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 Car accident rates have increased in recent years, resulting in losses in 

human lives, properties, and other financial costs. An embedded machine 

learning-based system is developed to address this critical issue. The system 

can monitor road conditions, detect driving patterns, and identify aggressive 

driving behaviors. The system is based on neural networks trained on a 

comprehensive dataset of driving events, driving styles, and road conditions. 

The system effectively detects potential risks and helps mitigate the 

frequency and impact of accidents. The primary goal is to ensure the safety 

of drivers and vehicles. Collecting data involved gathering information on 

three key road events: normal street and normal drive, speed bumps, circular 

yellow speed bumps, and three aggressive driving actions: sudden start, 

sudden stop, and sudden entry. The gathered data is processed and analyzed 

using a machine learning system designed for limited power and memory 

devices. The developed system resulted in 91.9% accuracy, 93.6% precision, 

and 92% recall. The achieved inference time on an Arduino Nano 33 BLE 

Sense with a 32-bit CPU running at 64 MHz is 34 ms and requires 2.6 kB 

peak RAM and 139.9 kB program flash memory, making it suitable for 

resource-constrained embedded systems. 
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1. INTRODUCTION 

The World Health Organization (WHO) reported in 2022 that approximately 1.3 million human 

lives are lost every year due to road traffic crashes. From 20 to 50 million others are injured, and among 

those are many who suffer from disabilities. This is in addition to significant economic losses [1]. These 

accidents are often caused by reckless driving, speeding, and unsafe road conditions. Artificial intelligence 

(AI) is becoming a primary contributor to advancements in different industries, including healthcare, 

education, technology, entertainment, military, and economics. It has made products and services more 

efficient and effective, enabling the analysis of large amounts of data quickly and accurately. As it advances, 

AI is expected to help protect and save human lives in many domains. One crucial domain is human safety on 

the roads. Many research has concentrated on utilizing embedded smartphone sensors and other methods in 

systems that are capable of predicting driving styles [2]–[6], driver behaviors [7]–[24], driving events [25], 

[26] and road conditions [27], [28]. Such systems are meant for safety or other applications that bring extra 

features and autonomy to vehicles [29]–[31]. The literature reports several works in machine learning for 

detecting and analyzing driving safety and road conditions.  

https://creativecommons.org/licenses/by-sa/4.0/
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The research presented by Al-Refai et al. [32] proposed machine learning algorithms to classify 

different characteristics of a car environment and driving styles using in-car data collected from the vehicle's 

controller area network (CAN) and Ethernet. The data was collected, labeled, and used to grade road surface 

conditions if it is (soft, even, or there are holes in it), Traffic levels (light, moderate, heavy), and the style of 

driving if it is (normal or aggressive) [32]. These systems need specialized sensors like cameras, radars, and 

ultrasonic sensors to gather information about the road. This study demonstrates that by utilizing machine 

learning techniques, it is possible to analyze and classify the data transmitted via vehicle networks and apply 

it to various applications. Using traditional machine learning (ML) algorithms to process in-vehicle data, they 

used random forests, decision trees, and support vector machine (SVM) and tested them. Random forests had 

the best accuracy, between 92% and 95%, and the system was able to classify data conditions and driving 

states with high accuracy. This research did not work on making a lightweight ML model appropriate for 

embedded systems or edge devices. 

Boucetta et al. [33] proposed a system capable of monitoring the road situation and reporting the 

presence of cracks to help drivers avoid them and enable the responsible authorities to control and fix such 

roads. The system uses a convolutional neural network (CNN) to classify and detect road surface images, 

which has been found to be more effective because of its ability to implicitly extract features. A set of 3D 

pavement photos is used to train and test the CNN model. The system can classify road surfaces with an 

accuracy of over 95%. The system also includes a way to calculate the severity indicators for each road 

segment and build a weighted road graph for the road based on the riskiness indexes. The data is processed 

using a "Hadoop-based framework with HBase and MapReduce" [33]. The presented work was not intended 

nor aware of resource-limited embedded systems. 

In the research by Mohammadnazar et al. [34] big data based on location and ML based on high-

resolution data from connected vehicles are used to classify driving styles. The classification can be used to 

customize the driver aid system and many other things like fuel consumption, the value of mobility, and 

crash risks. The study uses basic safety messages (BSMs) generated by vehicles to classify driving styles 

using ML methods [34]. The study analyzes temporal driving volatility to measure risky driving behavior to 

categorize driving types based on vehicle kinematics, such as measured velocities and vertical/horizontal 

accelerations. The study applies K-means and K-medoid methods to group drivers into aggressive, normal, 

and calm. It finds that driving styles and due different roadway types have varied threshold levels of 

aggressive and calm driving. The study revealed that the highest rate of aggressive driving was recorded on 

commercial streets, as opposed to highways and residential streets [34].  

The research done by Ziakopoulos et al. [35] presents a framework for aggregating and modeling 

high-resolution driving data from smartphone sensors to identify locations with harsh driving events, like 

harsh braking events (HBs). The framework uses locative models overall, the geographically weighted 

Poisson regression, Bayesian conditional autoregressive models (CAR), and variations of extreme gradient 

boosting (XGBoost) to look at the factors that contribute to extreme driving incidents on urban roads and to 

assess how well these models predict future events in a new test region for urban networks. The models are 

tested for accuracy and transferability for HBs predictions. According to the research, neighborhood 

complexity and gradient are adversely connected with HBs, while segment length and adjusted pass count 

positively correlate with HBs. The spatial predictions achieved more than 87% accuracy for HB frequencies 

per road segment when the results of all four methods were averaged. These findings are significant in traffic 

safety management, and there is a possibility of extending the framework to other hashed event types [35]. 

In the work done by Campo et al. [36], a driving style classification method was proposed. The 

method focused on attaining comfort driving. An advanced system to assist drivers and automated vehicles in 

saving fuel, providing driver comfort, and maintaining public safety was presented. The system is based on a 

hybrid method of machine learning and data obtained from a car equipped with sensors. The hybrid ML 

approach uses an unsupervised clustering method and an extreme learning machine (ELM).  

None of the surveyed research was appropriate for embedded systems and edge devices with limited 

processing power, random access memory (RAM), and program memory. Utilizing artificial intelligence (AI) 

to develop a system suitable to run on edge devices and detect aggressive driving behaviors and road 

conditions in real time would benefit humanity and save more lives on roads. In this work, data is collected 

from different sensors and used to train ML algorithms to predict aggressive driving patterns and detect road 

conditions. The trained ML system is neural network (NN) based. The dataset is collected utilizing the 

embedded sensors of a smartphone. The developed system is optimized for edge devices, ensuring efficient 

execution and real-time predictions. The system is trained through machine learning techniques and deployed 

on a battery-powered, resource-constrained hand-held device, specifically a smartphone. It was also deployed 

on a microcontroller unit (MCU) based evaluation board, namely the Arduino Nano 33 BLE Sense featuring 

a 32-bit ARM® Cortex®-M4 CPU running at 64 MHz. The system can learn and detect different types of 

driving modes. It can learn about and detect unsafe road condition anomalies. The system can be trained and 
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operated regardless of the device's orientation in the vehicle. And most importantly, the system running on an 

edge device ensures that it shall continue to operate uninterrupted with the loss of internet connectivity. 

In summary, the work presented in this paper solves the problem of designing lightweight machine-

learning models appropriate for deployment on embedded and edge computing systems. Embedded devices 

suffer from limited processing power and limited program and data memory. Such limitations make the work 

presented in the literature inappropriate for deployment on these resource-constrained devices. Thus, 

requiring high-performance devices with internet connectivity to enable communication with the edge 

devices. The model presented in this paper is lightweight and appropriate for deployment on embedded and 

edge devices. This guarantees fault-free and uninterruptible operation on edge devices in the presence of 

internet and network connection losses. In Section 2, the method of designing the proposed ML model is 

presented. Section 3 covers the implementation and experimentation work. The achieved results and a 

discussion are presented in Section 4. Finally, Section 5 concludes the paper. 

 

 

2. METHOD 

Implementing and training machine learning techniques on a battery-powered, resource-constrained 

hand-held device such as a smartphone or a microcontroller can be challenging. This is because training ML 

models typically requires a lot of data and power. In this work, the system must handle the computational 

demands of training a machine-learning model without consuming too much power or memory. Using edge 

devices such as smartphones or MCUs with limited memory and low power to collect data and train is thus 

not possible. So, tools that run on high-performance machines or the cloud shall be used to train the neural 

network based on the data collected by the embedded sensors of the edge device. Then, the trained NN is 

deployed back to the edge device. The edge device is a resource-constrained battery-powered hand-held 

device such as a smartphone or MCU. In this work, a smartphone and an embedded computer were used. 

Deploying the system on a smartphone or an embedded device implies that the software should be optimized 

to function efficiently within the limited resources available. The limitations are in terms of computational 

power, memory, and energy efficiency. These constraints may arise due to the device's small size or the need 

to maximize battery life.  

The system shall be able to learn and detect different driving modes. This can allow an assessment 

of the driver's driving style, including whether driving is aggressive, moderate, or non-aggressive by the 

trained model. To this, the data from the accelerometer, speed, and gyroscope sensors can be used to train an 

NN that shall be able to detect the different types of driving modes. Furthermore, it shall be able to learn 

about and detect unsafe road condition anomalies. This could include things like a street bump, yellow street 

bumps, or other hazards that could cause an accident or unsafe driving conditions for the model that has been 

trained. The mentioned road anomalies can be detected after training an NN by utilizing the data collected 

from the accelerometer sensors.  

The data is collected from the embedded smartphone sensors. The sensor's data is then sent to the 

training cloud through various methods, including file upload or directly from the edge device. The ML 

models of the system are developed and deployed on the edge device using a cloud-based platform called 

Edge Impulse [37]. This tool provides an interface for collecting data and labeling it. It also enables training 

the ML models and deploying them on resource-constrained devices with limited memory. Edge Impulse is 

designed to work with supervised models. It also supports uploading datasets to train the ML models based 

on NNs. After the data is collected using the embedded sensors of an edge device (smartphone), it is 

uploaded to the Edge Impulse cloud live through a data collection web-based API. This can be done through 

a file upload as well. In the Edge Impulse cloud environment, the data shall be used to train the ML model. 

The sensor data is split into a training dataset (70%) and a test dataset (30%). Afterward, features are 

extracted using a feature extraction model, as seen in the following subsections. Then, the data is classified 

using a classification model that is trained using the labeled data. The model learns from the provided data to 

recognize and classify new, unseen data instances based on the learned patterns during training. In this work, 

the classifier is NN-based with multiple numbers of layers. 

The block diagram in Figure 1 illustrates the overall system design process. It starts by collecting 

data from the X, Y, and Z accelerometer sensors and labeling the data based on the desired outputs. Split the 

data into training and testing subsets, allocating 70% to training and the remaining to testing. Edge Impulse 

automates feature extraction by analyzing and extracting relevant features from the uploaded data, capturing 

patterns and characteristics crucial for effective neural network training. Configure the neural network using 

the platform's provided architectures and settings. Initiate training using labeled data, allowing Edge Impulse 

to handle the process based on the selected network architecture. Evaluate the model's performance using 

testing data, leveraging Edge Impulse's evaluation metrics and tools to ensure accurate event classification. 

Finally, deploy the model upon satisfaction with its performance. Following is a detailed explanation of each 

step. 
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Figure 1. Block diagram for overall system design process 

 

 

2.1.  Data acquisition  

In this work, we utilize the built-in sensors of a mobile phone to gather data for monitoring 

aggressive driving and road events. Specifically, we collect data from a three-axis accelerometer comprising 

three individual accelerometers, each measuring acceleration along a different axis: x-axis, y-axis, and z-axis. 

X, Y, and Z refer to the three axes of movement in the three-dimensional space. The X-axis represents the 

movement of the device from left to right, the Y-axis represents the movement from top to bottom, and the  

Z-axis represents the movement back and forth. Which can help detect sudden changes in acceleration or 

deceleration, sharp turns, and even road events.  

 

2.2.  Development of the neural network 

The NN is developed in Edge Impulse and is constructed from several layers, each with a group of 

neurons. The layers are the Input layer with a total of 33 features for each axis: nine Inner layers and an 

Output layer of 6 classes. The quantity of internal layers and neurons went through stochastic tuning. Based 

on the results in section 4, the model selection with an acceptable size and inference time with the highest 

accuracy, precision, and recall was adapted (Model No. 3), shown in Figure 2. 

 

 

 
 

Figure 2. Developed neural network 
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The following features are extracted from the raw sample readings of the three accelerometer 

sensors: 

− Root mean square (RMS) value: The RMS value represents the square root of the average of the squared 

accelerometer values within the window for each axis. It provides a measure of the overall magnitude or 

intensity of the acceleration in that axis during the specified time window. 

− Three peak amplitudes from the power spectral density (PSD): The PSD is obtained by applying a Fourier 

transform to the accelerometer data. The three peak amplitudes refer to the highest power values observed 

at three distinct frequency locations within the window for each axis. These peaks indicate significant 

vibration or frequency components present in the signal. 

− Three peak frequency locations from the power spectral density: The three peak frequency locations 

correspond to the frequencies at which the three peak amplitudes occur in the PSD for each axis. These 

frequency values represent the dominant frequencies or vibration frequencies observed in the 

accelerometer signal. 

− Four summed bins from the PSD: The PSD is typically divided into frequency bins, representing specific 

ranges or segments of frequencies. The four summed bins refer to the accumulation or sum of power 

values across four selected frequency bins within the PSD for each axis. 

A total of 33 features for each axis. These features include the RMS value, three peak amplitudes 

from the PSD, three peak frequency locations from the PSD, and four summed bins from the PSD. These 

extracted values form the input data for the NN. 

 

 

3. IMPLEMENTATION & EXPERIMENTATION 

The data collection process took place under dry weather conditions all around Amman, utilizing a 

Toyota Corolla 2019 as the vehicle of choice. Each data sample was captured at a consistent interval of  

5 seconds. For a single event, 150 samples were collected, resulting in a cumulative dataset of 900 samples. 

The data collection process required a time investment of 32 hours, covering a distance of 492 kilometers, to 

gather the complete set of 900 samples. The project entailed collecting six distinct events, each 

corresponding to a specific label, as illustrated in Table 1. 

 

 

Table 1. Events labeling representations 
Events Label Represent 

Normal Drive 

Normal Street 

A This pertained to driving under typical conditions on a regular street, with speeds ranging 

from 30-60 km\hour. 

Speed Bumps 
 

B Speed bumps are raised structures on roads or parking lots that are used to slow down 
vehicles and improve safety. The data is collected at multiple different speeds: low, medium, 

and high. 

Circular Speed 
Bumps 

C Circular speed bumps are employed to calm traffic near pavement markings, slow zones, 
traffic signals, and urban streets with frequent pedestrian and vehicle interaction. These small 

bumps are circular in shape, and the data is collected at multiple different speeds, low, 

medium, and high. 
Sudden Start D Sudden start (takeoff) in drive refers to a situation where a vehicle accelerates abruptly or 

unexpectedly when the driver shifts the gear to the "drive" mode. The maximum speed limit 

of 40 was reached during data collection. 
Sudden Stop E A sudden stop refers to a sudden and unexpected decrease in the speed of a vehicle, typically 

caused by the driver hitting the brakes abruptly or coming to an unexpected obstacle, the 

maximum speed limit of 40 before the stop was reached during data collection. 
Sudden Detour F A sudden detour refers to a situation where a driver is forced to abruptly change direction or 

take a different route due to unexpected circumstances; speed was not reduced during data 

collection except in certain circumstances, such as when the route encountered an incline or a 
descent with a gradient of approximately 10 degrees during 5 sec. 

 

 

3.1. Normal drive and normal street 

Assuming that "x", "y", and "z" sensors refer to the accelerometer sensors used in a vehicle, in a 

normal driving situation on a normal street, the sensors would typically detect little to no change in the 

orientation or movement of the vehicle in the x, y, and z axes. This is because the vehicle is moving at a 

relatively steady speed, and no sudden changes or forces are acting on the vehicle. 

 

3.2.  Speed bumps 

Speed bumps are raised sections on roads or parking lots designed to slow down. They are typically 

made of asphalt or rubber and are used as traffic calming measures to reduce vehicle speeds in areas where 

safety is a concern. Speed bumps are commonly found in residential areas, school zones, and areas with 
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heavy pedestrian traffic. When drivers encounter speed bumps, they must slow down significantly to safely 

navigate over the raised surface. Speed bumps aim to increase safety by discouraging speeding and 

improving overall road safety for pedestrians and other road users. The sensors detect a sudden increase in 

acceleration as the vehicle approaches the speed bump, followed by a brief period of weightlessness as the 

vehicle goes over the bump, and then a sudden decrease in acceleration as the vehicle leaves the speed bump. 

The sensors may also detect vibrations or oscillations in the vehicle's movement as it passes over the bump, 

which can impact the vehicle's stability and affect the performance of its various control systems, such as the 

suspension, steering, and braking systems. 

 

3.3.  Circular yellow speed bumps 

Yellow circular speed bumps are a type of traffic-calming methods designed to slow down vehicles 

and enhance road safety. They are circular in shape and painted in a bright yellow color for increased 

visibility and attention. The main difference between yellow circular speed bumps and regular speed bumps 

is their appearance and purpose. While both types of speed bumps reduce vehicle speeds, yellow circular 

speed bumps are specifically designed to draw attention and provide a clear visual indication to drivers. As 

the vehicle approaches a circular speed bump, the sensors will detect a slight increase in acceleration in the x 

and y axes as the vehicle starts to climb the bump. As the vehicle reaches the top of the bump, there will be a 

brief moment of weightlessness, during which the sensors may detect changes in acceleration in all three 

axes. As the vehicle starts to descend the bump, the sensors will detect a decrease in acceleration in the x and 

y axes, followed by an increase in acceleration as the vehicle returns to the level road surface. The circular 

speed bump may also affect the vehicle's suspension and other control systems, causing vibrations and 

oscillations that can impact the vehicle's stability and performance. 

 

3.4.  Sudden start 

A sudden start describes a specific driving behavior where a vehicle abruptly accelerates from a 

stationary position. This behavior is often characterized by a sudden and forceful movement of the vehicle, 

causing passengers to lurch backward and potentially destabilize the vehicle. If a vehicle experiences a 

sudden start, such as when the driver rapidly accelerates the vehicle from a stop, the x, y, and z sensors in the 

vehicle will detect changes in the vehicle's movement and orientation. Specifically, the sensors will detect a 

sudden increase in acceleration in the x and y axes as the vehicle starts to move forward. Depending on the 

severity of the sudden start, the sensors may also detect changes in the z-axis, such as if the vehicle's front 

end lifts up due to the force of the acceleration.  

 

3.5.  Sudden stop 

A sudden stop refers to an abrupt and unexpected cessation of vehicle motion, where the vehicle 

suddenly stops from its previous speed or movement. This type of driving behavior is characterized by rapid 

deceleration, often accompanied by the screeching of tires, passengers being jerked forward, or the vehicle 

abruptly coming to rest. If a vehicle experiences a sudden stop, such as when the driver suddenly applies the 

brakes, the x, y, and z sensors in the vehicle will detect changes in the vehicle's movement and orientation. 

Specifically, the sensors will detect a sudden decrease in acceleration in the x and y axes as the vehicle 

decelerates. Depending on the severity of the sudden stop, the sensors may also detect changes in the z-axis, 

such as if the vehicle's front-end dips down due to the force of the braking. The sudden stop may also cause 

vibrations and oscillations in the vehicle's movement, which can impact the vehicle's stability and 

performance. 

 

3.6.  Sudden entry 

A sudden entry refers to a sharp and unexpected change in the direction of a vehicle's movement. It 

may occur when a driver needs to take immediate action to avoid an obstacle or make a quick turn. During a 

sudden detour, the vehicle's speed may change abruptly, and the driver needs to maneuver the vehicle quickly 

to avoid any collisions or accidents. When a vehicle makes a sudden detour, it can affect the x, y, and z 

sensors in different ways depending on the direction and magnitude of the turn. The x-sensor, which 

measures acceleration in the lateral direction, will detect a sudden change in acceleration when the vehicle 

turns, causing a spike in the x-axis readings. The y sensor, which measures acceleration in the vertical 

direction, may also detect a sudden change in acceleration if the turn involves going up or down a slope or 

over a bump. The z sensor, which measures acceleration in the longitudinal direction, may detect a sudden 

deceleration if the vehicle has to slow down or stop abruptly to detour. Figure 3 shows the accelerometer data 

for different driving conditions. 
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Figure 3. Accelerometer data for the different driving events, (a) normal drive, (b) speed bumps, (c) circular 

speed bumps, (d) sudden start, (e) sudden stop, and (f) sudden detour  

 

 

4. RESULTS AND DISCUSSION 

A data collection application called SensorLog [38] was installed on a smartphone and used to 

collect data from the accelerometer sensors of the phone while driving. The app records the relevant 

accelerometer data in files manually labeled afterward. The labeled data is then imported to the Edge Impulse 

machine learning platform to perform tasks such as data preprocessing, feature extraction, model training, 

and deployment. Edge Impulse provides the necessary tools and infrastructure for training and deploying 

machine learning models in the cloud. 

In this work, we used smartphones of type iPhone 8 and iPhone 13 Pro for data collection and then 

deployment of the trained model within the Edge Impulse platform. The phones were securely mounted in a 

car using a phone holder. We collected various data types, particularly emphasizing accelerometer readings 

through the devices. We trained a machine-learning model using the gathered information after extracting 33 

features from the X, Y, and Z accelerometers. Subsequently, the trained model was deployed back onto the 

same smartphones, enabling the seamless implementation of machine learning capabilities directly on the 

devices. The trained model was also deployed on an Arduino Nano 33 BLE Sense with a 32-bit ARM® 

Cortex®-M4 CPU running at 64 MHz. The evaluation board weighs 5 grams, is 18 mm wide and 45 mm 

long, operates at 3.3 V, and has 1 MB program flash memory and 256 kB SRAM. The board has the 

accelerometer sensors built in. 

The developed ML model can anticipate six driving events, encompassing normal driving on normal 

streets, driving over speed bumps, and circular yellow speed bumps. Additionally, the model detects 

aggressive driving patterns characterized by sudden starts, sudden stops, and sharp turns. The model has 

achieved excellent performance results, as shown next.  

The evaluation metrics that are used to evaluate the performance of the ML model are Accuracy, 

precision, recall, F1-score, loss, inference time, peak RAM, and Flash usage. These metrics serve as widely 

adopted benchmarks for assessing the performance of machine learning models. Following is a brief 

overview of each of the metrics. 

− Accuracy: Refers to the proportion of correct predictions made by the model out of all predictions. It is 

used to measure how well the model can classify input data into the correct categories. A high accuracy 

score indicates that the model can correctly predict the output categories with a high degree of accuracy. 

Accuracy (Acc) can be presented as: 

 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 

where TP is the number of true positive predictions, TN is the number of true negative predictions, FP is 

the number of false positive predictions, and FN is the number of false negative predictions. 

− Precision: The ratio of true positive predictions to the total number of positive predictions made by the 

model. It represents the model's ability to correctly identify positive samples out of all the samples it 
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predicted as positive. A high precision indicates a low number of false positives, meaning that the model 

is accurate when predicting a positive sample. Precision (P) can be presented as: 
 

P =
TP

TP+FP
  (2) 

 

− Recall: Also known as sensitivity or true positive rate, it is the ratio of true positive predictions to the 

total number of actual positive samples in the dataset. It represents the model's ability to identify all 

positive samples correctly without missing any. A high recall indicates that the model effectively captures 

positive samples and minimizes false negatives. Recall (R) can be presented as: 
 

R =
TP

TP+FN
  (3) 

 

− F1-score: Measure of a model's accuracy that combines both precision and recall into a single value. It is 

the harmonic mean of precision and recall. The F1-score provides a balanced assessment of a model's 

performance by considering both the ability to correctly identify positive samples (recall) and the ability 

to minimize false positives (precision). It ranges from 0 to 1, 1 being the best possible score. 

Mathematically, the F1-score can be defined as: 
 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (4) 

 

− Loss: Measure of how well the model is able to fit the training data. It represents the difference between 

the predicted output and the actual output. A lower loss value indicates that the model is able to fit the 

training data more closely and is, therefore, more accurate in its predictions.  

− Inference time: Refers to the time taken by the machine learning model to make a prediction or inference 

after receiving input data. This time is an important metric for evaluating the efficiency and real-time 

performance of the model. It is particularly relevant for use cases where quick responses are necessary, 

such as in autonomous vehicles or real-time anomaly detection. 

− Peak RAM usage: Refers to the maximum amount of random-access memory (RAM) consumed by the 

machine learning model during its operation. This metric is important for evaluating the memory 

efficiency of the model and ensuring that it does not exceed the memory limitations of the device on 

which it will be deployed. It is particularly relevant for use cases where resources are limited, such as in 

embedded systems or internet of things (IoT) devices. 

− Flash usage: Refers to the amount of non-volatile program memory (usually flash memory) consumed by 

the machine learning model. This metric is important for evaluating the storage efficiency of the model 

and ensuring that it does not exceed the storage limitations of the device on which it will be deployed. It 

is particularly relevant for use cases with limited storage space, such as in microcontrollers or embedded 

systems. 

Several NN models were implemented and evaluated according to the mentioned performance 

evaluation metrics. All models had an Input layer with a total of 33 features for each accelerometer axis. A 

number of Inner layers (from 7 to 12) and an Output layer of 6 classes. The quantity of internal layers and 

neurons went through stochastic tuning. Eight different models of acceptable performance are presented in 

Table 2. 

Based on the results presented in Table 2, it is evident that the number of layers, number of neurons, 

inference time, peak RAM usage, flash usage, accuracy, and loss are all significant factors in determining the 

final model. The selection of the best model is contingent upon the user's specific requirements. In our 

particular case, we opted for the model with the highest accuracy, precision, recall, and F1-score scores, 

which is model no. 3. The Precision, Recall, and F1-Score illustrated in Table 2 are the averages for all six 

driving event predictions. The details for each of the events for the deployed model (model 3) are shown in 

Figure 4. As illustrated in Figure 4, it is observed that F (Sudden Detour) has the highest precision, indicating 

accurate positive predictions and a low false positive rate. Also, A (Normal Drive, Normal Street) 

demonstrated the lowest precision, suggesting a higher number of false positives in the predictions made for 

this event. Regarding recall, D (Sudden Start) stands out with the highest value, implying a successful 

capture of a larger proportion of actual positive instances. In contrast, C (Circular Speed Bumps) displays the 

lowest recall, indicating that a significant number of positive instances for this event are being missed or 

classified incorrectly. Examining the F1-scores, D (Sudden Start) shows the highest value, indicating a 

balanced performance with high precision and recall. On the other hand, A (Normal Drive, Normal Street) 

and C (Circular Speed Bumps) exhibit the lowest F1-score, suggesting an imbalance between precision and 

recall, potentially leading to a large number of false positives or false negatives. 
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Table 2. Different results for different neural networks 
Model 

Number 
Number 

of 

layers 

Total 
number of 

Neurons 

Inference 
time (ms)* 

Peak RAM 
usage 

(KBytes) 

Flash 
usage 

(KBytes) 

Accuracy 
(%) 

Loss 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

1 12 825 27 2.7 112.6 89 71 88.7 89 88.7 

2 12 980 35 2.7 140.3 90.1 60 90 90.5 89.8 
3 11 970 34 2.6 139.9 91.9 63 91.7 92 91.8 

4 10 650 17 2.3 76.5 89.8 60 89.8 89.7 89.7 

5 11 660 17 2.5 76.9 89.7 70 89.3 89.7 89.5 
6 11 630 16 2.5 70.6 88.1 56 88 88.2 87.8 

7 9 570 15 2.2 66.6 89.0 47 88.8 89.2 88.8 

8 7 250 6 1.6 30.6 88.1 47 87.8 88 88.2 

* The achieved inference time of the system is on the Arduino Nano 33 BLE Sense with a 32-bit ARM® Cortex®-M4 CPU 

running at 64 MHz. 

 

 

 
 

Figure 4. Model performance measurements  

 

 

Overall, this graph provides valuable insights into precision, recall, and F1-score for the six events, 

facilitating a nuanced assessment of the classification model's performance. By considering these metrics, a 

better understanding of the model's strengths and weaknesses can be gained. This enables informed decisions 

for potential improvements or adjustments.  

A confusion matrix summarizing the predictions made by the classification model and displaying 

the number of true positives, true negatives, false positives, and false negatives for each class is illustrated in 

Table 3. The highlighted cells indicate the correspondence between each group's expected and actual labels; 

among the groups, D achieved the highest accuracy at 98.0%, indicating a strong performance in recognizing 

a sudden start. E followed with an accuracy of 95.9%, demonstrating proficiency in identifying sudden stops. 

F achieved an accuracy of 92.4% for recognizing sudden turns. The accuracy for normal driving and street 

conditions, represented by group A, was 90.9%. For bumps, the accuracy was 90.5%. However, the accuracy 

for yellow bumps was comparatively lower at 83.3%, incorrectly identifying them as normal bumps 7.6% of 

the time. It is believed that the results may become better if trained on larger datasets. 

In the confusion matrix, the row-wise values represent the distribution of predicted labels for each 

actual class. Thus, they always add up to 100% since they cover all possibilities for a given class. On the 

other hand, the column-wise values indicate the distribution of actual labels for each predicted class. The 

confusion matrix provides the actual class labels (rows) and the predicted class labels (columns), enabling 

evaluation from both angles and offering insights into the model's performance in classifying different 

classes and identifying potential biases or patterns in its predictions. 

When comparing the work proposed in this paper with all surveyed research in the literature, the 

authors could not find any machine learning-based work appropriate for resource-constrained embedded 

devices or edge devices. Being able to develop machine learning-based solutions that can be deployed to 

edge devices and perform efficiently with an acceptable amount of accuracy is crucial. One of the most 

important advantages is to keep the system running on the edge device when internet connectivity is lost. A 

machine learning solution that is appropriate for embedded systems and edge devices shall be able to fit in 
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the limited program memory of the embedded device. It shall not use more RAM than that available of the 

edge device. Finally, given the limited processing power of the embedded or edge device, it shall be able to 

perform the computation efficiently and deliver results in a timely manner. In the work presented in this 

paper, we have developed an ML-based model that has an inference time of 34 ms on an embedded system 

with a 32-bit CPU running at 64 MHz. The model requires only 2.6 kB peak RAM usage and 139.9 kB 

program flash memory, which makes it suitable for resource-limited embedded systems. It achieved an 

accuracy of 91.9%, precision of 93.6%, recall of 92%, and F1-score of 91.7%. 

 

 

Table 3. Confusion matrix 
Class A B C D E F 

A 90.90% 2.50% 3.40% 0.60% 2.20% 0.30% 

B 4.90% 90.50% 2.00% 0.90% 1.10% 0.60% 

C 6.70% 7.60% 83.30% 1.50% 0.30% 0.60% 
D 0.90% 0.30% 0.30% 98.00% 0.60% 0% 

E 1.20% 0% 0% 1.80% 95.90% 1.20% 

F 2.60% 0.90% 1.80% 1.80% 1.80% 92.40% 

 

 

5. CONCLUSION 

In this work, an embedded machine learning system that is capable of detecting road conditions and 

driving events was presented. The developed ML model was developed with attention to program and data 

memory needs and resource-constrained devices. Leveraging cloud-based training, the model achieved 

efficient training within a short time frame. The developed system features a 34 ms inference time on an 

embedded system with a 32-bit CPU running at 64 MHz. The model requires 2.6 kB peak RAM and  

139.9 kB program flash memory, which makes it suitable for resource-constrained embedded systems. The 

resulting model achieved an accuracy of 91.9%, precision of 93.6%, recall of 92%, and F1-score of 91.7%. 

The developed system can detect several road conditions and some driving events via a resource-constrained 

edge device. This lays the foundation for developing models with more road conditions and driving events 

trained with larger datasets for potential real-world applications to enhance road safety and save more lives. 

The presented system brings the power of uninterrupted operation on edge devices in case of network and 

internet disconnection or loss. 

 

Data Availability Statement  

The dataset generated during the current study is available from the authors on request. 

 

Executable Code Statement  

The developed executable model is available and can run on a smartphone by scanning the 

following QR code.  
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