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ABSTRACT

The rising prevalence of Alzheimer’s disease (AD) poses a significant global
health challenge. Early detection of AD enables appropriate and timely treat-
ment to slow disease progression. In this paper, we propose an enhanced proce-
dure for automated AD detection from magnetic resonance imaging (MRI) im-
ages, focusing on two primary tasks: feature extraction and classification. For
feature extraction, we have investigated two categories of methods: handcrafted
techniques and those based on pre-trained convolutional neural network (CNN)
models. Handcrafted methods are preceded by a preprocessing step to improve
the MRI image contrast, while the pre-trained CNN models were adapted by
utilizing only a part of the models as feature extractors, incorporating a global
average pooling (GAP) layer to flatten the feature vector and reduce its dimen-
sionality. For classification, we employed three different algorithms as binary
classifiers to detect AD from MRI images. Our results demonstrate that the
support vector machine (SVM) classifier achieves a classification accuracy of
99.92% with Gabor features and 100% with ResNet101 CNN features, compet-
ing with existing methods. This study underscores the effectiveness of feature
extraction using Gabor filters, as well as those based on the adapted pre-trained
CNN models, for accurate AD detection from MRI images, offering significant
advancements in early diagnosis.
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1. INTRODUCTION
Alzheimer’s disease (AD) is a progressive neurodegenerative condition that primarily impacts the

brain, resulting in a gradual deterioration of memory, cognitive abilities and social aptitude. From a structural
perspective of the brain, AD is characterized by brain shrinkage and eventual neuronal death, rendering it the
foremost cause of dementia [1]. AD represents a distinct and pathological condition beyond what is considered
normal aging, yet the likelihood of developing AD rises as individuals grow older. Approximately 5% of
individuals aged 65 to 74 years are affected by AD, while nearly 50% of those aged 85 and older suffer from
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the disease [2]. In 2020, it was estimated that around 50 million people worldwide were living with AD
[3], [4]. This number is expected to reach approximately 131.5 million people worldwide by 2050 [5].

The early detection of AD represents one of the most intricate challenges for neurologists. Vari-
ous brain imaging modalities, including magnetic resonance imaging (MRI), computed tomography (CT), and
positron emission tomography (PET), allow for the identification of structural and functional changes associ-
ated with AD. However, the manual examination of images by doctors or radiologists is often time-consuming
and susceptible to errors. The development of automated diagnostic aid systems provides valuable support to
healthcare professionals, facilitating the early detection of AD and enabling quicker and more accurate diag-
noses while reducing medical errors and enhancing treatment outcomes.

According to the literature, AD detection methods are based either on a single imaging modality or on
multimodal approaches, particularly combining MRI with PET. Multimodal techniques can be categorized into
two types: those that fuse features extracted from both imaging modalities [6], [7] and those that merge MRI
and PET images [8]–[10]. The latter approach, while requiring highly complex image fusion techniques, is
more effective for tracking the progression of AD. However, PET, as an invasive modality involving a radioac-
tive tracer [6], [7], is often less favored compared to MRI alone in the context of AD detection. MRI is the most
widely used imaging modality [11] due to its non-invasive nature and its capacity to provide high-resolution
structural information about the brain.

In the context of AD detection from MRI images, the process encompasses three key stages: image
preprocessing, feature extraction, and classification. The preprocessing steps may include denoising, contrast
enhancement, and/or segmentation to detect and localize the region of interest (ROI). Segmentation is particu-
larly beneficial for the detection and identification of brain tumors [12]. However, in the context of Alzheimer’s
disease detection, segmentation is not strictly necessary, as AD affects the entire brain. Nonetheless, it becomes
relevant when applying methods for extracting morphological features from the brain [13]. Feature extraction
is a transformation operation that converts an image (2D) into a feature vector (1D) that represents its informa-
tion. Feature extraction methods are generally classified into handcrafted methods and CNN-based methods.
The classification step assigns observations to predefined categories or classes based on their feature vectors.

In this paper, we present an enhanced procedure for automated AD detection from MRI images. Our
approach comprises two primary steps: feature extraction and classification. For feature extraction, we investi-
gate several methods: three handcrafted methods (histogram of oriented gradients (HOG), local binary patterns
(LBP) and Gabor filters) and nine pre-trained CNN models [14] (VGG16, AlexNet, ResNet101, GoogLeNet,
DenseNet, InceptionV3, SqueezeNet, MobileNetV2 and ShuffleNet). Handcrafted methods are preceded by
a filtering-based pre-processing step to improve MRI image quality before applying the extractors. The pre-
trained CNN models are adapted by adding a global average pooling (GAP) layer without fine-tuning the net-
work parameters. For the classification step, we employed three classifiers: support vector machine (SVM), k-
nearest neighbors (KNN) and decision trees (DT). These classifiers are used to distinguish between Alzheimer’s
disease (AD) and normal cases (cognitively normal, CN) classes from MRI images. Our results are compared
with those presented in related works.

Our major contributions in this paper are summarized as
− We explored two approaches for feature extraction from MRI images: the handcrafted approach and the

transfer learning (TL) approach.
− We utilized three classifiers—SVM, KNN, and DT—to classify AD and CN subjects, enabling us to identify

the optimal combination of feature extractor and classifier.
− We used three publicly available databases containing MRI images via the Kaggle platform.
− To assess the generalization ability of each extractor-classifier combination, we applied k-fold cross-validation.

The remainder of the paper is organized as follows. Section 2 reviews related work in the field of AD
detection from MRI images. Section 3 details the proposed methodology, outlining the various steps involved.
In section 4, we present the experimental setup and results, followed by a discussion comparing our findings
with state-of-the-art methods. Finally, section 5 concludes the paper.

2. RELATED WORK
Automatic detection and diagnosis of Alzheimer’s disease (AD) are major challenges in the field of

neural medical research. In this context, several researchers have presented various models and approaches
for the automatic detection and diagnosis of AD from MRI images. Li and Yang [15] used MRI images from
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the Alzheimer’s disease neuroimaging initiative (ADNI) database for two types of subjects, AD and CN. Three
machine learning-based classifiers were employed to predict Alzheimer’s disease and identify the regions of the
brain affected by this disease. A comparison study was conducted among the three distinct classifiers: SVM,
VGGNet and ResNet. The accuracy values for the AD to CN data classification across the three classifiers
were: support vector machine (90%), VGGNet (95%), and ResNet (95%). Zhang et al. [16] extracted two
types of features from MRI images: gray matter (GM) volume and lateralization index (LI), using hypothesis
testing. The study included four data classes from the ADNI database: CN, early mild cognitive impairment
(EMCI), late mild cognitive impairment (LMCI) and AD. Subsequently, several classification algorithms were
employed, including random forest (RF), decision tree (DT), k-nearest neighbor (KNN) and support vector ma-
chine (SVM) with linear, RBF and polynomial kernel. For two groups of subjects—AD group versus CN—the
SVM classifier with a linear kernel and the KNN classifier achieved the highest accuracies of 98, 09% and
98, 25%, respectively.

Arafa et al. [17] applied deep learning (DL) to detect and diagnose AD using two convolutional
neural network models: a custom end-to-end CNN developed from scratch and a fine-tuned VGG16 model.
The implementation involved three stages: dataset preparation with image size reduction, data augmentation,
and model training/testing with an 80%/20% split. Evaluation on a subset of MRI images from the ADNI
database revealed that the custom CNN achieved an accuracy of 99.95%, while the VGG16 model attained
97.44%. Naz et al. [18] employed machine learning (ML) and deep learning to detect and identify Alzheimer’s
disease. They proposed a system of CNN-based architectures using features extracted from MRI images of
the entire ADNI database, which contains three different class types (AD, CN and mild cognitive impairment
(MCI)). The classification was performed out by the SVM classifier on the three classes distributed as follows:
AD/MCI, CN/MCI, and AD/CN. The results reached an accuracy of 99.27% (MCI/AD), 98.89% (AD/CN),
and 97.06% (MCI/CN). The CNN-based approach was also utilised by Yousry AbdulAzeem et al. [19] on the
ADNI database containing two-class MRI images AD and CN. A data augmentation technique was employed
to increase the number of data. Feature extraction and classification were performed using an end-to-end CNN,
with cross-validation allocating 85% of the data for training, 10% for validation, and 5% for testing. The
achieved classification accuracy for AD/CN was 97.80%.

Ismail et al. [20] implemented a multimodal image fusion method to merge MRI images with a
modular set of image pre-processing procedures. This method was applied to the ADNI database, which
includes two classes: AD and CN. To extract relevant and generic information from the fused images, a 3D
CNN network was utilized. The characteristics of both classes were classified using three classifiers: CNN,
SVM and RF. The AD/CN classification yielded accuarcy values of 98.21%, 91%, and 85.90%, respectively.
Rangaraju et al. proposed in their research paper [21] an end-to-end CNN model for the automatic identification
of Alzheimer’s disease using 3D brain MRI data. The model comprises three main components: First, a patch
convolutional neural network (PCNN) is employed to extract discriminative features from each MRI patch.
Second, an octave convolution layer is utilized to reduce spatial redundancy and expand the receptive field
for capturing detailed brain structure. Finally, a dual attention-aware convolutional classifier further refines
the feature representation to enhance the accuracy of AD detection. It is worth noting that the MRI data is
pre-processed, which includes image scaling and denoising. The designed end-to-end CNN model achieved
a test accuracy of 99.87% for categorizing dementia stages using the publicly available Alzheimer’s disease
neuroimaging initiative (ADNI) dataset.

Referring to Table 1, it is evident that there are still improvements to be made in the automation process
for detecting Alzheimer’s disease from MRI images. In previous works based on DL methods, convolutional
neural network models have often been trained or fine-tuned on small image databases. However, convolutional
neural networks require large datasets (big data) for effective learning. To address this limitation, we propose
to use pre-trained CNN models as feature extractors without readjusting the network parameters. Moreover,
our work distinguishes itself through the application of Gabor filters as feature extractors on MRI images for
AD detection. To our knowledge, this is the first study to investigate this approach, thereby opening new
perspectives in the field of biomedical image analysis. Furthermore, another significant motivation behind our
work is to propose a straightforward and accessible procedure that circumvents the use of complex methods,
such as those based on multimodal or 3D MRI analysis. By simplifying the tools employed, we aim to enhance
detection efficiency while ensuring greater applicability in clinical settings where resources and time are often
constrained.
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Table 1. Summary of the state-of-the-art for AD detection
Authors and Feature extractor Database Classification Cross-validation Accuracy (%)
references method

Li and Yang CNN AD-CN (ADNI) SVM(TL) 85% training and 90
(2021) [15] dataset 3D-VGGNet (end to end) 15% test 95

3D-ResNet (end to end) 95
Zhang et al. GM AD-CN-MCI (ADNI) SVM 10-fold 98.09
(2022) [16] LI dataset RF 94.60

GM+LI DT 91.10
KNN 98.25

Arafa et al. CNN AD-CN (ADNI) CNN (end to end) 80% training and 99.95
(2023) [17] dataset VGG16 (end to end) 20% test 97.44
Naz. et al. AlexNet(conv5) AD-CN-MCI SVM 80% training, 91.38
(2021) [18] VGG16(FC6) (ADNI) dataset KNN 10% validation 98.89

VGG19(FC6) and 10% test 99.27
AbdulAzeem CNN AD-CN (ADNI) CNN (end to end) 95% training 97.80

et al. dataset and 5% test
(2021) [19]
Ismail et al. CNN AD-CN (ADNI) SVM 10-fold 91.00
(2022) [20] dataset RF 85.90

3D CNN (end to end) 98.21
Rangaraju et al. CNN EMCI-LMCI- 3D-CNN (end to end) Holdout 99.87

(2024) [21] MCI-AD-CN
(ADNI) dataset

3. DESCRIPTION OF THE METHODOLOGY
In this paper, we propose an enhanced automated procedure for AD detection using machine learning

techniques applied to an MRI image dataset, aiming to achieve high-performance results in the AD detection.
The proposed procedure can be divided into two key phases: feature extraction and classification. We explored
two approaches for feature extraction from MRI images: the handcrafted approach and the transfer learning
(TL) approach [22].

As illustrated in Figure 1, the procedure is divided into two distinct pipelines, each corresponding
to the implementation of one of the considered approaches for feature extraction. The handcrafted approach
involves a two-step process. First, the input image is filtered to improve its contrast. Subsequently, feature
extraction transforms the filtered images into feature vectors. We explored three handcrafted methods: HOG,
LBP, and Gabor methods. On the other hand, the transfer learning approach uses pre-trained CNN models as
feature extractors.

Finally, a classification process is performed on the feature vectors using three different classifiers:
SVM, KNN, and decision tree (DT). In the following paragraphs, a brief overview of all these methods is
provided, preceded by a short description of the MRI image datasets used in this work.

Figure 1. Block diagram of the proposed framework

3.1. Description of the databases
The first crucial stage in a machine learning process is data collection. The quality of the training data

is essential to ensure the accuracy of predictions made by machine learning systems. In this work, we have used
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three publicly available databases from the Kaggle platform, each one with an unbalanced distribution of MRI
images. The first database contains 5121 images of 176× 208 pixels, divided into four classes: NonDemented,
MildDemented, ModerateDemented, and VeryMildDemented. The second database consists of 6163 images of
dimensions 369×369×3 divided into three categories: NonDemented, MildDemented, and VeryMildDemented.
The third database, known as the Alzheimer’s disease neuroimaging initiative (ADNI) entails 5154 images of
varying sizes (170× 256, 166× 256, and 160× 260 pixels) and comprises three classes: Alzheimer’s disease
(AD), mild cognitive impairment (MCI) and cognitively normal (CN). To evaluate our proposed method, we
have combined some categories from the three databases into two distinct labels, Alzheimer’s disease (AD) and
normal cases (cognitively normal, CN) for AD detection. The selection given includes 400 images from each
database divided into 200 AD images and 200 CN images. Thus, the final dataset consists of 1200 grayscale
2D MRI images with two distinct categories: 600 AD images and 600 CN ones. All images are resized to
(256× 256) pixels to ensure size uniformity, as reported in Table 2.

Table 2. Distribution of selected MRI images from the three databases.
Database and format Labeling # of images Size of images

Database 1 (MRI images) format JPEG Cognitively Normal (CN) 200
256× 256

Alzheimer’s disease (AD) 200

Database 2 (MRI images) format JPEG Cognitively Normal (CN) 200
256× 256

Alzheimer’s disease (AD) 200
Database 3 (MRI images) ADNI format PNG Cognitively Normal (CN) 200

256× 256
Alzheimer’s disease (AD) 200

3.2. Feature extraction
The feature extraction phase in an automated Alzheimer’s disease (AD) detection procedure using

MRI images is crucial, as the quality of the features directly impacts the performance of the process. This
phase can be considered as a transformation process from a 2D image to a 1D vector, where each element
of the vector represents a relevant feature of the image. In proposed work, we have explored several feature
extraction methods belonging to two categories of approaches, as previously mentioned. This represents the
first suggested main contribution. The following paragraphs present the methods used in this phase.

3.2.1. Handcrafted extractors
The handcrafted methods are applied following a pre-processing step that involves filtering. This step

is crucial for improving the initial quality of MRI images by reducing noise and enhancing contrast which
allows the handcrafted feature extraction methods to be more effective. In our work, we have opted to use a
median filter [23], [24] on the MRI images due to its balance of simplicity and effectiveness. The median filter
is particularly well-suited for medical imaging as it effectively removes noise while preserving edges, which are
vital for maintaining the integrity of the image structures. The enhanced image quality directly contributes to
the robustness and accuracy of the entire detection procedure based on handcrafted feature extraction methods.
Subsequently, we have applied handcrafted feature extraction methods. In this work, we have utilized well-
known methods, namely the histogram of oriented gradients (HOG) [25], local binary patterns (LPB) [26] [27],
and Gabor filters [28], which are introduced next.
a. Histogram of oriented gradients

The histogram of oriented gradients (HOG) [25] is a feature extraction operator used for object detec-
tion in images. The HOG descriptor quantifies and represents the textures and shapes present in an image. For
each pixel, the intensity gradient is calculated in both horizontal and vertical directions, as shown by (1):

Gx = ∂I(x,y)
∂x

Gy = ∂I(x,y)
∂y

(1)

Where I is the image, Gx is the gradient in the horizontal (x) direction and Gy is the gradient in the vertical
(y) direction. In practice, these gradients can be approximated using convolution filters such as the Sobel filter
[29].

These gradients are then converted into magnitudes and orientations. The image is divided into small
cells, typically 8×8 pixels. For each cell, a histogram of gradient orientations is constructed with the gradients
weighted by their magnitudes, the cells are then grouped into blocks (e.g., 2 × 2 cells). The histograms of the
cells within a block are normalized which helps to make the descriptor less sensitive to changes in lighting.
Finally, the normalized histograms of all the blocks are concatenated to form a feature vector representing the
entire image.
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b. Local binary patterns
The LBP method is a technique for extracting texture features from images [26], [27]. Its fundamental

principle involves comparing pixel intensities. For each pixel in an image, the method compares the intensity of
the pixel with that of its neighboring pixels, typically within a 3× 3 neighborhood in Figure 2. If a neighbor’s
intensity is greater than or equal to the central pixel’s intensity, a 1 is assigned; otherwise, a 0 is assigned. This
binary comparison is performed for each neighbor, thereby forming a binary pattern around the central pixel.

Figure 2. An example of calculating an LBP value

These binary bits are then combined to form an 8-bit binary number in the case of a 3× 3 pixel neigh-
borhood. This number is converted into a decimal value, representing a unique LBP pattern. To construct the
image’s feature vector, a histogram of the occurrences of these decimal values is constructed. This histogram
represents the texture patterns present in the image and serves as features of the original image.
c. Gabor filters

Gabor filters is a technique employed as feature extraction method in image processing to extract
textural and structural information from images. The process of designing a feature vector using Gabor filters
involves several key steps [28], [30]. First, Gabor filters are constructed using sinusoidal functions modulated
by a Gaussian function, as described by (2) and (3):

G(x, y;σ, θ) = exp

(
−x2 + y2

2σ2

)
· cos

(
2π

x

λ

)
(2)

with:

x = m cos θ + n sin θ
y = −m sin θ + n cos θ

(3)

where m and n are the coordinates of a pixel in the image with size (M,N). The parameter σ controls the
scale of the filter, while θ controls its orientation. For each combination of scale σ and orientation θ, we obtain
a distinct Gabor filter. Next, each Gabor filter is applied to the image, producing a filtered image, which results
in a series of feature maps corresponding to each filter in Figure 3.

The feature vector can then be constructed in various ways. One approach is to calculate global
statistics, such as the mean or variance of the filter responses. Alternatively, the responses can be directly
concatenated, or histograms of the responses can be created to capture their distribution. Finally, the feature
vector is often normalized to ensure that the values are comparable and to minimize the effects of scale or
lighting variations. This feature vector is subsequently used for classification tasks.

Figure 3. An example of a Gabor filter response with 5 scales and 8 orientations for an MRI image
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3.2.2. CNN extractors
For the transfer learning method, we have used nine distinct pre-trained CNN models: AlexNet,

ResNet101, DenseNet201, GoogLeNet, SqueezeNet, InceptionV3, VGG16, MobileNetV2, and ShuffleNet
[31]. These models were pre-trained on the extensive ImageNet database [32] which comprises over 14 mil-
lion images distributed across 1,000 different classes. Each CNN model consists of two main parts: a feature
extraction part and a classification part as shown in Figure 4.

Figure 4. An example of CNN network architecture

The feature extraction part is composed of a series of blocks. Each block includes convolutional layers
that extract hierarchical features from the input images, as well as pooling layers to reduce dimensionality. The
feature maps produced by these blocks are then processed by a nonlinear activation function, such as the
rectified linear unit (ReLU) [12], [33]. The classification part consists of fully connected (FC) layers with the
last FC layer employing the Softmax function for classification.

In our work, we have utilized the nine pre-trained models mentioned earlier within the transfer learning
(TL) framework to efficiently extract feature vectors from MRI images. This approach avoids the need to design
new CNN models from scratch which requires a large database and significant computational resources. We
have carefully adapted these models to enhance performance and to reduce both the cost and training time
required. Specifically, based on prior work [33], we identified and removed the classification component and
the final pooling layer from the feature extraction part of each pre-trained CNN model. As a result, at the output
of the remaining feature extraction section, we obtained a set of feature maps {Si} with dimensions M and N ,
which depend on the characteristics of the last convolutional layer for each pre-trained CNN model. Flattening
this set of features to create a feature vector results in a very high dimensionality. Therefore, to enhance
classification performance, it was necessary to reduce the dimensionality of the feature vectors by incorporating
a global average pooling layer into the retained part of each pre-trained CNN model. This operation flattens
and reduces the size of the feature vectors in a single step as shown in Figure 5. The global average pooling
(GAP) is described as (4):

xi =

∑M
m

∑N
n Si(m,n)

M ×N
; i ∈ [1, p] (4)

Where (M,N) are the size of the last p feature maps {Si} from the retained part. These results in a feature
vector X of dimension p for each image, regardless of its size. This method does not require retraining or fine-
tuning the pre-trained CNN models. The obtained feature vectors are then used in the subsequent procedure
for detecting Alzheimer’s disease (AD) from MRI images.

Figure 5. Pre-trained models used for feature extraction
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3.3. Classification
Detection of Alzheimer’s disease from MRI images is regarded as a binary classification problem

(positive class: AD and negative class: CN). Classification can be based on either supervised or unsupervised
methods. When we have labeled data (labeled observations), we are addressing a supervised classification
problem, as is the case in this work. Conversely, if the data is unlabeled, it would represent an unsupervised
classification scenario. In our study, we employed three supervised classification methods for binary classifi-
cation: support vector machine (SVM) [34], [35], k-nearest neighbors (KNN) [36] and decision tree (DT) [37]
which are briefly introduced in the following paragraphs.
a. Support vector machine (SVM) classifier

A support vector machine (SVM) is a machine learning algorithm introduced by Vladimir Vapnik [34].
SVM aims to find an optimal linear hyperplane separating two classes. Its principle is based on maximizing
the margin between the data distributions of the two classes in the feature space (the distance between the
two classes) while minimizing classification errors [38]. For an SVM classifier, we consider a training set
D consisting of N examples (Xi, yi) with Xi ∈ Rp belonging to one of the two classes and labeled by
yi ∈ {+1,−1}. The separating hyperplane H can be defined by equation (2), where w ∈ Rp and b ∈ R
represent the parameters of the separating hyperplane.

H : ⟨w,Xi⟩+ b (5)

The values of w and b are determined through learning by minimizing the criterion J (eq. 3.3.) under the
following constraints:

min
w,b

J = 1
2w

2

under the constraints:
yi (⟨w,Xi⟩+ b) ⩾ 1 ; i = 1 · · ·N

(6)

b. The k-nearest neighbor (KNN) classifier

The k-nearest neighbor (KNN) classifier is a non-parametric supervised learning algorithm that clas-
sifies data based on the proximity of points in the feature space. Initially developed by Evelyn Fix and Joseph
Hodges in 1951, and later extended by Thomas Cover in 1967, KNN operates by identifying the k nearest
neighbors of a data point to be classified, using a distance measure, often Euclidean distance. KNN then as-
signs the majority class among these neighbors to the data point in question. The method consists of two main
steps: determining the nearest neighbors and assigning the class based on these neighbors.

c. Decision tree (DT) classifier

The decision tree is a supervised learning algorithm used for classification and is often applied to
image feature vectors. It builds models in a tree structure where each node represents a test on a feature of
the input. The branches of the tree correspond to possible values of the attributes, while the leaves denote the
final decisions or predicted classes. The decision tree recursively partitions the data space based on evaluation
criteria to select the best splitting features, employing heuristics to prevent overfitting. This model effectively
classifies data by constructing a series of tests based on numerical attributes compared to predefined thresholds.

4. EXPERIMENTATION AND RESULTS
The objective of this work is to develop an automated procedure for detecting Alzheimer’s disease

from MRI images. As previously mentioned, this procedure consists of two main phases: feature extraction
and classification. To design and evaluate it, we followed a series of steps outlined in the flowchart shown in
Figure 6. The source code for this methodology was developed within the MATLAB environment.

First, we constructed an MRI image database by merging three distinct datasets, as detailed in section
3.1. These publicly available datasets from Kaggle differ in image quality, dimensions and classes. Images
originally in color were converted to grayscale, and then resized to 256× 256 pixels to ensure uniformity. We
randomly selected 400 images from each dataset, with 200 images per category (AD and CN), ensuring that the
final merged dataset maintains high quality and is free from notable artifacts. This process resulted in a database
comprising 1200 MRI images, evenly divided into two classes: 600 images in the AD class (positive class) and
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600 images in the CN class (negative class). We then applied feature extraction methods to all the images in
this database, utilizing three handcrafted methods as well as nine pre-trained CNN models, each serving as a
feature extractor as shown in Figure 6. The handcrafted methods are preceded by a pre-processing step based
on filtering to enhance the quality of the MRI image, while the pre-trained CNN models have only been adapted
by the addition of a global average pooling (GAP) layer without any fine-tuning network parameters.

Figure 6. Detailed synoptic of the different stages of the work process

Next, we examined all possible combinations of feature vectors by pairing them with three classifiers:
SVM, KNN, and DT. This resulted in 36 different combinations, enabling a thorough evaluation of the imple-
mented procedure. To assess the performance of these combinations, and consequently the overall procedure
for detecting AD from MRI images, we have employed several metrics, which will be detailed in the following
subsection.

4.1. Performance metrics and validation
To objectively evaluate the performance of our procedure, we use several key metrics: accuracy

(ACC), sensitivity (SEN), and specificity (SPE). These metrics are calculated by comparing our predicted
outputs with the actual data. The classification results are categorized into four types: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) [38]. The metrics are defined as follows:

− Accuracy (ACC) is calculated by the formula:

ACC =
TP + TN

TP + TN + FP + FN
(7)

− Sensitivity (SEN) is given by:

Sensitivity =
TP

TP + FN
(8)

− Specificity (SPE) is computed using:

Enhanced automated Alzheimer’s disease detection from MRI images by ... (Touati Menad)
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Specificity =
TN

TN + FP
(9)

These metrics are employed to assess the performance of the SVM, KNN, and DT classifiers. In this study, we
estimate these performance metrics using the k-fold cross-validation method [33] [37]. The dataset is divided
into k subsets. We train the model on k−1 of these subsets while testing (i.e., evaluating performance metrics)
on the remaining subset. This process is repeated k times, with each subset serving as the test set once. The
global accuracy (GA) is the average of the performance metrics obtained across all k iterations, calculated as
(10):

GA =
1

k

k∑
i=1

ACCi (10)

Similarly, the average sensitivity (Gsen) and average specificity (Gspe) are computed across all k iterations,
calculated as (11):

Gsen =
1

k

k∑
i=1

SENi (11)

Gspe =
1

k

k∑
i=1

SPEi (12)

We apply ten-fold cross-validation (k = 10) to evaluate our proposed procedure.

4.2. Results and analysis
In this subsection, we present the main results obtained through our procedure for detecting Alzheimer’s

disease from MRI images. It is important to emphasize that the primary objective of this procedure is to distin-
guish between images representing Alzheimer’s disease (AD) and those of normal cases (cognitively normal,
CN). Table 3, along with Figures 7 to 9, provides a comparison of classification performance using various
combinations of feature extractors and classifiers.

Among the handcrafted features used, Gabor features combined with the SVM classifier achieved
the best overall performance, with an accuracy (GA) of 99.92%, sensitivity (Gsen) of 99.83%, and specificity
(Gspe) of 100%. Although LBP and HOG features also exhibited good performance, their results were slightly
lower compared to the other features. LBP and HOG feature extraction methods are particularly effective at
capturing local texture patterns; however, this may not be sufficient to address the complexity of MRI images
in the context of AD detection.

Among the pre-trained CNN models tested, ResNet101 demonstrated exceptional performance, achiev-
ing a 100% accuracy when combined with the SVM classifier. Other models, such as DenseNet201, SqueezeNet,
and AlexNet, also exhibited excellent performance, with accuracy rates exceeding 99% in most cases, partic-
ularly when paired with the SVM classifier. In contrast, features extracted using the VGG16 model showed
relatively weaker performance in comparison. Specifically, the VGG16 model combined with the DT classifier
produced modest results, with global accuracy, global sensitivity, and global specificity all rated at 91.33%.

Regarding the classifiers, the SVM proved to be the most effective when combined with various feature
extractors, including pre-trained CNN models, achieving the highest scores in overall accuracy, sensitivity, and
specificity. The KNN classifier also demonstrated solid performance, though it was slightly less effective than
the SVM. However, KNN outperformed SVM when used with Gabor and DenseNet201 feature extractors. In
contrast, the DT classifier showed more variable results, with accuracy rates sometimes falling below 95%,
making it less effective compared to the SVM and KNN classifiers.

4.3. Comparison with state-of-the-art methods
In this subsection, we compare the performance of our enhanced procedure with that of related works

for Alzheimer’s disease detection. It is crucial to note that providing comparisons to other related works is
challenging due to the differing protocols and image databases used for assessment. To ensure a fair compar-
ison, we focused on studies that closely align with our context, specifically those employing a single imaging
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modality (MRI) and utilizing the ADNI database. Additionally, we have focused on binary classification per-
formance results (AD vs. CN) to maintain consistency. While our results are promising, further research,
including statistical analysis, may be required to validate these findings and to explore more effective methods
for enhancing robustness and accuracy in Alzheimer’s disease detection.

Table 3. Comparison of classification performance for the proposed framework
Extractors Classifiers Classification performance (%)

GA Gsen Gspe

GABOR SVM 99.92 99.83 100
KNN 99.75 100 99.5
DT 94.33 94 94.67

LBP SVM 91.42 92.5 90.33
KNN 99 98.83 99.17
DT 91.33 92.83 89.83

HOG SVM 95.25 92.83 97.67
KNN 99.17 99.33 99
DT 91.5 91.17 91.83

Alexnet SVM 99.83 99.83 99.83
KNN 98.92 98.33 99.5
DT 96.25 96 96.5

Googlenet SVM 99.17 99.17 99.17
KNN 98.58 98.5 98.67
DT 94.25 93 95.5

Resnet101 SVM 100 100 100
KNN 99.58 99.83 99.33
DT 94.58 95 94.17

Squeezenet SVM 99.75 99.83 99.67
KNN 99.33 99.67 99
DT 95.58 95.17 96

Densenet201 SVM 99.75 99.83 99.67
KNN 99.58 99.5 99.67
DT 97.08 97.17 97

Inceptionv3 SVM 99.58 99.5 99.67
KNN 99.33 99.67 99
DT 93.67 94 93.33

VGG16 SVM 98.83 98.83 98.83
KNN 98.25 98 98.5
DT 91.33 91.33 91.33

Mobilenetv2 SVM 99.67 99.67 99.67
KNN 99.33 99.86 98.83
DT 92.67 91.83 93.5

Shufflenet SVM 99.58 99.5 99.67
KNN 99.08 99.17 99
DT 93.83 94.67 93

Figure 7. Global accuracy for each classifier combined with various feature extractors
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Figure 8. Global sensitivity for each classifier combined with various feature extractors

Figure 9. Global specificity for each classifier combined with various feature extractors

According to Table 4, our method competes with, and even surpasses, the results obtained from other
techniques in classifying AD and CN subjects. The ResNet101 model, combined with the SVM classifier,
achieved a perfect accuracy of 100%. This is mainly attributed to the adaptation of the pretrained CNN model
for the feature extraction task. This adaptation enables the extraction of relevant feature vectors, allowing
the SVM algorithm to find an optimal separator between the two classes by maximizing the margin in the
feature space. On the other hand, the method based on Gabor filter feature extraction exhibited impressive
performance. This is mainly because the Gabor filter extraction involves varying scales and orientations of the
filter (see subsection 3.2.1.), which allows for the extraction of significant features from MRI images. These
features enable the SVM classifier to effectively distinguish between the two classes.

Table 4. Comparison of our proposed framework to other state-of-the-art techniques
Authors Extractors Classifiers Accuracy %

Qi Li et al. [15] CNN ResNet (end to end) 95
SVM 90

Arafa et al. [17] CNN VGG16 (end to end) 97.44
AbdulAzeem et al. [19] CNN CNN (end-to-end) 97.5

SVM 91.00
Ismail et al. [20] CNN RF 85.90

3D-CNN (end to end) 98.21
Rangaraju et al. [21] CNN 3D-CNN (end to end) 99.87
Proposed framework Gabor SVM 99.83

CNN(ResNet101) SVM 100

5. CONCLUSION
In this study, we developed an automated framework for detecting Alzheimer’s disease (AD) from

MRI images by examining various feature extraction techniques and classification methods. Our approach
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involves investigating handcrafted methods and pre-trained CNNs as feature extractors with different classifiers
to achieve robust detection performance. Among the handcrafted features, Gabor features combined with
the SVM classifier reached the highest performance, achieving an accuracy of 99.92%. This indicates that
the Gabor filter-based method is particularly well-suited for extracting texture information from MRI images
relevant to AD detection. On the other hand, the ResNet101 pretrained CNN model paired with SVM achieved
a perfect accuracy of 100%, showcasing its efficiency in feature extraction from MRI images. This success
is primarily due to the effectiveness of the proposed adaptation of the pre-trained CNN model for feature
extraction, which allows to provide highly relevant feature vectors. These vectors empower the SVM algorithm
to identify an optimal separator between the two classes in the feature space by maximizing the margin between
them. Moreover, the SVM classifier consistently demonstrated the highest overall accuracy across all feature
extractors when compared to the KNN and DT classifiers.

Our approach exhibits competitive performance relative to related methods for Alzheimer’s disease
detection, highlighting the robustness of our framework and its potential in the field of AD detection from MRI
images. While our results are promising, additional research considering comprehensive statistical analysis is
necessary to validate these findings and ensure their reliability. Furthermore, the dataset used in this study,
while substantial, may not fully capture the diversity of MRI images across various populations and stages of
Alzheimer’s disease. To enhance generalizability, future work should aim to expand the dataset to include a
broader range of images representing different demographics and disease stages.

Furthermore, while handcrafted features such as Gabor features have shown strong performance, re-
lying solely on these methods may restrict the system’s adaptability to novel or unseen MRI data. Future
research should investigate advanced or hybrid feature extraction techniques that integrate both handcrafted
methods and transfer learning with CNN models to improve adaptability and performance. Finally, efforts
should concentrate on refining feature extraction methods and improving computational efficiency to further
advance automated Alzheimer’s detection from MRI images.
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