall. Receiver operating characteristic (ROC) curve, which plots the 

TP rate against the FP rate. A higher AUC value, closer to 1, indicates better discrimination between positive 

and negative instances. An AUC of 0.99 suggests excellent performance in distinguishing between classes. 

Classifier performance is visualized using ROC [30] curves, aiding in model comparing 

performance and understanding true versus false positive trade-offs. Figure 6 shows the ROC curve for 10% 

image test data with segmented inputs for class-1 (glaucoma) and class-2 (normal). A collection of ROC 

curves for each class provides insights into the classifier performance for each class during testing. An AUC 

value closer to 1 indicates better classification performance, while an AUC of 0.5 suggests random guessing. 

ROC 95% training accuracy indicates that the model achieved high discriminatory power in distinguishing 

between class-1 and class-2 instances during the training phase. This suggests that the model predictions 

were mostly correct when evaluated on the training data with reference to Figure 6(a). The ROC 95.51% for 

validation accuracy implies that the model performance remained consistently high when assessed on a 

separate validation dataset. It suggests that the model generalization ability is robust, as it can effectively 

discriminate between class-1 and class-2 instances on unseen dataset considering in Figure 6(b). ROC of 99% 

for testing accuracy indicates that the model maintained its strong discriminatory power when evaluated on 

an independent testing dataset as in the context of Figure 6(c). This suggests that the model performance is 

reliable and consistent across different datasets. For all ROC indicates that the model discriminatory power is 

consistently high across, this implies that the model predictions are consistently reliable, irrespective of the 

image dataset chosen for classification as observing Figure 6(d). 

A graphical representation of CM in Figure 7(a) without segmentation and through Figure 7(b) with 

segmented input to MMCNNs summarizes the classification algorithm performance. A comparison is made 

between the True class of the dataset and the predicted class by the model. True classes are represented in 

rows, while predicted classes are represented in columns, TP=49 and FP=1 out of 50 total glaucoma 

instances, and TP=50 and TN=50 out of 50 total normal instances, with FN=0, when allocating 10% of image 

data for testing gives better results with respect to 20% and 30% allocation of image data for testing. Overall, 

Table 10 provides a comprehensive comparison of different methods for analyzing Fundus and OCT images 

to classify glaucoma or healthy, highlighting their respective testing accuracy rate. The proposed method 

appears to outperform the other methods in terms of accuracy. 

 

 

Table 6. Classification results segmentation of FIs and OCTIs 
Image data TP FP TN FN 

10% 47 03 48 02 

20% 91 09 90 10 

30% 130 20 131 19 

 

 

Table 7. Evaluation metrics without segmentation of FIs and OCTIs 
Image data PR SPR SER F1 Score AR AUC 

10% 94% 94% 96% 95% 95% 0.95 

20% 91% 91% 90% 90% 91% 0.90 

30% 86% 87% 87% 86% 87% 0.86 
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Table 8. Classification results segmentation of FIs and OCTIs 
Image data TP FP TN FN 

10% 49 1 50 00 
20% 97 03 96 04 

30% 135 15 138 12 

 

 

Table 9. Evaluation metrics with segmentation of FIs and OCTIs 
Image data PR SPR SER F1-score AR AUC 

10% 98% 98% 98% 98% 99% 0.99 

20% 97% 97% 97% 97% 97% 0.97 

30% 90% 90% 90% 90% 91% 0.90 

 

 

  
(a) 

 

(b) 

  
(c) (d) 

 

Figure 6. Input segmentation ROC for MMCNNs: (a) training ROC, (b) validation ROC, (c) test ROC, and 

(d) all ROC 
 

 

  
(a) (b) 

 

Figure 7. Graphical representation of CM for MMCNNs (a) without and (b) with segmented inputs 
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Table 10. Comparison of system accuracy across various methods 
Ref.no. Input image Methods Testing accuracy (%) 

[1] Fundus DenseNet-201 96.90 
[3] Fundus ANFIS 97.20 

[4] Fundus CNN 97.57 

[5] OCT ResNet 98.67 
[15] Fundus VGG-16 98.6 

Proposed work Fusion of fundus and OCTs MMCNNs 99 

 

 

6. CONCLUSION  

In this study, trained and evaluated the GN architecture comprising uni-modal for OCTIs and FIs for 

glaucoma disease classification. The GN demonstrated a commendable overall accuracy in predicting of the 

test set correctly. The model exhibited a robust sensitivity to relevant features for segmented FIs. 

A comprehensive work is rigorously tested the performance of MMCNNs on a diverse dataset containing 

paired segmented FIs and OCTIs. The incorporation of feature fusion mechanisms facilitated the utilization 

of information from both modalities. The MMCNNs highlighted specific strengths i.e., effective information 

fusion, robust performance in diverse scenarios, making it a promising algorithm for glaucoma detection and 

classification. The MMCNNs achieves better system performance, when dealing with segmented inputs of 

FIs and OCTIs, as well as when compared to uni-modal approaches. The fusion of information from distinct 

modalities is indeed advantage, but the effectiveness of the model may vary depending on the quality and 

variability of the input data.  

Future research endeavors could focus on improving the proposed model, e.g., fine-tuning for 

specific pathologies, integration of additional modalities. The testing of MMCNNs on FIs and OCTIs unveils 

promising prospects for advancing diagnostic capabilities in specific medical contexts. The model adept 

fusion of information from distinct modalities paves the way for enhanced clinical decision support systems. 

Ongoing research and refinement are crucial to exploit the full potential of this multi-modal approach.  
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