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 Pneumonia, a lung infection caused by viral or bacterial agents, poses a 

significant health risk by affecting one or both lungs in humans. Accurate 

diagnosis, particularly in pediatric cases, is crucial for timely intervention. 

chest X-rays (CXRs) are a common and non-invasive diagnostic tool to 

detect pneumonia-related abnormalities. Nonetheless, the minimal radiation 

exposure suitable for pediatric diagnosis poses a challenge in accurately 

detecting pneumonia in children. This work proposes a concatenation model 

that combines two pre-trained convolutional neural networks (CNNs) 

depending on the transfer learning (TL) technique and optimizes the training 

parameters to build a highly accurate model for detecting pediatric 

pneumonia from CXR images. The concatenated extracted features from the 

two pre-trained CNNs are passed through a convolutional layer to select 

more valuable semantic features to reduce the extracted features, which 

helps reduce the model parameters and execution time. Experimental results 

demonstrate that the feature concatenation technique, along with 

optimization of training parameters, surpasses the performance of individual 

CNNs and several state-of-the-art methods. The proposed method achieves a 

classification accuracy of 98.5%, precision of 99.5%, sensitivity of 98.4%, 

and F1 score of 99.1%. The primary objective of the proposed approach is to 

aid radiologists in achieving accurate pneumonia diagnosis in real-time. 
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1. INTRODUCTION 

In recent years, the worldwide spread of various infections and diseases has become a significant 

concern. Pneumonia is a respiratory infection resulting from viruses or bacteria affecting the lungs [1], [2]. 

The World Health Organization (WHO) has recognized pneumonia as the primary cause of death worldwide 

among children under the age of five, constituting approximately 12.8% of annual child deaths [3]. 

Tragically, in 2016, over 800,000 children succumbed to pneumonia, with the majority being under two years 

old. This death toll surpassed the combined fatalities from malaria, acquired immunodeficiency syndrome 

(AIDS), and measles [4], [5]. The gravity of the situation persisted in 2019, with pneumonia claiming the 

lives of 740,180 children, accounting for 14% of all deaths in child under 5 years old and 22% in child deaths 

aged 1-5 years [6]. These alarming statistics underscore the urgent need for improved strategies in pneumonia 

detection, treatment, and prevention to mitigate its devastating impact on global child mortality rates. 

The chest X-ray (CXR) proves to be a time and cost-efficient method for pneumonia diagnosis 
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compared to alternative diagnostic tests, playing a crucial role in clinical nursing and specialized medical 

analysis [7], [8]. However, a challenge arises as some CXR images exhibit significant similarities. Physicians 

find themselves compelled to make decisions based on factors such as lung texture, patchy shadow, shadow 

density, inflammation site, and more. Even experienced doctors are susceptible to errors in judgment and 

misdiagnosis. Detecting pediatric pneumonia poses an additional challenge due to the varying radiation levels 

in X-rays for adults and children. Young children are subjected to reduced radiation levels in X-rays, 

complicating the diagnostic process due to information loss. Consequently, identifying pediatric pneumonia 

in CXR images becomes a complex task heavily reliant on the individual expertise of medical professionals 

[9].  Hence, there is a pressing need for an accurate computer-aided diagnostic (CAD) model to assist 

radiologists in pneumonia diagnosis based on CXR images [10], [11]. Such a model would enhance the 

precision and efficiency of the diagnostic process, addressing the challenges posed by image similarity and 

variations in radiation levels, ultimately improving the overall accuracy of pediatric pneumonia detection. 

Deep learning networks, like convolutional neural networks (CNNs), have streamlined the development of 

CAD models through automation of the feature engineering process and learning abstract features, leading to 

enhanced performance [12]. Attention-based CNNs, in particular, have demonstrated improved capabilities 

by incorporating attention modules that focus on crucial input elements. The integration of residual-based 

attention helps prevent gradient loss and enhances error propagation.  CNNs, known for their effectiveness, 

are widely employed in the realm of medical image analysis and classification [13]. This approach has 

garnered significant interest from researchers involved in pneumonia detection within the field of medical 

imaging. The utilization of attention mechanisms and residual-based strategies showcases the continuous 

innovation in deep learning techniques, contributing to the advancement of accurate and efficient pneumonia 

detection models [14], [15]. 

The detection and diagnosis of pediatric pneumonia through CXR images have garnered significant 

attention from researchers. Several studies have been conducted where researchers have sought to detect 

pediatric pneumonia by utilizing deep CNN models. Kermany et al. [16] introduced a method for detecting 

and treating medical diseases by utilizing image-based deep learning models. The approach classified various 

medical datasets, containing the dataset employed in this paper. The performance of their proposed method 

was noteworthy, achieving accuracy comparable to that of human specialists at 92.8%. This paper enhanced 

the performance, but the drawback was it depended on lower-level features. Stephen et al. [17] presented an 

effective deep-learning methodology for detecting and classifying pneumonia in healthcare, utilizing the 

same dataset employed in this paper. Their approach involved a deep learning model comprising four 

convolutional and two dense layers. Additionally, traditional image augmentation techniques were applied in 

their work, resulting in a testing accuracy of 93.7%. In contrast, this paper focuses on enhancing accuracy 

using classical data augmentation across various data sizes. El Asnaoui et al. [18] proposed automated 

methods for detecting and binary classifying pneumonia images, employing various CNN architectures, 

including Visual Geometry Group 16 (VGG16), VGG19, densely connected convolutional network with 201 

layers (DenseNet201), Inception residual network version 2 (ResNetV2), InceptionV3, residual network 50 

(ResNet50), mobile network version 2 (MobileNetV2), and extreme inception (Xception). Notably, models 

such as Inception_ResNet_V2, Inception_V3, ResNet50, DenseNet201, and MobileNetV2 demonstrated 

highly satisfactory performance, outperforming baseline CNNs like Xception, VGG16, and VGG19, which 

exhibited lower performance. This paper highlights the noteworthy performance of Resnet50, 

MobileNet_V2, and Inception_Resnet_V2, achieving accuracy levels exceeding 96%. These models utilized 

the use of a deeper convolutional layer with a large number of parameters. Liang and Zheng, as presented in 

[19], introduced a transfer learning (TL) approach employing a deep residual network for pediatric 

pneumonia diagnosis. The deep learning model utilized in their work comprised 49 convolutional layers and 

two dense layers for diagnosing and detecting childhood pneumonia, achieving a testing accuracy of 90.05%. 

However, a limitation of this technique was the extended execution time due to the utilization of a substantial 

number of convolutional layers. El Zein et al. [20] proposed a hybrid model of EfficientNetB0 as a TL-based 

model with support vector machine (SVM) hinge loss. The classification process is performed utilizing the 

hinge loss function as SVM loss instead of sigmoid loss. The proposed hybrid method achieved an 

impressive classification accuracy of 97%. Güler et al. [21] introduced TL methods to classify CXR images 

into two classes: healthy and pneumonia. Different image preprocessing techniques are applied to CXR 

images, and the classification process employs TL models including InceptionV3, DenseNet169, ResNet50, 

ResNet101, Xception, MobileNetV2, VGG16, and DenseNet121 from the Keras library. The Xception model 

achieved the highest performance, demonstrating a validation accuracy of 96.16% and a test accuracy of 

95.73%. 

Comparing the existing methods, it becomes evident that many of the proposed models face 

challenges related to feature extraction and data limitations. Consequently, these issues have an impact on the 

outcomes of these studies. This paper introduces a novel and accurate concatenated model for addressing 

these issues and detecting pediatric pneumonia based on CXR images. The innovation presented lies in the 
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application of the concatenation technique, where two pre-trained models (ResNet50V2 and MobileNetV2) 

are combined based on TL. ResNet50V2 and MobileNetV2 were chosen due to their capacity to achieve high 

performance with fewer parameters and faster execution times. A concatenated neural network is created 

through the integration of the deep extracted features from (ResNet50V2 and MobileNetV2). The deep 

extracted features are fed into a convolutional layer to extract more meaningful semantic features from the 

spatial points across all channels. This process aids the network in learning more effectively from the 

concatenated features derived from ResNet50V2 and MobileNetV2. Also, the convolutional layer helps to 

reduce the extracted features which helps reduce the model’s parameters and execution time. Also, we focus 

on optimizing training hyperparameters and propose augmentation techniques to overcome data limitations 

and imbalanced datasets. The proposed model demonstrates an overall increase in accuracy and achieves its 

peak performance by leveraging multiple deep features extracted from two robust networks rather than 

relying solely on the features of each network individually. Also, optimization of training hyperparameters 

helps to improve the accuracy of the concatenated proposed model from 95.7% to 98.5%. This 

comprehensive strategy aims to address the challenges in feature extraction and data constraints, ultimately 

contributing to the advancement of pneumonia detection accuracy. The influential contributions of this work 

are outlined as follows: i) Developing and implementing an accurate medical diagnosis system designed to 

detect pediatric pneumonia in CXR images utilizing a concatenation technique based on TL models;  

ii) Utilize efficient TL and fine-tuning methods instead of training a CNN from scratch to address the 

constrained performance of deep convolution layers; iii) Applying a parallel deep feature extraction process 

utilizing TL models during the feature extraction stage of the concatenation-based models proposed in this 

study; and iv) Exploring the effect of optimizing the training parameters on the performance of the 

classification model. 

The structure of the rest of this paper is as follows: section 2 provides an outline of the proposed 

method architecture, the dataset utilized, preprocessed data, and the training techniques applied. The 

exploratory results, accompanied by a comparative examination against state-of-the-art models, are displayed 

in section 3. Finally, section 4 introduces conclusions based on the study findings and outlines probable areas 

for future research. 

 

 

2. METHOD  

This paper proposes a concatenation model that combines two pre-trained CNN models based on the 

TL technique and optimizes training parameters for detecting pediatric pneumonia from CXR images. First, 

the collected CXR images are preprocessed and sent as inputs to the two pre-trained CNN models 

(ResNet50V2 and MobileNetV2). Afterward, the deep features extracted from the two pre-trained CNNs are 

concatenated to derive combined deep features, aiding the network in better learning from the combined 

features extracted. These deep features are connected to a convolutional layer to select more valuable 

semantic features to reduce the extracted features, which helps reduce the model’s parameters and execution 

time, which is, in turn, linked to the classifier for the classification tasks. Also, exploring the effect of 

optimizing the training hyperparameters during the training of the proposed model. The following 

subsections give a point-by-point portrayal of each stage of the proposed architecture. The architectural 

representation of the proposed concatenation model is shown in Figure 1.  

 

 

 
 

Figure 1. The structure of the proposed concatenation model 
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2.1.  Dataset description 

The dataset employed in this research consists of 5,856 CXR images [22], distributed across two 

categories: 4,273 pneumonia cases and 1,583 normal cases. The benchmark dataset is freely accessible on 

Kaggle and includes three folders: training, validation, and test. However, the distribution of data across 

these folders was highly imbalanced. Therefore, the dataset was consolidated and divided into training, 

validation, and testing sets, as outlined in Table 1. Ultimately, the training set contained 4,185 images, the 

validation set contained 624, and the test set contained 1,047 images. Figure 2 depicts several CXR image 

samples from the dataset. 

 

 
Table 1. Depiction of the utilized dataset 
Category Training Validation Testing 

Normal 1,070 234 279 

Pneumonia 3,115 390 768 

Total 4,185 624 1,047 

 

 

 
 

Figure 2. Examples of radiographs of the CXR 

 

 

2.2.  Image preprocessing  

Preprocessing is a vital phase in the data preparation pipeline for machine learning models, 

requiring numerous processes to improve the quality and usability of input data. Resizing, normalization, and 

data augmentation are among the most important of these procedures, as each plays a crucial role in 

structuring the data for the best model performance. The preprocessing steps' detailed methods are elaborated 

on in this subsection. 

 

2.2.1. Resize images 

As evident, all input X-ray images vary in size and shape, posing a challenge for effective 

classification. To address this, image preprocessing is conducted. In the proposed approach, all input images 

are resized to dimensions of 224×224×3 pixels to ensure suitability for classification tasks in the 

ResNet50V2 and MobileNetV2 models. Smaller images require fewer computations during both training and 

inference, leading to faster processing times. 

 

2.2.2. Normalization 

The normalization of data is a crucial step, often employed to maintain numerical stability in CNN 

architectures. Failure to normalize data can result in increased network complexity and a reduction in the 

learning rate. Normalization plays an essential part in enhancing the speed and stability of gradient descent 

during training in CNN models. Additionally, it contributes to improving the model's performance and its 

ability to generalize effectively. In this study, the pixel values of input images, post-resize, are normalized 

within the range of 0 to 1. The dataset comprises of grayscale images, and during the rescaling process, each 

pixel value is multiplied by 1/255 for normalization. This normalization procedure ensures that the CNN 

model can effectively learn and optimize its parameters during the training process, promoting stability and 

efficiency in the gradient descent. 
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2.2.3. Data augmentation 

Deep learning relies heavily on extensive datasets to yield reliable results. However, acquiring a 

substantial amount of data, especially in medical domains, proves challenging due to cost and time 

constraints. Data augmentation techniques involve synthetically expanding the dataset size by applying 

diverse conversions to existing data, which helps the model learn to recognize patterns and features under 

different conditions. These are implemented in the training process after dataset preprocessing and splitting. 

These techniques not only address the challenge of limited data but also mitigate the risk of overfitting, 

contributing to improved model performance. Table 2 describes the values of parameter for various data 

augmentation techniques, including shifts, rescaling, flipping, rotation, zooms, and shear. The visual 

representation of images post different augmentation techniques is illustrated in Figure 3. In scenarios of 

class imbalance, data augmentation plays a pivotal role in image processing. It not only increases the 

instances of smaller classes but also enhances model accuracy, introducing variability into the data and 

contributing to a more robust training process. 

 

 

Table 2. The augmentation techniques used in this work and their corresponding values 
Parameter  Values 

Horizontal shift range 0.2 

Vertical shift range 0.2 

Shear range 0.2 
Rotation degree 20 

Zoom 0.2 
Horizontal flip True 

 

 

 

 
 

Figure 3. Some samples of CXR images by utilizing different augmentation techniques 

 

 

2.3.  The concatenated pre-trained CNN model  
CNN models have shown exceptional performance in tasks of processing medical images. 

Nevertheless, training these models from the ground up for pneumonia detection poses challenges due to the 

restricted availability of CXR samples. In such scenarios, employing pre-trained models utilizing TL proves 

beneficial. TL involves utilizing a pre-trained model's structure from a relevant database, either from the 

same or a different domain, leveraging the acquired knowledge to efficiently and effectively address new 

problems [23]. This technique is particularly valuable in accelerating the resolution of new tasks, such as 

predicting pneumonia, by building upon existing knowledge. TL reduces the training time and improves the 

performance of model, especially when the new dataset is small [24]. An essential aspect of the TL process 

concerns choosing a pre-trained model. This model serves as the initial point for specific tasks, avoiding the 

lengthy process of training from scratch with haphazardly initialized weights. This approach significantly 

conserves the computational resources required for developing neural network models to address these 

challenges. In this paper, the pre-trained CNN models (ResNet50V2 and MobileNetV2) were chosen due to 

their capacity to achieve high performance with fewer parameters and faster execution times. These models 

are employed as a foundation, harnessing their learned features to enhance the efficiency and effectiveness of 

pneumonia detection in CXR images. 
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ResNetV2, an evolution of the 2016 ResNetV1 by Microsoft Research Asia, offers three models 

(ResNet152V2, ResNet101V2, and ResNet50V2). Notably, each layer within these models leverages distinct 

optimizers, contributing to their superior accuracy compared to the original architecture. This research 

employed ResNet50V2 [25] for image classification, achieving 93% accuracy on the ImageNet dataset, a 

widely used benchmark for computer vision tasks. By outperforming other ResNet models like ResNet50 and 

ResNet101, ResNet50V2 demonstrated its effectiveness for our specific application. This superior 

performance stems from modifications to the way information flows between different parts of the network, 

enabling more efficient learning. Choosing ResNet50V2 allowed us to leverage its proven accuracy and 

enhanced capabilities, contributing significantly to the success of our research for pneumonia detection based 

on CXR images. 

The MobileNetV2 model [26] is a CNN consisting of 53 layers and 88 depths. It is specifically 

designed for mobile and edge devices. It is an efficient model that aims to provide high accuracy while 

minimizing computational and memory requirements. MobileNetV2 is an evolution of the original 

MobileNet architecture, and it introduces improvements in terms of both accuracy and efficiency. In 2018, a 

million images from the ImageNet database were utilized for training. This model acquired a 90.1% accuracy 

on this dataset. 

The preprocessed input images in our dataset have dimensions of 224×224×3 pixels. From the input 

image, the ResNet50V2 model generates a 7×7×2048 feature map on its final feature extractor layer, while 

the MobileNetV2 model produces a 7×7×1280 feature map on its last layer. By concatenating the output 

features from both pre-trained models, we aim to enhance the quality of the semantic features generated. This 

concatenation forms a neural network where the concatenated features of size 7×7×3328 are connected to a 

convolutional layer with a 1×1 kernel size and 1,024 filters, without an activation function. This strategic 

addition is intended to extract more valuable semantic features from the spatial relationship between all 

channels, treating each channel as an individual feature map. By learning from the concatenated features 

extracted from ResNet50V2 and MobileNetV2, the convolutional layer enhances the network's ability and 

performance in identifying meaningful patterns. Moreover, it assists in reducing the dimensionality of the 

extracted features, thereby decreasing the model's parameters and execution time. 

 

2.4.  Classification  
After automatically extracting features using two pre-trained models, these features are combined 

via concatenation and passed through a convolutional layer. The resulting output from this convolutional 

layer is then directed to the classifier. Positioned at the end of the proposed CNN model, the classifier is 

essentially an artificial neural network (ANN) known as a dense layer. This classifier requires individual 

features (vectors) for computations, similar to other classifiers. Consequently, the output of concatenated 

features is flattened into a 1D feature vector for the classifier's use. This process, referred to as flattening, 

involves transforming the output of the concatenation operation into a single extended feature vector of size 

50,176. This vector is then utilized by the dense layer for the final classification task. The classification layer 

comprises a flattened layer, two dense layers with sizes of 1024 and 1 respectively, a dropout layer with a 

rate of 0.2 between them, a rectified linear unit (ReLU) activation function between the dense layers, and a 

sigmoid activation function for performing the tasks of classification. The sigmoid function outputs a value 

within the range of 0 to 1, making it easy to predict the result as 1 if the value exceeds 0.5 and 0 otherwise. 

This activation function is commonly employed when dealing with binary classification problems, defined as 

such [27]: 

 

𝑓(𝑥𝑖) =
1

(1+𝑒(−𝑥𝑖 ))
 (1) 

 

where 𝑥𝑖  represents the input vector. 

During model training, the binary cross-entropy loss function is utilized. This function assesses the 

performance of a classification model and is computed as (2) [28], [29]. 

 

𝐿(𝑦, 𝑝) = −𝑦 𝑙𝑜𝑔(𝑝) + (1 − 𝑦) 𝑙𝑜𝑔(1 − 𝑝)) (2) 

 

where y denotes the actual value, and p represents the predicted value. 

ResNet50V2 [25], MobileNetV2 [26], and a concatenated proposed network consisting of 

ResNet50V2 and MobileNetV2, based on the described method, undergo training. Remarkably, the 

concatenated neural network demonstrates superior accuracy compared to the individual models. Several 

networks are tested in our project, the ResNet50V2 [25] and MobileNetV2 [26] networks were selected due to 

their capacity to achieve high performance with fewer parameters and faster execution times. Concatenating the 

output features from both networks proved to enhance the network's performance and classification capability 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 3094-3105 

3100 

by leveraging information from both feature vectors, leading to improved accuracy. Details of the training 

hyperparameters can be found in Table 3. As indicated in Table 3, the networks were trained utilizing the binary 

cross-entropy loss function and the Adam optimizer, with learning rates of 0.00001 and 0.0001, respectively. 

The networks are trained for 50 epochs. For ResNet50V2, MobileNetV2, and the concatenated network, the 

selected batch size was set to 32, 64 for train, and 32 for test and validation. The optimization of training 

hyperparameters helps improve the accuracy and performance of the proposed model.  
 

 

Table 3. Details of the training hyperparameters for the proposed model 
Hyperparameters of proposed concatenated model 

Learning rate 0.00001 0.0001 
Optimizer Adam Adam 

Batch Size 32 for train, test and validation 64 for train 32 for test and validation 

Max Epochs 50 50 

 

 

3. RESULTS AND DISCUSSION  

This section showcases the outcomes derived from a series of experiments, delivering a detailed 

analysis of the diagnostic performance in pediatric pneumonia detection from CXR images. The evaluation 

involves employing both a pre-trained CNN model and a concatenation model that combines ResNet50V2 

and MobileNetV2. A comparative assessment is carried out among these models, with their results compared 

against recent approaches, to determine the foremost compelling performing model. 

The proposed model underwent training on Google Colaboratory (Colab), utilizing a dedicated 

Google Cloud project to access free GPU resources for deep learning projects and research. Users are 

currently allocated 12 GB of RAM, with the potential for expansion up to 25 GB. Google Colab provides 

access to a single 12 GB NVIDIA Tesla K80 GPU, available for continuous utilization for up to 12 hours. 

 

3.1.  Evaluation metrics of model performance 

The concatenation proposed model's performance is assessed using various evaluation metrics such 

as testing accuracy, precision, recall (sensitivity), F1 score, specificity, and area under the curve (AUC) [29], 

[30]. AUC is a crucial evaluation metric for classification model performance, indicating the model's ability 

to distinguish between classes by measuring the degree of separability. When the AUC is equal to 1, the 

classifier is capable of accurately distinguishing between children with and without pneumonia.  

 

3.2.  Confusion matrix and testing accuracy 

The confusion matrix acts as a tabular representation to visually assess the performance of a 

prediction model. It contains counts of predictions made by the model, differentiating between correct and 

incorrect classifications in each cell. In this work, we explore the impact of different hyperparameters.  

Figure 4 showcases the confusion matrices of ResNet50V2, MobileNetV2, and the concatenated proposed 

model utilized in this study, with batch size 32 and learning rate 0.00001 in Figures 4(a), 4(b), and 4(c), 

respectively. Similarly, Figure 5 shows the confusion matrices for the same models but with a batch size of 

64 and a learning rate of 0.0001 in Figures 5(a), 5(b), and 5(c), respectively. These matrices show how model 

performance differs with various parameter configurations. 

In Figure 4, the confusion matrix indicates that the ResNet50V2 model, see Figure 4(a), accurately 

predicted 276 images as “Normal”. For the “Pneumonia” class, it correctly identified 726 images and 

misclassified 42. Similarly, the MobileNetV2 model, see Figure 4(b), correctly identified 730 “Pneumonia” 

images and misclassified 38. In the “Normal” class, 274 images were correctly classified, while 5 images 

were incorrectly labeled as “Pneumonia.” Furthermore, the concatenated model 1, see Figure 4(c), displayed 

robust performance by correctly identifying 748 “Pneumonia” images with only 20 misclassifications. In the 

“normal” class, 274 images were correctly classified, while 5 were erroneously labeled as “Pneumonia”. 

In Figure 5, the confusion matrix reveals that the ResNet50V2 model, see Figure 5(a), correctly 

predicted 276 images as “Normal”. For the “Pneumonia” class, it identified 740 images correctly and 

misclassified 28. Conversely, the MobileNetV2 model, see Figure 5(b) correctly identified 759 “Pneumonia” 

images and misclassified 9. In the “Normal” class, 256 images were correctly classified, with 23 

misclassified as “Pneumonia”. Additionally, the concatenated model 2, see Figure 5(c) demonstrated robust 

performance by correctly identifying 756 “Pneumonia” images with only 12 misclassifications. In the 

“Normal” class, 275 images were correctly classified, while 4 were erroneously labeled as “Pneumonia.” 

These findings underscore the effectiveness of the models in distinguishing between “Normal” and 

“Pneumonia” instances, with the concatenated model exhibiting particularly strong accuracy and minimal 

misclassifications. Moreover, concatenation model 2, utilizing two pre-trained models (ResNet50V2 and 
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MobileNetV2) with a batch size of 64 and a learning rate of 0.0001, outperforms concatenation model 1, 

which employs two modified models (ResNet50V2 and MobileNetV2) with a batch size of 32 and a learning 

rate of 0.00001, respectively. Concatenation Model 2 achieves successful classification for all cases in both 

classes with minimal misclassifications. These findings underscore the significance of optimizing training 

hyperparameters for improving model performance. 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 4. The confusion matrix for (a) ResNet50V2, (b) MobileNetV2, and (c) concatenated model 1 with a 

batch size of 32 and a learning rate of 0.00001 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 5. The confusion matrix for (a) ResNet50V2, (b) MobileNetV2, and (c) concatenated model 2 with a 

batch size of 64 and a learning rate of 0.0001 
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Table 4 and Table 5 present the performance metrics for ResNet50V2, MobileNetV2, and the 

concatenation models when trained with batch sizes and learning rates set to 32, 64, and 0.00001, 0.0001, 

respectively. According to Table 4, the concatenation model 1 outperformed ResNet50V2 and MobileNetV2 

in most metrics, achieving the highest percentages for sensitivity (97.4%), F1 score (98.4%), and AUC 

(97.8%) along with the highest accuracy of 97.6%. In contrast, Table 5 illustrates the superior performance in 

precision, sensitivity, F1 score, specificity, and AUC when compared to the results in Table 4. Concatenation 

Model 2, which combines two adapted pre-trained models (ResNet50V2 and MobileNetV2), attained 

exceptional results with percentages of 99.5%, 98.4%, 98.6%, 99.1%, and 98.5% for precision, sensitivity,  

F1 score, specificity, and AUC, respectively. 

The testing accuracy, a crucial evaluation metric, for ResNet50V2, MobileNetV2, and concatenation 

model 1 is 95.7%, 95.9%, and 97.6%, respectively, with a batch size of 32 and a learning rate of 0.00001. 

When the batch size was set to 64 for training and 32 for validation and testing, with a learning rate of 

0.0001, ResNet50V2, MobileNetV2, and concatenation model 2 achieved the highest accuracy, reaching 

97%, 97%, and 98.5%, respectively. Remarkably, both concatenation model 1 and concatenation model 2 

demonstrate superior accuracy compared to ResNet50V2 and MobileNetV2 models. Figure 6 depicts the 

comparative performance of Precision, Recall, F1 score, Specificity, Sensitivity, AUC, and testing accuracy 

for all proposed models. Based on the results, it can be deduced that concatenation model 2 displayed a 

higher level of performance, achieving an overall accuracy rate of 98.5% compared to concatenation model 1 

and all individual CNN models. The findings demonstrate that the overall accuracy of the proposed model 

increases significantly, reaching its peak accuracy when leveraging multiple features extracted from two robust 

networks, rather than relying solely on the features of each network individually. Furthermore, the optimization 

of training hyperparameters enhances the accuracy of the concatenated proposed model, improving it from 

95.7% to 98.5%. In general, these architectures used within the scope of the study exhibited strong performance 

on the provided dataset, with some potentially showing slightly lower performance. 

 

 

Table 4. Performance metrics for the proposed model with a batch size of 32 and a learning rate of 0.00001 
Models\Metrics ResNet50V2 model 1 MobileNetV2 model 1 Concatenation model 1 

Precision 99.6% 99.3% 99.3% 

Sensitivity 94.5% 95.1% 97.4% 

Specificity 98.9% 98.2% 98.2% 
F1 score 95.6% 97.1% 98.4% 

AUC 96.7% 96.6% 97.8% 

Accuracy 95.7% 95.9% 97.6% 

 

 

Table 5. Performance metrics for the proposed model with a batch size of 64 and a learning rate of 0.0001 
Models\Metrics ResNet50V2 model 2 MobileNetV2 model 2 Concatenation model 2 

Precision 99.6% 97.1% 99.5% 

Sensitivity 96.4% 98.8% 98.4% 
Specificity 98.9% 91.8% 98.6% 

F1 score 97.9% 97.9% 99.1% 
AUC 97.6% 95.3% 98.5% 

Accuracy 97% 97% 98.5% 

 

 

 
 

Figure 6. Comparison of performance metrics for all proposed models when trained with batch sizes and 

learning rates set to 32, 64, and 0.00001, 0.0001, respectively 
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3.3.  Comparative analysis  

In this section, we assess the efficacy of the proposed concatenation model for pediatric pneumonia 

detection and conduct a comparative assessment with state-of-the-art models. The concatenation model, 

which combines two pre-trained models (ResNet50V2 and MobileNetV2), is compared with previous related 

work conducted on the same dataset, as elaborated in Section 1. Table 6 and Figure 7 illustrate a comparison 

between the proposed concatenation model and recent existing models conducted on the [22] dataset. 

Notably, the concatenation model 2 demonstrated a remarkable testing accuracy of 98.5%, surpassing the 

concatenation model 1 and the state-of-the-art models. The optimal experimental outcome is attained by 

training the model with the Adam optimizer, utilizing a learning rate of 0.0001 and a batch size of 64. This 

configuration yields an accuracy of 98.5% on the test data, demonstrating the superior performance of the 

proposed concatenation model. Furthermore, the proposed concatenation model 2 demonstrates competitive 

performance with outstanding precision, sensitivity, specificity, F1 score, and an AUC curve of 99.5%, 

98.4%, 98.6%, 99.1%, and 98.5%, respectively. These findings highlight the efficacy of the proposed 

approach in accurately detecting pediatric pneumonia from CXR images. The outcomes depicted in Table 6 

and Figure 7 suggest that utilizing the concatenation of two pre-trained models (ResNet50V2 and 

MobileNetV2) through TL and optimized hyperparameters notably enhances the accuracy for pneumonia 

detection. ResNet50V2 and MobileNetV2 networks were selected in this study due to their capability to 

achieve high performance with fewer parameters and faster execution time. So, the concatenation of output 

features from both networks proves to be an effective strategy, improving the network's capability to classify 

pneumonia by leveraging information from diverse feature vectors and obtaining deep features, ultimately 

resulting in enhanced accuracy. 
Although the proposed model for detecting pediatric pneumonia disease has been successfully 

implemented and analyzed, achieving highly satisfactory performance, it is essential to note that the 

evaluation is limited to this specific scenario. Therefore, the effectiveness of this method may not generalize 

well to other datasets. However, if other datasets share the same distribution characteristics and samples are 

obtained independently and identically, then the model is likely to perform effectively across those datasets 

as well. 

 

 

Table 6. Comparative results for the obtained model with existing models 
Models Precision% Sensitivity % Specificity% F1 score% AUC% Accuracy% 

Stephen et al. [17] - - - - - 93.7 
El Asnaoui et al. [18] 98.5 94.9 98.4 96.7 - 96.6 

Liang and Zheng [19] 89.1 96.7 - 92.7 - 90.5 

El Zein et al. [20] 100 95.8 100 97.9 98 97.0 
Güler et al. [21] - -  - - 95.73 

Concatenation model 1 99.3 97.4 98.2 98.4 97.8 97.6 

Concatenation model 2 99.5 98.4 98.6 99.1 98.5 98.5 

 

 

 
 

Figure 7. Comparison of the accuracy of the proposed concatenation model with existing models 
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4. CONCLUSION  

This research proposes an accurate concatenation model based on TL and optimizing the training 

hyperparameters that leverage the strengths of ResNet50V2 and MobileNetV2 architectures to detect 

pediatric pneumonia. The combined features extracted from ResNet50V2 and MobileNetV2 significantly 

enhance the network's performance to detect and classify pediatric pneumonia by leveraging deep 

information from both feature vectors. Also, different augmentation techniques are proposed for solving 

imbalanced and limited data. This study proved the importance and benefits of concatenating the output 

features from both networks with optimizing training parameters (such as batch size and learning rate). In 

this paper, we not only introduced a model for pediatric pneumonia detection but also explored, evaluated, 

and compared various architectural approaches to determine the most effective one. Our investigation yielded 

a highly satisfactory detection outcome. Comparing our model with others and state-of-the-art approaches, 

the proposed concatenation model 2 demonstrated superior performance and accuracy in pneumonia 

detection. The best experimental result was achieved by training the model using the Adam optimizer, with a 

learning rate of 0.0001 and a batch size of 64, resulting in an accuracy of 98.5% on the test data. This 

highlights the outstanding performance of our proposed Concatenation Model. 

Although our study has demonstrated promising results in accurately detecting pediatric pneumonia 

diseases through the proposed concatenation method and optimized training parameters, several questions 

remain unanswered. One key inquiry pertains to the model's ability to achieve high accuracy on other 

medical disease datasets. Additionally, future research should focus on evaluating the model's performance 

on pneumonia and other real-world medical disease datasets to assess its adaptability to diverse medical 

conditions. These assessments will offer deeper insights into the potential and limitations of the proposed 

concatenation model, enabling further enhancements and advancements in medical disease detection. 
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