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 This research focuses on advancing the accuracy of rice leaf disease 

classification by integrating convolutional neural networks (CNN) and deep 

learning models. With Indonesia ranking third in global rice production, 

effective crop management is crucial for sustaining agricultural output. This 

study employs innovative data augmentation techniques, including random 

zoom and others, to enhance model training robustness. The experimentation 

involves eight scenarios with varied architectural configurations applied to a 

residual network (ResNet)50 layer model to optimize disease classification 

performance. Featuring Random zoom without the multilayer perceptron 

(MLP) component, it emerges as the most effective, demonstrating superior 

accuracy and performance metrics. A grid search is conducted to optimize 

MLP layers, revealing a three-layer configuration as the most effective. We 

found that data augmentation and the MLP layer can increase the accuracy 

of the disease classification task. The method proposed in this study will 

likely have a much higher proportion of correct disease classification by 

combining MLP and zoom augmentation. Specifically, the model with three 

MLP layers and zoom augmentation demonstrated significantly higher 

accuracy, achieving test accuracy, precision, recall, and F1-score of 0.92, 

0.94, 0.92, and 0.92, respectively. 
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1. INTRODUCTION 

Rice cultivation [1] is pivotal in global agriculture, serving as a primary food source for diverse 

populations worldwide. Indonesia, ranking third in global rice production behind China and India, plays a 

significant role in sustaining this crucial agricultural output [2]. A key focus is effective crop management, 

particularly disease and pest control, to ensure continued high production levels. Unchecked diseases pose a 

substantial threat to both food security and economic stability. Addressing these challenges has prompted 

researchers to explore innovative solutions, particularly leveraging advancements in digital image analysis. 

Studies have investigated the application of sophisticated algorithms, including deep learning techniques like 

convolutional neural networks (CNN) [3]–[6]. These algorithms have been applied to accurately identify and 

classify various rice leaf diseases that hinder optimal crop growth and yield. 

https://creativecommons.org/licenses/by-sa/4.0/
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A notable area of exploration involves utilizing these advanced technologies to categorize distinct 

rice leaf diseases, such as brown spot, leaf blast, leaf blight, and leaf smut, distinguishing them from a 

healthy leaf [7]–[9]. Researchers have conducted extensive analyses using datasets from reputable sources 

like Kaggle or the University of California Irvine (UCI) Machine Learning Repository, containing diverse 

images of diseased rice plants for model training. In addition to dataset selection, augmentation techniques 

have emerged as critical factors in refining the accuracy and reliability of disease classification models. Data 

augmentation [3], [6], [10], [11] aims to enhance the diversity of training data, enabling the development of 

more robust and versatile models. Moreover, they also explored variations in model architectures by 

experimenting with different layers, activation functions, and network structures, including alterations in 

CNN and multilayer perceptron (MLP) configurations to optimize performance and achieve higher accuracy 

rates in disease classification. 

In Lu et al. [12]’s investigation, CNNs are trained on a dataset of 500 images from a rice 

experimental field, achieving 95.48% accuracy in identifying ten common rice diseases. Zhang et al. [13] 

used 2-D spectral images and 1-D spectra, employing CNNs, support vector machine (SVM), random forest 

(RF), and partial least squares-discriminant analysis (PLS-DA), achieving high accuracy. Ritharson et al. 

[14] proposed tailored CNN models, outperforming transfer learning approaches with 99.94% accuracy. In 

Jesie et al. [15]’s experiment result, a hybrid CNN model identifies five paddy leaf diseases, surpassing 

previous methods. Cui and Tan [16] compared YOLOv3 with traditional CNN models, achieving improved 

recall, precision, F1-score, and accuracy for rice disease classification. Lu et al. [5] combined CNN and 

bidirectional gated recurrent unit (BiGRU) modules, reaching 98.21% accuracy in identifying four rice 

diseases, offering a reliable recognition method. 

In Gupta et al. [17]’s research, hyperparameters of EfficientNetV2 are fine-tuned for higher 

accuracy in detecting plant diseases. The Plant Diseases Dataset with 38 classes is used, intentionally 

exposing neural networks to a noisy training dataset. Petchiammal et al. [18] introduced PaddyNet, a 17-layer 

model achieving 98.99% accuracy in paddy leaf disease detection using a dataset of 16,225 samples. Zhang 

et al. [19] resolved the problem of significant CNN model parameters by proposing a multi-scale convolution 

module with visual geometry group (VGG), achieving 97.1% test accuracy and 26.1 M memory requirement. 

Prathima et al. [4] favored residual network-50 (ResNet50) over AlexNet for mobile applications due to a 

smaller model size with comparable accuracy. Dogra et al. [20] proposed a VGG19 model with transfer 

learning, achieving 93.0% accuracy in rice leaf disease identification. Ahad et al. [3] compared six CNN 

architectures, highlighting an ensemble model with 98% accuracy using transfer learning. Simhadri et al. 

[21] employed transfer learning on 15 CNN models, with InceptionV3 outperforming others with 99.64% 

accuracy. Khan et al. [22] proposed a model achieving 100% accuracy in testing samples, demonstrating high 

confidence in diagnosing rice leaf diseases for agricultural support. 

Liu et al. [23] investigated rice blast, false smut, and bacterial wilt, expanding the dataset and 

optimizing a new deep-learning model. Initial model accuracy is insufficient, leading to a comprehensive 

analysis of parameters (e.g., iteration times, batch size, learning rate, and optimization algorithm). Using the 

confusion matrix for evaluation, the optimized model achieves 98.64% accuracy, effectively identifying 

diseases. Dixit et al. [24] proposed a hybrid model, disturbance storm time (DST), combining dilated 

convolutional neural network (DCNN), SVM, and transfer learning to detect rice plant disease. The DST 

model attains 95% training and 85% validation accuracy, offering consistent results across multiple datasets. 

Pandi et al. [25] studied plant leaf disease detection using deep learning and developed a DCNN with global 

average pooling (GAP) to address computational challenges. Hasan et al. [26] developed a DCNN with GAP 

that outperforms classic CNN with a 5.49% improvement in training accuracy, showcasing effectiveness in 

classifying bacterial blight, blast, brown spot, and Tungro. 

Our study investigates the influence of data augmentation, employing zoom, contrast adjustment, 

rotation, and flip techniques, on augmenting the accuracy of disease classification models in rice plants. 

While previous research has examined the broad effects of data augmentation on aspects like overall 

accuracy and model robustness, it has not explicitly analyzed the performance of individual augmentation 

methods. Consequently, there is a research gap concerning the distinct contributions of each data 

augmentation technique toward enhancing accuracy. Bridging this gap could yield valuable insights into 

refining augmentation strategies for more efficient disease management in rice cultivation.  

This paper is divided into several sections, each serving a distinct purpose. The introduction 

provides an overview of the topic and outlines the motivation for the study. Furthermore, Section 2 describes 

the methodology or approach used in our research. The following section presents the results, discussion, and 

comprehensive analysis and interpretation. The section incorporates tables, graphs, or figures that facilitate 

comparisons with previous studies or theoretical frameworks to enhance the discussion. Lastly, the 

conclusion summarizes the key results and discusses their implications. 
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2. METHOD 

2.1.  Dataset 

The rice leaf disease dataset [27] was sourced from the Kaggle repository. The dataset comprised 

6,034 images meticulously partitioned into three subsets (training, validation, and testing data). It 

encompasses five distinct categories: Bacterial leaf blight, brown spot, blast, tungro, and normal, as shown in 

Figure 1. Based on a study [28], bacterial leaf blight, as in Figure 1(a) causes water-soaked lesions on leaves 

that turn yellowish and brown. Moreover, the brown spot, shown in Figure 1(b) appears as small, dark-brown 

lesions with a yellowish halo on the leaves. Therefore, blast like in Figure 1(c) features are spindle-shaped or 

diamond-shaped leaf lesions. Tungro disease in Figure 1(d) [28] leads to stunted growth, yellowing of leaves, 

and reduced tillering. “Normal” in Figure 1(e) refers to healthy, disease-free rice plants exhibiting vigorous 

growth and producing a good yield of grains. 

 

 

    
(a) (b) (c) 

 

  
(d) (e) 

 

Figure 1. The rice plant disease in (a) bacterial leaf blight, (b) brown spot, (c) blast, (d) tungro,  

and (e) normal 

 

 

According to Caasi et al. [29], extensive field assessments conducted in Indonesia have highlighted 

the four most prevalent rice diseases that significantly impact crop yields. The first blast is caused by the 

fungus Pyricularia oryzae, which is notorious for inflicting severe damage and leading to substantial yield 

losses. The second is brown spot, a disease attributed to the fungus Cochliobolus miyabeanus, distinguished 

by the appearance of brown lesions on the rice leaves, ultimately weakening the plant and reducing 

productivity. The third major threat is tungro, a viral disease transmitted by green leafhoppers in rice. This 

disease is particularly detrimental as it results in leaf yellowing, stunted growth, abnormal pod development, 

and a marked reduction in yield. Lastly, bacterial leaf blight, caused by the pathogen Xanthomonas oryzae, 

manifests through water-soaked spots that spread along the leaf veins, compromising the plant’s structural 

integrity and vitality. These diseases pose significant challenges to rice cultivation and necessitate vigilant 

monitoring and management to mitigate their impact on agricultural output. The importance of managing 

these diseases is underscored by Azzam et al. [28], who highlighted the recent advancements in breeding rice 

varieties resistant to tungro, addressing a critical need for control measures in tropical Asia, where such viral 

diseases are particularly destructive. In brief, Table 1 depicts five target classification classes with their 

respective dataset quantities. The dataset includes 479 image data for bacterial leaf blight, 1,088 for tungro, 

1,764 for normal, 965 for brown spot, and 1,738 for blast. The selection of the number and types of rice leaf 

diseases is based on recent studies that assess the prevalence and impact of these diseases in Indonesia and 

Southeast Asia. 
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Table 1. Detail of dataset  
Class Name Total Number of Images 

Bacterial leaf blight 479 
Tungro 1,088 

Normal 1,764 

Brown spot 965 
Blast 1,738 

Total 6,034 

 

 

2.2.  Data augmentation 

A pivotal stage involved experimentation with diverse data augmentation techniques. The study 

explored methodologies such as random zoom, random brightness, horizontal flip, vertical flip, and their 

various combinations to augment the dataset. The specific augmentation parameters play a pivotal role  

in enhancing the diversity of the training dataset. These parameters are carefully selected to introduce 

variations that enable the model to generalize effectively across different conditions. The first parameter, 

zoom range=[1.5, 2.0], is integral for controlling the level of zoom applied to images during training.  

This parameter allows the model to learn from images at varying scales, with values between 1.5 and  

2.0, indicating that the images may be magnified to different extents. The second parameter,  

brightness range=[1.2, 2.0], is crucial for adjusting the brightness of images within a specified range. The 

parameter introduces variability in brightness levels during the training process. The third set of parameters, 

vertical flip=true and horizontal flip=true, contributes to the augmentation methodology by allowing the 

model to learn from vertically and horizontally flipped versions of the images. The augmented data can aid in 

improving the model’s robustness to different orientations. 

By integrating these augmentation techniques into the training process, the methodology artificially 

diversifies the dataset, exposing the model to a broader range of scenarios. This approach enhances the 

model’s ability to handle real-world variations, including changes in scale, lighting conditions, and image 

orientations. The methodology, rooted in the judicious application of augmentation parameters, aims to foster 

a more resilient and adaptable machine learning model for practical applications, particularly in computer 

vision tasks. 

Figure 2 illustrates the sample images produced by the augmentation techniques employed in this 

study. Figure 2(a) indicates an original image from the dataset. Figure 2(b) results from augmentation using 

the random zoom technique. Figure 2(c) results from augmentation using the random brightness technique. 

Figure 2(d) is generated from the vertical flip augmentation technique. Finally, Figure 3(e) is generated using 

the horizontal flip augmentation technique. 

 

 

     
(a) (b) (c) (d) (e) 

 

Figure 2. The sample of (a) original image and augmented images which are (b) random zoom, (c) random 

brightness, (d) vertical flip, and (e) horizontal flip 

 

 

2.3.  Experiment scenario 

The researchers employed two convolutional neural network (CNN) architectures in the experiment 

to study rice leaf disease classification. The first architecture is called “vanilla ResNet50,” and the second is 

labeled “ResNet50-MLP.” The term “vanilla” implies that it is the standard or original version of the 

ResNet50 architecture without additional modifications or components. Figure 3 depicts the visual 

representation or diagram of the vanilla ResNet50 architecture, showcasing the CNN model’s layers, 

connections, and overall structure. ResNet50 is a specific variant of the ResNet architecture that consists of 

50 layers and is known for its effectiveness in image classification tasks. 

On the other hand, Figure 4 illustrates the ResNet50-MLP architecture. “MLP” in the name 

indicates that this architecture incorporates an MLP component along with the standard ResNet50 structure. 

MLP is an artificial neural network with multiple layers, often used to enhance the model’s ability to capture 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Optimizing rice leaf disease classification through convolutional neural network … (Mohamad Firdaus) 

3433 

complex patterns and relationships in data. By utilizing both vanilla ResNet50 and ResNet50-MLP 

architectures, the researchers aim to compare and evaluate the performance of these models in the context of 

classifying rice leaf diseases. It allows them to analyze the impact of adding an MLP component to the 

standard ResNet50 architecture on the accuracy and effectiveness of disease classification. 

 

 

 
 

Figure 3. Architecture of ResNet50 
 

 

 
 

Figure 4. Architecture of ResNet50-MLP 

 

 

The provided table unveils a comprehensive series of experimental scenarios; each intricately 

entwined with distinctive architectural configurations and augmentation techniques applied to a ResNet50 

layer model. These scenarios, denoted by labels S1 to S8, encompass a rigorous exploration seeking to 

optimize the classification of rice plant diseases, as shown in Table 2. Each experimental scenario tests 

various combinations of architecture configurations and augmentation techniques on the ResNet50 layer 

model. The numbering of scenarios from S1 to S8 reflects a meticulous exploration to optimize the 

classification of rice plant diseases. Analyzing the results of each scenario will provide valuable insights for 

developing more effective models for addressing rice plant health issues. 

 

 

Table 2. The experiment scenarios 
Architecture Scenario 

ResNet50 layers S1 

ResNet50 layers + random zoom S2 
ResNet50 layers – MLP S3 

ResNet50 layers – MLP + random zoom S4 

ResNet50 layers – MLP + random brightness S5 
ResNet50 layers – MLP + horizontal flip S6 

ResNet50 layers – MLP + vertical flip S7 

ResNet50 layers – MLP + data augmentation (random 
zoom, random brightness, vertical flip, horizontal flip) 

S8 

 

 

In Scenario 1 (S1), the study initiates by employing the ResNet50 layer architecture, establishing a 

fundamental benchmark to comprehend the model’s baseline performance in disease classification. The 

ResNet50 has proven to be robust and widely used convolutional neural network architecture in various 

computer vision tasks, including image classification. Its deep structure, featuring skip or residual 

connections, enables practical training of deep networks while mitigating the vanishing gradient problem. 
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The ResNet50 architecture also balances model complexity and computational efficiency, making it suitable 

for applications with limited computational resources.  

Scenario 2 (S2) extends the ResNet50 layer architecture by integrating random zoom augmentation, 

aiming to assess the impact of this technique on the model’s disease classification accuracy. Conversely, 

Scenario 3 (S3) experiments by excluding the MLP component from the architecture, probing the effects of 

this alteration on disease classification performance. Further nuanced investigations unfold in Scenarios 4 

(S4) through 7 (S7). Each scenario examines the isolated effects of specific augmentation techniques: random 

zoom, random brightness, horizontal flip, and vertical flip. These techniques are applied alongside the 

ResNet50 layer architecture with the MLP component. The aim of these scenarios is to discern the individual 

influences of these augmentation methods on the model’s classification accuracy and efficacy. This analysis 

facilitates understanding the optimal combination of augmentations for improved performance. 

Scenario 8 (S8) explores comprehensively by amalgamating multiple augmentation techniques: 

random zoom, random brightness, vertical flip, and horizontal flip with the ResNet50 layer architecture, 

excluding the MLP component. This comprehensive scenario aims to evaluate the collective impact of 

diverse augmentation strategies on the model’s disease classification capabilities. 

This comprehensive breakdown correlates specific architectural setups and augmentation 

approaches with their respective experimental scenarios. It facilitates a detailed examination of their  

separate and combined impacts on the model’s performance measures and computational effectiveness. Each 

scenario represents a distinctive combination of architectural adjustments and augmentation methods, 

enriching our comprehension of how these changes influence the model’s ability to classify diseases in rice 

plant images. Such nuanced insights are essential for progressing agricultural technology and enhancing crop 

management methodologies. 

 

2.4.  Evaluation 

The model’s efficacy was tested in this phase by presenting new, unseen rice plant image data 

comprising 25 test samples. The evaluation stage involved the model generating output from the testing 

phase. This assessment utilized the confusion matrix method, analyzing the model’s performance metrics as 

accuracy, precision, recall, and F1-score, based on the 25 test images. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Grid search for optimizing the MLP layers 

In the conducted grid search to optimize the MLP model, different configurations of MLP layers 

were explored, and the results are presented in the Table 3. The objective was to identify the best architecture 

for the given task, as indicated by various evaluation metrics, including test accuracy, F1-score, precision, 

and recall. We selected the one with the number of layers 3 as it achieved the highest accuracy, as shown in 

Table 3. 
 

 

Table 3. The grid search result 
Number of layers Test accuracy F1-Score Precision Recall 

1 0.72 0.71 0.78 0.72 

3 0.92 0.92 0.94 0.92 

5 0.88 0.88 0.89 0.88 

 

 

3.2.  Scenarios performances comparison 

As shown in Table 4, the results from the experimental scenarios (S1 to S8) reveal a diverse 

spectrum of performance metrics concerning the classification of rice plant diseases using the ResNet50 

layers model with varying architectural configurations and augmentation techniques. Scenario 4 (S4) 

emerges as the most notable performer in this exploration, show-covering the highest accuracy rate of  

0.92 alongside robust precision, recall, and F1-score, all at 0.94, 0.92, and 0.92, respectively. This  

scenario, featuring the ResNet50 layer architecture without the MLP component but incorporating  

random zoom augmentation, demonstrates superior capabilities in accurately identifying and classifying rice 

plant diseases. 

Conversely, scenarios employing singular augmentation techniques, such as random zoom (S2), 

random brightness (S5), horizontal flip (S6), and vertical flip (S7), exhibit moderate performance with 

consistent accuracy rates around 0.84 and corresponding precision, recall, and F1-score within a similar 

range. While effective to a degree, these scenarios demonstrate relatively comparable but moderate success in 

disease classification compared to the standout performer. Scenario 3 (S3), excluding the MLP component 
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from the ResNet50 layer architecture, displays a noteworthy improvement in performance compared to the 

baseline scenario (S1), with an accuracy rate of 0.88. This alteration highlights the potential influence of 

architectural components on the model’s disease classification capabilities. Scenario 8 (S8) involves a 

comprehensive amalgamation of multiple augmentation techniques with the ResNet50 layer architecture, 

devoid of the MLP component, with a balanced accuracy rate of 0.76. While not the highest performer, it 

demonstrates competitive precision, recall, and F1-score around 0.82, 0.76, and 0.78, respectively, indicating 

a relatively effective albeit not the most superior performance. 

 

 

Table 4. The experiment scenario’s result 
Scenario Time per step Acc Precision Recall F1-score 

S1 457 ms 0.8 0.86 0.8 0.8 

S2 Random zoom 778 ms 0.84 0.87 0.84 0.84 
S3 MLP 477 ms 0.88 0.9 0.88 0.88 

S4 MLP + zoom 787 ms 0.92 0.94 0.92 0.92 

S5 589 ms 0.84 0.88 0.84 0.82 
S6 457 ms 0.76 0.8 0.76 0.75 

S7 975 ms 0.84 0.88 0.84 0.85 

S8 1,000 ms 0.76 0.82 0.76 0.78 

 

 

The enhanced performance achieved by applying random zoom data augmentation stands out 

compared to alternative techniques. This superiority can be ascribed to the increased detail introduced into 

the image data. By allowing for random variations in zoom levels, the model gains access to a more diverse 

and intricate set of features, making the data more informative and conducive to improved learning.  

A noteworthy aspect contributing to the success of random zooming is the potential for advantageous 

precision. When the augmentation process happens to align with the inherent characteristics of the data, the 

model is exposed to particularly beneficial instances. This accidental alignment can lead to a more refined 

learning experience, aiding the model in honing its accuracy levels. 

However, it is crucial to acknowledge that the advantages associated with random zoom may not 

universally apply to all cases or scenarios. The effectiveness of this augmentation technique depends on the 

nature of the data and the specific learning task at hand. As such, considerations should be made regarding 

the appropriateness of employing random zoom based on the dataset’s characteristics and the model’s 

objectives. Overall, the outcomes underscore the significance of architectural configurations and 

augmentation techniques in shaping the ResNet50 layer model’s proficiency in classifying rice plant diseases. 

Scenario 4 (S4) notably stands out as the most effective configuration, emphasizing the potential impact of 

random zoom augmentation on enhancing the model’s accuracy and overall disease classification 

capabilities. 

Table 5 shows the comparison of performance metrics for different methods in rice leaf disease 

classification. Dogra et al. [20] with their VGG19 model with transfer learning achieved an accuracy of 

93.0%, while Dixit and Verma [24] reported a slightly lower accuracy of 85% for DST. On the other hand, 

DCNN with GAP by Pandi et al. [25] achieved the highest accuracy among the referenced studies, with 

96.5%. In contrast, our proposed method, introduced in 2024, attained an accuracy of 92%. While DCNN 

with GAP [25] achieved the highest accuracy, our method demonstrates competitive performance, falling 

slightly behind but still maintaining a high level of accuracy in rice leaf disease classification. 

 

 

Table 5. The performance comparison with existing research 
Method Year Accuracy 

VGG19 model with transfer learning [20] 2023 93.0% 

DST [24] 2023 85.0% 

DCNN with GAP [25] 2023 96.5% 
Proposed method 2024 92.0% 

 

 

This study explored a comprehensive analysis of disease classification in rice plants using the 

ResNet50 layer model with various architectural configurations and augmentation techniques. However, 

further and in-depth studies may be needed to confirm its efficacy across different datasets and 

environmental conditions, especially regarding its generalizability and robustness in real-world agricultural 

settings. 
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4. CONCLUSION 

In summary, this research addresses the critical role of rice cultivation in global agriculture, 

particularly in Indonesia, the third-largest global rice producer. Recent experiments suggest that innovative 

digital image analysis solutions can achieve effective crop management for sustained production levels. By 

harnessing advanced algorithms such as CNNs, researchers endeavor to precisely identify and classify rice 

leaf diseases, which pose significant threats to crop growth and yield. Utilizing a comprehensive dataset from 

reputable repositories like Kaggle, the study conducts training and testing of machine learning models. 

Central to this process are data augmentation techniques, including random zoom and others, which play a 

crucial role in diversifying the training dataset and bolstering model robustness across varied conditions. 

The paper introduces eight experimental scenarios, each combining distinctive architectural 

configurations and augmentation methodologies applied to a ResNet50 layer model. Notably, Scenario 4, 

which incorporates random zoom augmentation without the MLP component, emerges as the most effective, 

achieving the highest accuracy and robust performance metrics. The study also includes a grid search to 

optimize the MLP layers, revealing the effectiveness of a three-layer configuration. Overall, these findings 

underscore the significance of architectural configurations and augmentation techniques in developing 

accurate models for classifying rice plant diseases, contributing valuable insights to improve food security 

through timely disease detection and intervention strategies. 

Our study shows that zoom augmentation and MLP layers affect disease classification accuracy. 

Future research could explore integrating explainable AI (XAI) techniques for model interpretability and 

testing the model’s transferability to different regions and rice varieties. Real-time monitoring systems in the 

field could enable adaptive responses to changing disease patterns. Collaboration between experts could lead 

to user-friendly applications for early disease detection. Finally, applying the model alongside precision 

agriculture and sustainable farming practices could enhance long-term crop health and food security. 
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