
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 14, No. 4, August 2024, pp. 4471~4487 

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i4.pp4471-4487      4471  

 

Journal homepage: http://ijece.iaescore.com 

Cardiovascular disease risk factors prediction using deep 

learning convolutional neural networks 

 

 

Mohammad Almatari1, Belal Abuhaija2, Aladeen Alloubani3, Firas Haddad4, Ghaith M. Jaradat5, 

Yousef Qawqzeh6, Mutasem Khalil Alsmadi7, Fahad Ali Alghamdi7, Jehad Saad Alqurni8,  

Lena Alodat9, Linyinxue Dong10 

1Department of Physics, Faculty of Sciences, Al-Balqa Applied University, Al-Salt, Jordan 
2Department of Computer Science and Technology, Kean University, Wenzhou, China 

3Nursing Research Unit, King Hussein Cancer Center, Amman, Jordan 
4Department of General Courses, College of Applied Studies and Community Service, Imam Abdurrahman Bin Faisal University,  

Al-Dammam, Saudi Arabia 
5Faculty of Computer Sciences and Informatics, Amman Arab University, Amman, Jordan 

6College of Information Technology, University of Fujairah, Fujairah, United Arab Emirates 
7Department of Management Information Systems, College of Applied Studies and Community Service, Imam Abdulrahman Bin Faisal 

University, Dammam, Saudi Arabia 
8Department of Educational Technologies, College of Education, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia 

9Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, Australia 
10 Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics, Zhejiang Bioinformatics International Science and 

Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, China 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jan 29, 2024 

Revised Mar 21, 2024 

Accepted Apr 2, 2024 

 

 Heart disease remains a leading cause of mortality worldwide, prompting 

healthcare researchers to leverage analytical tools for comprehensive data 

analysis. This study focuses on exploring crucial parameters and employing 
deep learning (DL) techniques to enhance understanding and prediction of 

cardiovascular disease (CVD) risk factors. Utilizing SPSS and Weka tools, a 

cross-sectional and correlational design was employed to analyze extensive 

medical datasets. Binomial regression analysis revealed significant 

associations between age (𝑝 = 0.004) and body mass index (𝑝 = 0.002) with 

CVD development, highlighting their importance as risk factors. Leveraging 

Weka's DL algorithms, a predictive model was constructed to classify CVD 

causes. Particularly, convolutional neural networks (CNN) showcased 
remarkable accuracy, reaching 98.64%. The findings underscore the elevated 

risk of CVD among university students and employees in Saudi Arabia, 

emphasizing the need for heightened awareness and preventive measures, 

including dietary improvements and increased physical activity. This study 
underscores the importance of further research to enhance CVD risk 

perception among students and individuals in similar settings. 
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1. INTRODUCTION 

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) stand as the 

primary contributor to global mortality, responsible for 31% of all deaths worldwide and claiming over 75% 

of lives in developing nations. This percentage is particularly high in the Eastern Mediterranean Region, 

where CVDs are responsible for 54% of deaths. Risk factors for CVDs are categorized as controllable and 
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non-controllable. Controllable factors include obesity, blood pressure, sedentary lifestyle, smoking, 

dyslipidemia, diabetes, and hypertension [1]–[4]. Despite the critical need for accurate prediction of CVDs, 

identifying and monitoring CVD risk factors remains a significant challenge for cardiologists. The general 

population's prevalence of these risk factors can reach up to 50%. Identifying the specific risk factors 

contributing to an individual's CVD diagnosis, factors like age, blood sugar levels, and blood lipids 

contribute to the complexity of the condition. Traditional diagnostic methods, including blood tests, are often 

time-consuming and expensive [3], [4]. The integration of artificial intelligence (AI), comprising machine 

learning (ML) and deep learning (DL), into the medical field is rapidly gaining momentum for its prowess in 

analyzing, classifying, diagnosing, and predicting medical conditions [5]–[7]. In recent years, as the demand 

for robust dataset analysis has surged, AI algorithms, notably neural networks, have become increasingly 

prominent due to their capacity to grasp the intricacies of training data distributions and generalize this 

understanding to unseen data, crucial for effective classification and analysis of medical datasets [6], [7]. 

This study utilizes artificial intelligence algorithms to analyze, and anticipate CVD based on a curated dataset 

outlined in study [8]. 

To our knowledge, there has not been a comprehensive study utilizing deep learning AI algorithms 

and tools for predicting CVDs on real-world datasets. While there are notable efforts in this area, prior 

studies have predominantly relied on datasets sourced from KDDnuggets and UCI repository, such as those 

referenced by Martin-Isla et al. [9] for image classification, or conducted meta-analyses [10]–[12], which are 

not directly comparable to our research. Additionally, the majority of previous analyses were carried out 

using SPSS or similar tools. Consequently, our objective is to set a benchmark for future studies employing 

AI and its diverse predictors to enhance our understanding of the risk factors associated with CVDs. This 

paper will review how AI is used to predict risk factors for CVDs, discussing different machine and DL 

methods used for this purpose. Additionally, it will investigate the primary determinants of CVD risk factors 

and deliberate on the advantages and hurdles associated with employing AI within this domain. Additionally, 

recommendations for future research in this area will be provided. The current study focuses on analyzing 

key parameters and employs DL through convolutional neural networks (CNNs) to gain insights into and 

forecast the impact of each risk factor for CVDs. 

 

 

2. LITERATURE REVIEW 

Machine learning classification has been applied to identify several CVDs, revealing a significant 

increase in mortality rates among smokers [13]. Furthermore, Hsieh et al. [14] explored risk factors for CVD 

among university personnel. In their research carried out in Colombia, it was discovered that although 92% 

of students were at low risk of CVD, more than half of both university personnel demonstrated at least one 

risk factor. These factors included being overweight, leading sedentary lifestyles, or having hypertension. A 

study conducted by Güneş et al. [15] in Turkey aimed to assess the awareness of CVD risk factors among 

university students (𝑛 = 2450). The research revealed that students recognized smoking (58.7%), stress 

(71.8%), high cholesterol (72.3%), obesity (64.3%), diabetes (52.7%), physical inactivity (47.8%), 

hypertension (64.2%), and a family history of CVD (44.4%) as the primary risk factors for CVD disease. 

Interestingly, the findings indicated a tendency among men to overlook these risk factors. Despite this 

knowledge, there remains a notable gap in research concerning the prevalence and awareness of CVD disease 

risk factors among university students and staff, particularly in the Middle East. A review conducted by 

Damen et al. [3] analyzed 212 articles to identify predictive models for CVD disease risk factors in the 

general population. The majority of these prediction studies were carried out in Europe (𝑛 = 167, 46%) and 

focused on fatal and non-fatal coronary heart disease (𝑛 = 118, 33%), spanning over a period of more than 

ten years (𝑛 = 209, 58%). Commonly identified predictors included smoking, age, gender, blood pressure, 

blood cholesterol, diabetes, body mass index, and hypertension. 

In the realm of CVD, several studies have been conducted over the past two decades, leveraging 

Weka extensively for analyzing diverse datasets, particularly focusing on heart disease. Originating in 1988, 

the UCI ML repository initially provided four notable datasets dedicated to heart disease research. Various 

research endeavors have since explored a wide array of ML techniques aimed at predicting the likelihood of 

heart attacks among patients across different medical institutions. For instance, one study [13] deployed 

classifiers like k-nearest neighbor (with subpar accuracy) and random forest (yielding the highest accuracy at 

around 90%). Other research ventures extended beyond the heart disease dataset provided by the UCI 

repository. For instance, in [16], a convolutional neural network was utilized, achieving an accuracy of 82%, 

while [17] experimented with various ML algorithms. Additionally, studies [18], [19] employed conventional 

artificial neural networks, while [20] utilized genetic algorithms and recurrent fuzzy neural networks [21]. 

Some researchers focused on mitigating overfitting in predictive models through optimization metaheuristics, 

as evidenced in [22]. Several studies [22]–[34] share similarities with our research approach but utilize 
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different datasets and ML methods, with references to [35], [36]. Notably, none of the aforementioned 

studies utilized ML techniques in analyzing real-world datasets, instead focusing solely on those provided by 

the UCI repository. 

 

 

3. METHOD 

This section provides an overview of the design methodology employed in developing the DL4J 

predictor. It encompasses a discussion on the tailored neural network architecture optimized for the 

classification task. In addition, an elucidation of the rigorous dataset processing procedures undertaken, and a 

detailed exposition of the implementation specifics pertaining to DL4J. 

 

3.1.  Classification and Weka workbench 

ML operates as a supervised approach, relying on labeled datasets for predictions. In classification 

tasks, a training_subset consisting of pairs of arguments-outcomes is utilized to establish a model for such 

mapping. By assimilating these observations, the system anticipates future outcomes while minimizing 

errors. Among various techniques suitable for classifying structured data, artificial neural networks (ANNs) 

stand out, encompassing CNNs. This study exclusively concentrates on neural networks for consistency and 

equitable comparison, particularly while implementing DL techniques. 

Weka is widely recognized as a powerful free tool equipped with a wide array of procedures and 

tools tailored for data predictive modeling development. Its user-friendly graphical interface facilitates 

seamless access to all functionalities. In this study, Weka is harnessed to execute classification and clustering 

tasks through the integration of the DL4J library, which combines optimization and classification algorithms. 

 

3.2.  The DeepLearning4J (DL4J) model 

A neural network model must recognize patterns in a dataset to identify specific features of CVD 

disease instances such as hypertension and cholesterol. Convolutional neural network can detect certain 

features and extract significant attributes from a data group. DeepLearning4J (DL4J) typically uses a simple 

feedforward multilayer network (e.g., five layers), a fully connected type of CNN. Since the accuracy of the 

classification task is all that matters, then we utilize (in some of the models) a combination of deep CNNs 

with boosting strategy as implemented in study [27]. We realize the optimization algorithm named Adam, 

which is a gradient-based optimization algorithm of stochastic objective function of the first order which is 

based on adaptive estimates of lower-order moments. Hence, we are motivated to implement a DL4J that 

guarantees accuracy through effective parameter tuning and efficient training, while utilizing Adam for speed 

and robust performance. 

Incorporating CNN within DL4J addresses a common issue encountered by traditional neural 

networks, such as the multilayer perceptron, which relies on a single perceptron per input. When dealing with 

large datasets or multi-label class attributes, the multilayer perceptron struggles. However, CNN tackles this 

challenge by utilizing filters or wrappers based on convolutional operations. This allows CNN to analyze the 

impact of correlated coefficients, such as selected attributes, more effectively in datasets with strong 

associations, while building subsets based on instances. By passing the entire dataset through several filters, 

CNN generates feature subsets. These subsets are then subjected to an activation function to determine the 

presence of specific features at particular positions or correlations within the data. Incorporating additional 

filtering layers and creating more feature subsets can enhance performance, particularly as CNN architecture 

deepens. Pooling layers are employed to select the largest values from feature subsets and treat them as 

inputs for subsequent layers. Specifically, maximum pooling is utilized to identify outliers, ensuring that 

CNN accurately identifies features. 

Within the realm of CNNs, three essential layers play pivotal roles: pooling, convolutional, and fully 

connected layers. These layers are integral components of CNN architecture, working synergistically to 

process input data, extract meaningful features, and facilitate accurate predictions. The filter employed to 

select and assess a subset of features is a crucial parameter. Pooling layers, akin to convolutional layers, 

perform specific functions such as max-pooling, which selects the maximum value from a subset of filtered 

attributes, or average pooling, which computes the average value within the filtered subset. These layers are 

commonly utilized to reduce the network's dimensionality. Fully connected layers are positioned before the 

CNN's classification output and are utilized to normalize results prior to classification. In summary, CNNs 

can learn the following: i) in the progression of CNN layers, there is an evolution towards understanding 

more intricate patterns; ii) initially, the first layer grasps rudimentary features like correlations and 

significance; iii) as we move through the middle layers, the network delves into detecting subsets of 

attributes; and iv) finally, in the last layer, the network excels in identifying the most critical and evaluated 

subset of attributes, drawing from a range of diverse measurements. 
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The robustness and effectiveness of its fully connected architecture stem from its robust gradient 

flow, facilitated by implicit deep supervision, parameters, and computational efficiency achieved through 

strong connectivity. As the number of parameters increases, so does the complexity, resulting in a wider 

array of diverse features while still maintaining low complexity features. Therefore, in this study, DL4J is 

employed to classify seven CVD-related diseases, encompassing training, validation, and testing phases. The 

model is trained using a dataset meticulously curated by the authors, with significant features meticulously 

chosen. The values of the parameters that perform the best on the validation subset are subsequently utilized 

for testing purposes. The neural network architecture within the DL4J model comprises the following layers:  

− Convolutional layer: preprocessing and feature selection by applying convolution. 

− Dense layer: associate all units with all branches of the parent layer. It consists of a collection of 

DenseBlocks including transition layer (which performs convolution and pooling), classification layer, 

and dense block layers. It employs two main parameters, hasBias and hasLayerNorm which they activate 

bias parameters in the model and enable normalization on the layer respectively. 

− Subsampling layer: selects from groups of units in the parent layer using various strategies like averaging 

or selecting the maximum. 

− Batch normalization: normalizes activations of the parent layer within each batch. 

− LSTM: utilizes long short-term memory approach. 

− Global pooling layer: applies pooling across time for recurrent neural networks (RNNs) and pooling 

across sequences for CNNs. 

− Output layer: produces classification or regression outputs.  

Trimming down features can enhance a model's effectiveness. These selected predictor variables or 

features offer optimal predictive capabilities when modeling a dataset. Consequently, feature selection serves 

to prevent overfitting, decrease model complexity, and enhance interpretability. Figure 1 shows the generic 

DL4J-based prediction model. 

 

 

 
 

Figure 1. A generic DL4J -based prediction model for CVD risk factors 
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Figure 1 illustrates the workflow of the generic prediction model leveraging the DL4J framework. 

Initially, the dataset undergoes a 10-fold cross-validation (CV), dividing it into a 90% training set and a 10% 

testing set. Next, all attributes from the CVD dataset undergo correlation analysis, employing principal 

component analysis (PCA) to identify significant influencers of prediction model accuracy. Then, DL4J is 

applied to the training set, utilizing the identified correlated features. Finally, DL4J validates predictions 

using the testing set, assessing performance using various evaluation metrics such as accuracy, precision, 

recall, F-measure, ROC curve, and mean square error. 

Through careful experimental design, we established and utilized predetermined parameters and 

configurations, employing a 10-fold CV testing technique. The rationale behind selecting CV lies in its 

widespread use for evaluating predictive models. This method involves dividing the dataset into k folds, 

training models on all but one-fold (used as the test set), and repeating this process to build k distinct models. 

By averaging the performance of these models, an overall performance estimate is obtained, making CV the 

gold standard for assessing model performance. While it requires training multiple models, CV offers an 

objective and reliable evaluation, particularly when the problem is complex or ambiguous. In contrast, the 

training dataset technique is suitable for descriptive modeling with complete datasets, while the test set 

approach is more suitable for large datasets, neither of which applies to our experiment with 370 occurrences. 

Although the percentage split technique provides a quick overview, it may not be suitable for decision-

making. Therefore, CV is commonly used as the default method, offering a more accurate estimate of model 

performance, albeit not ideal for very large datasets. Overall, CV is preferred for its simplicity, providing less 

biased estimates compared to straightforward train/test splits. Understanding the data and its patterns is 

crucial before preprocessing or adjusting model parameters, ensuring informed decision-making throughout 

the analysis process and considering potential differences in significance. 

 

 

4. RESULTS AND DISCUSSION 

This study investigated the effects of a CNN model in predicting CVD risk factors. While earlier 

studies have generally explored the impact of DL techniques in classifying CVD whether existed or not, they 

have not explicitly addressed their influence on risk factors for a CVD case. We found that the risk factors 

(e.g., heart disease and blood pressure) correlates with CVD. The proposed method in this study tended to 

have an inordinately higher proportion of males with potentials of blood pressure and previously diagnosed 

heart disease as CVD cases. 

 

4.1.  Computational results 

In this segment, we delve into the foundational aspects of training and evaluating the predictive 

model, encompassing its experimental setup, outcomes, and dataset specifications. Our analysis was 

conducted using Weka version 3.9.4, a Java-based workbench renowned for its analytical capabilities. The 

subsequent sections delineate the training and testing setup, detail the parameter configurations of the 

predictive model, and expound on the integration of ML and DL techniques within the model framework. 

 

4.2.  Experimental settings 

Setting up the experiments are crucial for building the predictive model as well as for results 

comparisons and validation. Taking into account the specifications of the dataset and the architecture of DL-

based methods. Hence, several consecutive steps are considered in conducting the experiments: 

a. Dataset gathering comprises the aggregation of pertinent data presented in a tabulated structure. 

Following the identification of the problem, the compiled data undergoes formatting into a Weka-

compatible Arff dataset, with class attributes appropriately annotated for classification purposes. The 

efficacy of the model hinges on the volume and caliber of the dataset. This stage culminates in the tabular 

organization of data designated for model training. 

b. Data preprocessing involves the meticulous handling and preparation of data intended for training 

purposes. This encompasses the refinement and refinement of data through the elimination of 

redundancies, rectification of inaccuracies, treatment of missing values, standardization, and conversion 

of data formats. 

c. Attribute curation involves the deliberate selection of a subset of attributes deemed influential to the 

model's performance and precision.  

d. Selecting a model suitable for classification and regression tasks. 

e. We iteratively train the model to optimize its ability to make accurate predictions. 

f. To measure its objective performance and allows further tuning. 

g. Fine-tuning parameters, also known as hyperparameter tuning, including variables such as the number of 

training steps, learning rate, and initialization values, can potentially enhance the performance of the 

model. 
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h. Using a separate test dataset, with known class labels, to perform predictions and assess the model's 

performance in real-world scenarios. 

Our experimental methodology unfolded across three distinct analytical tiers, each contributing 

unique insights to our investigation. We initiated the process with predictive modeling using DL techniques, 

leveraging their advanced capabilities to discern intricate data patterns and anticipate outcomes. 

Transitioning to the Weka environment, we employed a range of machine learning algorithms for 

classification and regression tasks, uncovering deeper insights and uncovering patterns within the dataset. 

Finally, employing IBM-SPSS, we delved into descriptive statistical analyses, meticulously examining 

measures of central tendency, correlation coefficients, and attribute significance to gain a holistic 

understanding of the dataset's intricacies. Therefore, we proceeded to explore these measures further using 

the Weka workbench for both ML and DL model training. DL, a subset of ML employing advanced 

techniques such as neural networks, enhances the learning process more extensively. 

 

4.3.  Experimental datasets 

The datasets utilized in this study were obtained through a questionnaire, encompassing a total of 

370 participants. Among them, the majority were male, totaling 240 individuals, with approximately 294 

participants falling within the age range of 18 to 25, as detailed in Table 1. The dataset was divided into two 

subsets, namely training and testing, within the "Arff" Weka file, containing a total of 36 attributes, including 

7 class attributes. The training set was utilized to train the DL4J model for prediction purposes, while the test 

set served to evaluate the accuracy of these models using new data. As per experimental design, the training 

set was split into 70%, with the remaining 30% allocated to the test set. Table 2 provides a summary of labels 

and their corresponding counts for each class attribute. In comparison to well-known UCI heart disease 

datasets, our dataset comprises 76 attributes, which have been condensed to 14 significant attributes 

pertaining to a single class (e.g., heart disease). 

 

 

Table 1. Sociodemographic characteristics of the participants (𝑛 = 370) 
Characteristics Frequency Percentage 

Gender   

Male 240 64.9 

Female 130 35.1 

Total 370 100.0 

Age   

18 - 25 294 79.5 

26 - 40 27 7.3 

> 40 49 13.2 

Total 370 100.0 

Employment status 

Employed 

Unemployed 

Total 

 

76 

294 

370 

 

20.5 

79.5 

100.0 

Marital Status 

Single 

Married 

Total 

 

168 

202 

370 

 

45.4 

54.6 

100.0 

Nationality 

Saudi 

Non-Saudi 

Total 

 

304 

66 

370 

 

82.2 

17.8 

100.0 

 

 

In contrast, our dataset comprises 36 attributes, which have been condensed to a select set of 

significant attributes (2-5 attributes) associated with 7 classes, extending beyond heart disease diagnosis. 

Predicting a class becomes easier, quicker, and more precise when using a smaller set of attributes. With 

seven classes in our dataset, we can diagnose seven different CVDs related to heart disease. Moreover, our 

dataset contains no missing values, unlike the UCI heart disease datasets, simplifying processing and 

enhancing comprehension. Several significant attributes, such as age, gender, cholesterol, fasting blood 

sugar, and blood pressure, are shared between our dataset and the UCI datasets, enhancing the validity of our 

dataset. The dataset comprises numerical readings of CVD indexes and related diseases, including fasting 

blood sugar, low and high blood lipids, triglycerides, cholesterol, body mass index, blood pressure, 

demographics, and certain smoking and eating habits. These readings reveal distinct features of heart disease 

cases, notably associated with other features such as blood pressure and fasting blood sugar, well recognized 

by medical experts and therapists. 
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Table 2. Dataset class attributes and labels 
Class Label Count 

Heart disease (HD) Yes 112 

 No 258 

Blood pressure (BP) Yes 132 

 No 238 

Low blood lipids (LBL) Normal 237 

 BroadlineHigh 62 

 High 71 

High blood lipids (HBL) Normal 192 

 BroadlineHigh 86 

 High 92 

Triglyceride (Tri) Normal 190 

 BroadlineHigh 68 

 High 112 

Cholesterol (Cho) Normal 218 

 BroadlineHigh 42 

 High 110 

Fasting Blood Sugar (FBS) Excellent 233 

 Good 33 

 Acceptable 57 

 Poor 47 

 

 

4.4.  Experimental results 

Here, we summarize the obtained accuracy results of ML and DL predictive models. First, we have 

implemented several popular ML algorithms with the same experimental settings and configuration for the 

classification task, e.g., data preprocessing, testing mode, and attribute selection method. Then, we 

implemented a DL algorithm "DL4JMlpClassifier" in four different configurations to demonstrate its 

accuracy over other ML algorithms with different attribute selection methods and compare them against each 

other. The classification task in DL4J is carried out using a CNN approach, which entails at least three layers 

of nodes: input, hidden, and output layers. CNN is preferred for its supervised training process, employing a 

non-linear activation function and backpropagation. These features enhance the model's flexibility in defining 

relationships. In summary, the CNN algorithm operates as follows: 

a. Forward pass (input layer): Inputs are passed into the model, where each input undergoes convolution 

with various filters to produce the model's calculated output. 

b. Loss calculation (activation function/hidden layer): After processing a sample data (e.g., a record in a 

dataset), the model generates a predicted output. Subsequently, backpropagation computes the gradient of 

the loss concerning all learnable parameters in the model. 

c. Backward pass (output layer): During model training, backpropagation computes the loss gradient, and 

optimization techniques (e.g., Adam) update the weights based on the information gathered from 

backpropagation. 

In DL techniques, hyperparameters and setups are experimentally predetermined and applied, 

including the use of 10-fold CV test mode. The rationale for employing this testing mode, "CV", is outlined 

below to justify its suitability for our experiments. One of the techniques used for evaluating predictive 

models is CV, which involves splitting the dataset into k-folds. This method trains a model on all folds 

except one, which is held out as the test set. This process is repeated k times, with each fold taking turns as 

the test set. The average performance of all k models is then calculated. Although creating multiple models 

incurs a computational cost, CV is widely regarded as the gold standard for evaluating model performance. 

The technique of training on the entire dataset is primarily employed for creating descriptive models rather 

than predictive ones, aiding in a better understanding of the problem. This approach is facilitated by software 

such as IBM-SPSS. Conversely, using a separate test set is typically reserved for very large datasets, which is 

not applicable to our experiment with a dataset size of 370 instances. Percentage split techniques offer a 

quick performance assessment but may not be suitable for decision-making purposes due to their 

impracticality. Therefore, CV is the preferred option when there is uncertainty about the problem's 

description. It generally provides a more accurate performance estimate compared to other evaluation 

techniques. However, CV is not recommended for very large datasets. Common values for k in CV are 5 and 

10, depending on the dataset size. 

In summary, CV is widely used because it offers a straightforward approach and typically provides a 

less biased or optimistic estimate of model performance compared to other methods, such as a simple 

train/test split. Establishing the baseline accuracy of each class attribute using the ZeroR rule-based ML 

algorithm is essential as it serves as a benchmark for predictive model performance assessment. ZeroR 

typically predicts the most prevalent class attribute, for instance, by calculating the proportion of instances 

belonging to the majority class. For example, based on the observations from Table 3, in the case of heart 
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disease prediction, if 258 instances out of 370 belong to the heart disease class, the accuracy would be 

69.72%. This baseline accuracy serves as a reference point to evaluate the performance of predictive models. 

However, the true indicator of a highly accurate model, which avoids overfitting, is the receiver operating 

characteristic (ROC) area under the curve in Table 3. For instance, consider DL4JMlp-1, which achieves an 

accuracy of 96.75% and an ROC of 0.989 for the heart disease class. On the other hand, DL4JMlp-3, despite 

having a higher accuracy for the fasting blood sugar (FBS) classification, falls short in ROC (0.743) 

compared to DL4JMlp-1. Implementing ZeroR is valuable in comprehensive empirical studies, particularly 

when comparing results against software like SPSS. 

This observation may be attributed to the relatively small size of our dataset, where the attributes 

may not offer sufficient information. Hence, it is crucial to thoroughly understand the data and its patterns to 

support the baseline classifier (ZeroR) before preprocessing the data or fine-tuning a model's parameters. It is 

important to consider whether these small or large differences are likely to be significant, particularly in our 

case. For instance, in the case of the heart disease (HD) class, DL4JMlp-1 exhibits a small significance 

slightly larger than 1% compared to DL4JMlp-2, and relatively high significance compared to MLP (4%), 

and very high compared to the baseline accuracy (27%). This highlights the importance of scrutinizing 

differences and their potential significance in our analysis. 

 

 

Table 3. Predictive DL models for each class  
Model HD BP LBL HBL Tri Cho FBS 

ZeroR AC 69% 64% 64 51 51% 58% 62% 

RF AC 95% 72% 69% 42% 67% 54% 61% 

ROC* .97 .76 .93 .081 .90 .83 .68 

J48 AC 95 % 71% 69% 37% 65% 48% 60% 

ROC* .98 .80 .90 .12 .91 .72 .90 

MLP AC 94% 70 % 66% 38% 61% 51% 61% 

ROC* .96 .73 .75 .46 .70 .51 .73 

MLPBP AC 95% 74% 65% 45% 56% 48% 59% 

ROC* .98 .79 .75 .54 .67 .53 .72 

DL4JMlp-0 AC 95% 67% 67% 44% 65% 52% 59% 

ROC* .98 .72 .78 .50 .71 .54 .74 

DL4JMlp-1 AC 96% 68% 71% 45% 68% 54% 57% 

ROC* .98 .73 .80 .47 .74 .51 .71 

DL4JMlp-2 AC 95% 68% 66% 44% 67% 52% 62% 

ROC* .98 .73 .78 .46 .71 .54 .73 

DL4JMlp-3 AC 96% 72% 71% 61% 70% 55% 58% 

ROC* .98 .76 .80 .72 .73 .55 .72 

Notes: *Weighted average; MLP: Multilayer perceptron function-based classifier; MLPBP: Multilayer 

perceptron using backpropagation function-based classifier; DL4JMlp: Java version of DL MLP function-

based classifier. RF: Random Forest based decision tree; J48: Java version of the decision tree C4.5. 

 

 

Initially, we implemented default parameter settings of the predictive model DL4J, including 

training and testing mode. Table 4 presents the parameters settings for the well-known MLP and MLPBP 

classifiers, as well as four versions of the DL4JMlp. In addition, a fifth version named DL4JMlp-b is 

considered in the experiments as it presents the enhancement of the previous four versions in terms of 

parameters tuning. The accuracy, efficiency, and overall performance may improve by further investigating 

the optimization algorithm's impact by employing more advanced metaheuristics. Table 4 presents 

differences between the classification models. We compared our DL4J model with other traditional ML and 

DL models, which outperformed all other models. Our study suggests that higher heart disease and blood 

pressure levels indicate an imminent CVD case. In addition, those two risk factors are not associated with 

poor performance in DL4J as in the case of other traditional models. The proposed DL4J model may benefit 

from DenseNet, and search method without adversely influencing its accuracy. 

Table 5 and Figures 2 to 5 illustrate the accuracy of the top-performing classifier. The DL4JMlp-b 

model exemplifies them while concerning all 7 class attributes. Beyond the metrics outlined in Table 5, 

various other critical measures and rates are detailed as follows: 

a. Accuracy: This metric reflects the overall correctness of the classifier, indicating the percentage of test 

instances correctly and incorrectly classified. However, it has limitations such as lack of chance 

correction and insensitivity to class distribution, making the ROC Area a preferred measure. 

b. Matthews's correlation coefficient (MCC): MCC assesses the quality of binary classifications, considering 

true and false positives and negatives. It is a balanced measure suitable for classes of varying sizes. 

c. True positive rate (TP): TP denotes how often the model predicts "Yes" when the actual class is "Yes", 

representing correctly classified instances. 
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d. False positive rate (FP): FP indicates how often the model predicts "Yes" when the actual class is "No", 

representing incorrectly classified instances. 

e. Precision: it measures the accuracy of positive predictions, calculated as the ratio of correctly classified 

instances to the total instances predicted as positive. 

f. Error rate: it reveals the frequency of classifier errors if it always predicted the majority class. It serves as 

a baseline for performance comparison, particularly in numeric prediction tasks. 

g. Cohen's Kappa: it quantifies the classifier's performance relative to chance alone, providing a chance-

corrected agreement measure between classifications and true classes. 

h. Recall: akin to the true positive (TP) rate, it indicates the proportion of instances correctly classified as a 

specific class relative to the actual total instances in that class. 

i. F-measure (or F-score): it offers a balanced assessment of precision and recall, calculated as the weighted 

average of the two. It provides a combined measure of the model's ability to make precise predictions and 

retrieve relevant instances. 

 

 

Table 4. Hyperparameter settings and neural network configuration for DL4JMlp models  
Parameter MLP MLPBP DL4JMlp 

   0 1 2 3 b 

Activation fn. ApproxSigmoid Softplus Softmax 

#layers 3 

#inputs 35 

Hidden layers 18 36 

#outputs 2 

Learning rate 0.3 0.1 

Momentum 0.2 

Epoch 50 100 10 100 

Instance iterator Multilayer Conv. Recur. 

Bias updater - Sigmoid = 0.001 

Optimizer Steepest descent heuristic Stochastic gradient descent 

Updater - Adam Sigmoid 

Test mode Cross-validation = 10 folds 

Attribute selection - Csf PCA Wrapper Wrapper 

Search method - BestFirst Ranker Greedy Genetic 

DenseNet Activation fn. = Softmax  || Epochs = 90  || Learning rate = 0.1  || weight decay = .00004  ||  momentum = 0.9 

 

 

Table 5. Enhanced DL prediction model using Weka and its best selected subsets of attributes 
Class attribute Selected attributes DL4JMlp-b (accuracy) 

Heart disease 11 98.64% 

Blood pressure 11 92.97% 

Low blood lipids 10 81.89% 

High blood lipids 6 75.67% 

Triglyceride 6 72.97% 

Cholesterol 12 79.45% 

Fasting blood sugar 10 80.0% 

 

 

With a dataset comprising 370 instances, Table 3 indicates that all classifiers achieved highly 

accurate classifications. Notably, both DL4JMlp-1 and DL4JMlp-3 models, along with several others, 

attained the highest accuracy compared to the baseline accuracy across all classes. While some achieved 

excellent or acceptable accuracy, others demonstrated poorer performance. Notably, certain models exhibited 

signs of overfitting, such as MLP. The DL4JMlp models demonstrated stability without either overfitting or 

underfitting the data. Indicators of this stability include Kappa, precision, recall, F-measure, and the 

confusion matrix. These metrics collectively affirm the models' robustness and reliability in accurately 

classifying the dataset. 

The optimal experimental configurations for the best performing DL4JMlp-1, DL4JMlp-3, and 

DL4JMlp-b models are detailed in Table 5. These configurations consist of 36 hidden layers, a learning rate 

of 0.1, and a momentum of 0.2 for weight updates. The training process involves 100 epochs, with CV 

employed as the testing mode. Additionally, the models utilize either a convolutional or recursive instance 

iterator and employ the Softmax activation function. The LossMCXEN serves as the loss function, with a 

maximum number of epochs set between 5 and 30 for detecting improvements. Further enhancements 

include the use of a bias updater and attribute selector. These meticulously chosen configurations aim to 

optimize the models' performance in accurately classifying the dataset. Activation function, instance iterator, 

maximum epochs, number of epochs, and bias updater are significant improvements for the default model 

DL4JMlp-0 towards DL4JMlp-b. Even more significant improvement is contributed by the attribute selector, 
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e.g., wrapping subsets evaluation rather than classifying features subsets evaluation, and genetic algorithm 

search rather than best-first search method. A wrapper subset evaluator employs a genetic algorithm to 

estimate the accuracy of the learning scheme for a subset of features using CV. Utilizing a genetic algorithm 

involves navigating through a training data space to identify pertinent features. Inspired by the principles of 

natural evolution, this approach operates with a population of subsets. Through a generational process, 

potential subsets are generated utilizing crossover and mutation mechanisms. Subsequently, a selection 

mechanism is employed to choose the most optimal subsets, typically those with the highest rankings, to 

proceed with further analysis. 
 
 

 
 

Figure 2. CostCurve-HeartDisease 

 

 

 
 

Figure 3. Margin curve progression 
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Figure 4. ROC curve-HeartDisease 

 

 

 
 

Figure 5. Threshold and cost-benefit analysis–HeartDisease 

 

 

Generally, the NN for the heart disease class attribute has a subset of attributes selected by the 

classification attribute subset evaluator filter, where six possibly significant attributes are the model's inputs 

towards hidden layers (the size of the number of attributes plus the number of classes) configured into inputs 

towards the output layer with two labels. The DL4J model is highly accurate for some class attributes. DL4J 

models are clearly powerful, e.g., for the class Heart disease DL4JMlp-b model demonstrates that by the 

percentage of incorrectly classified instances (1.36%) and the smallest absolute mean error (0.0724) among 

all models presented in table 5 for the same class attribute. Figures 2 to 5 present the performance of the 

DL4J-Mlp-b model over the class attribute "heart disease". This class attribute is selected for presentation 

among seven others to summarize the performance and efficiency of the model. Figure 2 shows the cost 

curve of the model, where it represents the sigmoid function. The sigmoid is biased towards absolute one, 

which indicates a normal distribution of the data and a consistent performance. Figure 3 shows the margin 

curve for the model, where it represents the Epoch progression during the training process. 

Figure 4 displays the receiver operating characteristic (ROC) curve, showcasing the diagnostic 

capability of the model by varying the threshold on the class probability estimate in each instance. Weka 

adjusts these thresholds to yield appropriate distributions, ensuring reliable classifier performance. On the 
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other hand, Figure 5 provides a more detailed depiction of the ROC area, focusing on thresholds and cost-

benefit analysis. The ROC curve's independence from class distribution renders it particularly valuable for 

disease predictions, elucidating the trade-off between sensitivity and specificity. Notably, Figure 4 

demonstrates a discernible convergence of the curve towards the 90-degree diagonal of the ROC space, 

indicating the model's high accuracy. 

The ROC curve serves as a widely employed visualization tool, offering a comprehensive overview 

of a classifier's performance across various threshold levels. It is constructed by plotting the TP rate against 

the FPR while adjusting the classification threshold. Our endeavors have focused on refining the accuracy 

and overall performance of the predictive model. Table 5 showcases the superior classification accuracy 

achieved by the DL4JMlp-b model across all 7 class attributes, indicating enhancements made over the 

preceding DL4JMlp-3 model, including parameter tuning and other improvements. The enhancements 

primarily focused on implementing two key modifications: 

a. Utilizing an improved feature selection technique aimed at selecting attributes highly correlated with their 

respective classes, such as heart disease. This was accomplished by employing the WrapperSubsetEval as 

an attribute evaluator and utilizing the genetic algorithm as a search method. Additionally, a class 

balancing technique was implemented to address the skewed distribution of certain class attributes, like 

cholesterol and fasting blood sugar. This involved activating a cost matrix within the cost-sensitive 

classifier embedded within the DL4JMlp-b model, enabling the penalization of misclassified instances. 

b. Implementing an enhanced learning strategy to effectively manage bias, convergence, and mitigate 

overfitting. This entailed employing a Softmax activation function, utilizing 100 epochs for training, 

employing a recursive instance iterator, utilizing a sigmoid updater, and incorporating a non-improvement 

criterion every five epochs. These measures were implemented to ensure better control over the learning 

process and enhance the model's performance. 

The DL4JMlp-b model has showcased remarkable accuracy across all seven classes, outperforming 

previous classifiers detailed in Table 5. This notable improvement stems from a deliberate effort to 

encapsulate highly correlated features within subsets, a process guided by insights from medical 

professionals using IBM-SPSS. These carefully selected attributes, as outlined in Table 5, play a pivotal role 

in training, testing, and validating the DL model. By leveraging significant correlation coefficients with their 

respective class attributes, the model effectively learns to make precise predictions, particularly evident in 

cases such as heart disease. Consequently, the model achieves superior accuracy compared to baseline 

metrics and other classifiers, notably in predicting attributes like fasting blood sugar. 

 

4.5.  Discussion 

The results highlight several key factors influencing the classification accuracy within the 

DL4JMlp-b model are described as follows. The number of hidden layers, including DenseNet layers within 

DL4J, correlates with the testing mode, which encompasses both the number of attributes and the number of 

classes. This relationship underscores the importance of appropriately configuring the model architecture to 

accommodate the complexity of the dataset. In addition, CV emerges as the preferred testing mode over 

percentage split and training evaluation methods for all class attributes. This preference may be attributed to 

the size of the training dataset, indicating that CV provides a more robust evaluation framework. Moreover, 

the utilization of the Adam optimization algorithm significantly influences model’s performance. Adam 

offers advantages over traditional stochastic gradient descent methods by facilitating rapid convergence 

towards local minima. This optimization technique plays a pivotal role in iteratively updating network 

weights based on training data, contributing to the overall efficiency and effectiveness of the DL4JMlp-b 

model. 

Identifying attributes with significant influence on the classification task is pivotal for ensuring 

accurate predictive models. Our emphasis was on selecting sizable and independent features to bolster 

validation outcomes, prioritizing the integration of medical observations and demographic data for 

comprehensive predictions. However, the choice of the optimal algorithm hinges on several factors, including 

data types and size, time constraints, and specific prediction objectives. In medical decision-making 

processes, the DL4JMlp-b model has showcased remarkable accuracy, rapidity, and cost-efficiency. Its 

adeptness in handling test datasets has been consistent, surpassing various classifiers such as the baseline 

classifier, RF, J48, MLP, and MLPBP. The model's accuracy has been progressively enhanced through the 

fine-tuning of a relatively small number of parameters, with the optimization algorithm, stochastic gradient 

descent, playing a pivotal role in this refinement process. Additionally, attribute selection has emerged as a 

crucial factor in achieving a robust and effective predictive model. Addressing major issues in classifier 

modeling, such as redundant attributes and overfitting, has been paramount to the success of the DL4JMlp-b 

model. Redundant attributes can lead to skewed predictions, while retaining irrelevant attributes may result in 

overfitting, where the model becomes too closely aligned with the training data and loses predictive accuracy 
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on new datasets. Overfitting is a common modeling error that limits the model's applicability beyond the 

initial dataset, highlighting the importance of robust modeling techniques in ensuring accurate predictions 

across various datasets. 

To mitigate overfitting and ensure the development of accurate and reliable models, it is crucial to 

address redundant and irrelevant attributes within the dataset prior to classifier evaluation. This process 

should ideally be integrated before the data preparation phase. Feature selection, a pivotal step in this regard, 

involves identifying and retaining only the most relevant attributes that effectively represent the data to the 

predictive model. By selecting a subset of pertinent attributes from the raw data, the predictive model's 

accuracy on unseen data can be significantly improved. Attribute selection encompasses two main 

components: attribute evaluator and search method. The process is iterative and tailored to the specific 

problem at hand. Different importance metrics and selection techniques are iteratively utilized to categorize 

potential attributes into subsets. These subsets are subsequently assessed for their influence on model 

accuracy using unseen or test data. This iterative approach enables the enhancement of attribute selection 

strategies until an optimal subset is achieved. In our study, the feature selection phase utilized both filter and 

wrapper methods to identify a subset of attributes significantly correlated with classification accuracy. 

Techniques such as cost-sensitive principal components and Chi-square were employed to gain deeper 

insights into the data, including its patterns, correlations, and significance. By employing the CsfSubsetEval 

attribute evaluator and Best-First Search method, we generated several attribute subsets, each tailored to 

individual class attributes. However, while these subsets led to highly accurate predictions, they proved to be 

insufficient and lacked robustness to fully support the classifier. Despite their effectiveness, this approach 

was time-consuming and unable to adequately rank all features within the search space. 

The Chi-square test presents comparable constraints in its application. Although it expedites 

training, its accuracy remains moderate, hindered by limitations in classification and the ineffective 

differentiation of correlated predictors. Primarily employed to pinpoint statistically significant attributes 

within the demographic section of our dataset, we chose to incorporate Chi-square through IBM-SPSS before 

integrating Weka into our analytical framework. PCA is valuable for condensing data into fewer dimensions 

via orthogonal projection ranking searches. However, its accuracy is moderate, primarily due to challenges in 

determining variances and selecting significant and robust subsets. PCA excels at attribute extraction from 

raw data, although it does not construct new attributes, making it less suitable for our dataset. As an 

unsupervised learning algorithm, PCA is primarily employed for dimensionality reduction, lossy data 

compression, and feature extraction, making it particularly beneficial for large datasets. In contrast, Laplacian 

scores or statistical tests focus solely on determining the independence of a single attribute from the response, 

offering an estimate of its usefulness. 

Hence, to overcome the limitations observed in previous feature selection techniques, we opted for 

WrapperSubsetEval as the attribute evaluator and genetic search as the search method. WrapperSubsetEval 

assesses subsets using a predefined classifier and employs 10-fold cross-validation for robustness. 

Meanwhile, the genetic search method utilizes a well-established genetic algorithm to explore attribute 

subsets comprehensively. This strategy allowed us to identify significantly correlated and robust subsets, 

resulting in superior classification accuracy. Leveraging genetic search facilitated thorough exploration of 

potential subsets, permutation, and ranking, ultimately pinpointing the top-performing attributes. Utilizing 

the same classifier with a wrapper for attribute selection helped alleviate attribute redundancy. Overall, this 

approach enhances flexibility, simplicity, accuracy, and efficiency while mitigating overfitting and reducing 

training time. The predictive model's implementation and evaluation hinge upon meticulously curated 

attribute subsets tailored to each class attribute. These subsets are strategically utilized within the DL4J 

framework, where parameter settings and configurations are finely tuned to optimize classification accuracy. 

This approach ensures that the model operates efficiently and effectively, yielding reliable predictions across 

all target classes. 

This study explored a comprehensive parameter tuning of the DL4J model with three main 

parameters (e.g., search method, DenseNet, and activation function). However, these three factors could be 

the limitations of our model where they may possess a potential influence on the results. Hence, further and 

in-depth studies may be needed to confirm its performance in terms of speed and accuracy, especially 

regarding model’s overfitting. Our study demonstrates that DL4J are more resilient than e.g., MLP in terms 

of parameters tuning. Future studies may explore other risk factors and tune other potential parameters with 

feasible ways of producing highly accurate predictions without overfitting the model and in less running 

time. Recent observations suggest that only the parameter tuning may be an effective strategy of producing 

highly accurate prediction models for CVD. Our findings provide conclusive evidence that this phenomenon 

is associated with the type of risk factors regarding CVD (aka. attributes), not due to elevated numbers of risk 

factors. 
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5. CONCLUSION 

This work aimed at investigating vital parameters of a DL model (e.g., CNN) with an attribute 

selection process to better understand and the effect of CVDs risk factors. In general, the predictive model 

consists of three main phases including data-preprocessing using filters, attribute selection using optimizers, 

and prediction using classifiers. A variety of five predictive models, namely DL4JMlp-0 to DL4JMlp-b with 

different parameter settings, has been tested on a real-world dataset with seven class attributes. All models 

have been evaluated by comparing them to some well-known ML models (e.g., random forest) where they 

showed a high accuracy in most cases. In addition, the DL4JMlp-b model with best configuration of 

parameter settings among the five DL4JMlp models has demonstrated its superior ability to classify CVD 

cases with high accuracy 98.64% and outperformed all models including decision trees and neural networks. 

Generally, the performance of the DL4JMlp-b has been improved by tuning some vital parameters, such as: 

learning rate, momentum, number of hidden layers, epoch, and training time. However, the most influential 

parameters are the instance iterator and the optimization algorithm within the CNN. The predictive model 

showed a better performance when triggering a recursive iterator rather than the convolution iterator. Also, 

the predictive model showed a better performance when employing a stochastic gradient descent 

optimization rather than the steepest descent heuristic. The predictive model has effectively utilized the 

attribute selection mechanism using a wrapper subset evaluator and a genetic search method for a reduced 

space of attributes that have a potential impact on the accuracy. However, this highly performed predictive 

model came at a great cost of running time, and the limitation of the search convergence in the optimizer. 

This could be achieved in future research by applying better learning or search strategies such as a 

deterministic heuristic rather than a stochastic gradient heuristic which may narrow the search space of 

attributes. 
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