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 Accurate segmentation of myocardial scar tissue on late gadolinium 

enhancement-magnetic cardiac resonance imaging (LGE-CMR) is 

exceptionally vital for clinical applications, enabling precise diagnosis and 

effective treatment of various cardiac diseases, such as myocardial infarction 

and cardiomyopathies. However, the ventricle (LV) variations in the size 

and shape, artifacts, and image resolution of LGE-CMR has made automatic 

segmentation of myocardial scar tissue more challenging. While many 

existing approaches delineate the LV myocardium region using multi-modal 

segmentation, these models may be computationally complex and suffer 

from misalignment. Therefore, this study proposed an automatic dual-stage 

DeepLabV3+ based approach tailored for myocardial scar segmentation on 

short-axis LGE-MRI exclusively. To segment myocardial scar tissue, the 

second stage employs the segmented LV chamber from the previous stage. 

The encoder part of the framework utilizes a MobileNetV2 and ResNet50 

backbone for the first and second segmentation, respectively, aiming for 

optimal resolution of feature maps. Both stages tailor an improved Atrous 

Spatial Pyramid Pooling module in the DeepLabV3+ model with fine-tuned 

dilated atrous rates to effectively extract the LV chamber and myocardial 

scar from the complex LGE-MRI background. Based on the results, the 

proposed dual-stage network recorded an outstanding segmentation 

performance, with mean Dice score of 96.02% for LV chamber segmentation 

and 68.01% for scar tissue extraction. 
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1. INTRODUCTION  

Over the past decades, ischemic heart diseases have steadily manifested as a leading cause of death 

in various countries [1]–[3]. The presence of an infarcted tissue, known as a myocardial scar, is a major 

indicator of ischemic heart disease and can be accurately diagnosed using magnetic resonance imaging 

(MRI). The late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is considered a gold 

https://creativecommons.org/licenses/by-sa/4.0/
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standard technique to evaluate the characteristics of infarcted tissue [4], [5], where fibrotic and scarring 

regions signify an early or current myocardium infarction episode [6]. Nevertheless, LGE-CMR image 

analysis is a laborious task that requires trained professionals' expertise to accurately delineate cardiac 

structures, including the left ventricle and scar regions, within the acquired images to quantify the scar 

transmurality precisely. As the demand for cardiac MRI analysis persistently grows [7], [8], medical experts 

such as radiologists and physicians are burdened with the overwhelming pressure to precisely analyze stacks 

of MR images via a manual approach in a timely manner. Therefore, developing an automated segmentation 

model is essential to assist the increasing interest in medical image analysis. 

Recent studies have demonstrated the effective application of convolution neural networks (CNNs) 

in segmenting medical images across various fields such as breast cancer [9], [10] and lung  segmentation 

[11]. Precise segmentation of the LV region, particularly areas containing scar tissue, provides a robust 

foundation for precise subsequent segmentation of myocardial scar tissue. A comprehensive review of deep 

learning for cardiac image segmentation by Chen et al. [12] revealed that the majority of studies in 

contemporary cardiovascular imaging research employing other modality on short-axis MRI data such as 

cine, T2-weighed, and balanced-steady state free precession (bSSFP) CMR, for delineate the LV region  

[13]–[16] as a predominant strategy, diverging from direct segmentation exclusively on late gadolinium 

enhancement (LGE-CMR) images. This is due to the segmentation of LV region from LGE-CMR images is 

more challenging than other modalities due to the significantly enhanced visual of the scar tissues while the 

signal from healthy tissues is attenuated. Furthermore, the shape and size of the LV significantly vary among 

patients and even from the same patient at different time points increase the difficulty of accurately 

identifying its boundaries. However, the result of their multimode models may need to be revised to prevent 

misaligned registration between LGE and other modalities, and the model may require high computational 

resources.  

Several studies have attempted direct scar segmentation from LGE-CMR images. While Moccia  

et al. [17] demonstrated the first few networks using fully convolutional neural networks (FCNNs), their scar 

segmentation accuracy remained relatively low. Building upon this, Chen et al. [18] employed a U-Net 

model, achieving improved results. However, their analysis was restricted to the middle image slices, 

disregarding crucial basal and apical regions. This work addresses the limitation of previous research by 

incorporating all cardiac image slices, from epicardial to basal, aiming to achieve improved end-to-end scar 

segmentation accuracy on LGE-CMR images. We propose a new automatic dual-stage DeepLabV3+ based 

model and evaluate its performance compared to the original DeepLabV3+ model architecture on the same 

dataset to demonstrate the effectiveness of the proposed framework. The subsequent sections of this paper are 

structured as follows: Section 2 offers details regarding the dataset and the proposed dual-stage segmentation 

model. The results of the experiments are presented in Section 3. Finally, Section 4 draws insightful 

conclusions based on the findings. 

 

 

2. RESEARCH METHOD 

2.1.  Dataset preparation 

The dataset for this study was acquired from the Advanced Medical and Dental Institute (AMDI), 

Universiti Sains Malaysia (USM), Bertam, Pulau Pinang. All images were provided in digital imaging and 

communications in medicine (DICOM) format before being anonymized and converted into bitmap image 

file (bmp) format. For this preliminary study phase, we assembled a dataset of 178 LGE-CMR slices 

randomly from patients who underwent LGE-CMR scan, comprising 117 from pathological cases and 61 

from normal cases. Each image's ground truth was manually segmented by an experienced radiologist, as 

shown in Figure 1. Figure 1(a) shows an example of LGE-CMR image, the corresponding manual 

segmentation of the left ventricle (LV) chamber and the infarcted scar tissue by an experienced radiologist is 

shown in Figure 1(b) and Figure 1(c), respectively. To increase the diversity and variability of the 

pathological slices, we applied geometric transformations such as rotations, resulting in a total of 412 

augmented images. Of these, 60% were used for training, 20% for validation, and the remaining 20% were 

held for separate testing to ensure unbiased performance evaluation. 

 

2.2.  The proposed dual-stage segmentation model 

This study proposed a new automatic dual-stage segmentation model built upon DeepLabV3+ as the 

base model to assist radiologists in segmenting scar tissue for accurate myocardial infarction assessment 

using LGE-MRI. This modification approach assists the segmentation of scar tissues within variation of LV 

region (LV chamber) from intricate backgrounds that frequently interfere with the segmentation process. 

DeepLabV3+ introduced by Chen et al. [19] is an advanced variant of semantic segmentation network, 

consisting of the backbone architecture as a feature extractor, the atrous spatial pyramid pooling (ASPP) 

module, and the decoder. The ASPP module is a vital component in DeepLabV3+ that captures multi-scale 
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contextual information. The original module comprises four convolutional layers, including a 1x1 dilation 

convolution, three 3x3 dilation convolutions with different atrous rates of 1, 6, 12, and 18, and a single global 

average-pooling layer. Building upon the successful DeepLabV3+ architecture, this study proposes an 

enhancement model as illustrated in Figure 2, employing depthwise separable convolutions (DSConv), at 

ASPP modules to effectively segment the anatomical variations of LV chambers and scar segmentation in 

LGE-CMR images. Figure 2 illustrates the encoder-decoder structure of the proposed model. The improved 

ASPP module used in both the LV chamber segmentation model and the scar segmentation model is shown 

for comparison in 2(a) and 2(b). The first stage, LV chamber segmentation, plays a crucial role in isolating 

the target area where infarcted scar tissue is likely present. We named this model DeepLab Tailor to LV 

(DLT-LV). Depthwise separable convolutions are known for their efficiency in reducing computational 

requirements compared to standard convolutions. The DSConv module, depthwise convolution followed by 

pointwise convolution layer. Depthwise convolution applies a 3×3 kernel convolution to each individual 

input channel, while pointwise convolution creates a linear combination of the output feature maps resulting 

from depthwise convolution, integrating cross-channel information [20]. Batch normalization followed by 

rectified linear unit (ReLU) activation function was incorporated after each 1×1 pointwise convolution 

operation to enhance the output quality compared to the output obtained solely from the convolutional layer. 

In addition, we expand the module by introducing a supplementary DSConv unit only in DLT-LV, resulting 

in a comprehensive assembly of five DSConv modules operating in parallel with fine-tuning the dilated 

convolution rates of 1, 2, 6, 12, and 18 to capture sufficient spatial details of this region of interest 

effectively. For the second stage model, modified ASPP consist of four DSConv modules utilized lower 

atrous rates of 1, 2, 3, and 3 for scar tissue segmentation, which smaller atrous dilation rates facilitate 

extracting features from feature maps characterized by a smaller scale. In the decoder part, features from the 

ASPP module were upsampled by a factor of 4 using bilinear interpolation. In addition, low-level features 

from the backbone architecture were subjected to a 1×1 convolution before being concatenated with the 

upsampled features, enriching the segmentation process with rich spatial information. This combination 

significantly enhanced the segmentation accuracy. Eventually, a 3×3 convolution filter was applied, followed 

by upsampling by a factor of 4 to generate the final segmentation prediction.  

The framework of the proposed model is visualized in Figure 3. In the first segmentation stage, 

DLT-LV model extracts the LV chamber, the target area where the myocardial scar is likely present. During 

the second segmentation stage, the model generates a predicted scar tissue mask based on the fusing 

information from the first stage's output and the original image. 

 

 

 
(a) (b) (c) 

 

Figure 1. Example of the (a) short axis of LGE-CMR image, (b) manual LV chamber annotation by an expert 

radiologist and (c) infarcted scar tissue for validation purposes 

 

 

2.2.1. Network backbone 

The network backbone plays an essential role in feature extraction that captures relevant information 

from the input image. This study leveraged pre-trained architectures, renowned for their efficacy and 

efficiency, making it compatible with medical imaging tasks especially when handling limited training 

datasets. We adopted a dual-stage approach: Stage 1 employed MobileNetV2 [21], capitalizing on its 

lightweight design for swift feature extraction and LV chamber identification, minimizing computational 

burden for subsequent stages [22]. Stage 2 utilized ResNet50 [23], to extract finer details necessary for 

segmenting smaller scars [9], [24]–[26]. Both backbones were pre-trained on the ImageNet database and 

fine-tuned on their classification layers. They were then re-trained with our dataset to update the pre-trained 

weights for their specific segmentation task.  
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(a) (b) 

 

Figure 2. The encoder-decoder structure of the proposed model (a) improved ASPP module in LV segmentation 

model (DLT-LV) and (b) improved ASPP module in scar segmentation model. The ‘r’ denotes the atrous rate 

 

 

 
 

Figure 3. Framework of the proposed automatic dual-stage segmentation model 

 

 

2.2.2. Imbalance dataset and loss function 

Pixel ratio imbalance in the myocardial scar segmentation task was resolved by employing 

generalized Dice loss (GDL) function, a class-specific weighting approach, in all network models to control 

each class’s contribution to the overall loss [27]. The GDL function is specifically suited for medical image 

segmentation tasks, as it addresses the challenge of imbalanced class distributions and varying region sizes. 

GDL is also designed to counter the influence of the background on the Dice score, allowing the model to 
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focus effectively on segmenting smaller regions. Smaller regions of higher weights were assigned to each 

class based on the inverse of its expected region area, thus enhancing their significance during the training 

process. GDL is computed as (1). The weighting factor 𝑤𝑘  was calculated as the inverse of the expected 

region area for class 𝑘, aiding in effectively segmenting both large background and small regions in the 

medical images. 

 

GDL(P,g)=1-2 
∑ wk

n

k-1
∑ Pijkgijki,j

∑ wk
n

k-1
∑ Pijk+ ∑ gijki,ji,j

  (1) 

 

where 𝑃𝑖𝑗𝑘  is the predicted probability of class 𝑘 at pixel (𝑖, j), 𝑔𝑖𝑗𝑘 is the corresponding ground truth label 

(binary) of class 𝑘 at pixel (𝑖, j), 𝑤𝑘 is the class-specific weight for class 𝑘, and 𝑛  is the number of classes. 

 

2.3.  Evaluation metrics 

Two standard metrics, the Dice coefficient and the Jaccard index, were used to assess the 

segmentation performance. The Dice coefficient determines the sum of the size of the predicted and ground 

truth regions, while the Jaccard index calculates the combined size of the predicted and ground truth regions 

as the union and takes their ratio. Mathematically, the Dice coefficient and Jaccard index are calculated using 

(2) and (3) based on the true positive (TP), false positive (FP), and false negative (FN) values. 

 

Dice coefficient=
2TP

2TP+FP+FN
   (2) 

 

Jaccard index=
TP

TP+FP+FN
  (3) 

 

The mean Dice score was obtained by evaluating the model’s segmentation performance across 

multiple images. The mean Dice score was chosen as the primary evaluation metric to be discussed in the 

result and discussion section. This decision was based on its higher sensitivity to small variances in the 

overlap and widespread application in medical image segmentation [28]. 

 

2.4.  Algorithm implementation and performance analysis 

The algorithm was implemented using MATLAB software version R2022b. In order to avoid the 

potential impact of hyperparameters, all experiments utilized the Adam optimizer [29] with a fixed learning 

rate of 0.001. The training process was conducted on a computer system equipped with an NVIDIA GeForce 

RTX 3070 GPU and 8 GB of RAM. To further evaluate the significance of the proposed framework, a 

comparative analysis was conducted against the baseline DeepLabV3+ architecture [19] with MobileNetV2 

and ResNet50 backbone for both stages, respectively. 

 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

3.1.  Analysis of left ventricle chamber segmentation 

Table 1 shows the experimental results comparing the proposed DLT-LV model’s performance in 

first stage segmentation against two original DeepLabV3+ architecture as the baseline model. The first 

baseline model uses the same MobileNetV2 backbone as the proposed DLT-LV model, allowing for a direct 

comparison of the modified ASPP module's impact. The second baseline utilizes the more complex Xception 

backbone to assess the lightweight MobileNetV2's capability of achieving high accuracy. Overall, the 

proposed DLT-LV achieved an improved mean Dice score of 96.02% for the LV chamber class, surpassing 

both baseline DeepLabV3+ variants by 1.63% improvement over DeepLabV3+(Xception) and a 1.26% 

enhancement over DeepLabV3+ (MobileNetV2). Notably, the proposed model also achieved a superior 

Jaccard index of 93.15% for the LV chamber, further corroborating its ability to produce highly accurate 

segmentation masks that closely align with ground truth annotations. All models demonstrated exceptional 

performance with a high accuracy rate of over 99% for the background class. The proposed model requires 

only 6.9 million learnable parameters, a significant reduction compared to DeepLabV3+(Xception) with its 

26.8 million parameters. This highlights the proposed backbone model's ability to deliver exceptional 

segmentation accuracy while maintaining a compact and efficient architecture, as a promising solution for 

medical imaging analysis in clinical settings with limited computational resources. 

Figures 4 illustrate the effectiveness of the proposed DLT-LV model for segmenting the different 

scales in the LV chamber (apical, middle, and basal region) compared to two baseline networks. The arrow 

highlights areas where the segmentation outputs deviate from the ground truth. The images reveal the 
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segmentation output of automated segmentation overlay on the original image with 0.4 transparency. All 

networks demonstrated excellent segmentation coverage within the middle LV chamber yet encountered 

challenges in accurately segmenting the top basal and lowest apical area. Notably in these challenging areas, 

the segmentation output of the DLT-LV model may not achieve exact border delineation of the LV chamber 

that perfectly aligns as the ground truth, but it effectively captures all features within the region of interest. 

Hence, the proposed DLT-LV model exhibited a relatively improved segmentation in these challenging areas 

compared to both benchmark models. 

 

 

Table 1. Comparison of the proposed model with baseline DeepLabV3+ model in LV chamber segmentation 
Network (backbone) 

First stage 

 Mean Dice (%) Jaccard index (%) Overall Dice score Total learnable 

parameter/ Million 

 LV chamber Background LV chamber Background 

DeepLabV3+ 

(Xception) 

 94.39 99.81 92.06 99.62 97.10 26.8 

DeepLabV3+ 
(MobileNetV2) 

 94.76 99.80 92.08 99.61 97.28 6.6 

Proposed 

DLT-LV 
(MobileNetV2) 

 96.02 99.83 93.15 99.69 97.93 6.9 

 

 

 
 

Figure 4. The first stage visual LV chamber segmentation results in lowest apical, middle, and basal region 

on LGE-CMR image and its ground truths 

 

 

3.2.  Analysis of scar segmentation 

As shown in Table 2, two combination schemes of original DeepLabV3+(ResNet50) architecture 

model for scar segmentation in was compared with the proposed dual-stage model. The first scheme applied 

the baseline DeepLabV3+(MobileNetV2) model for LV chamber segmentation in the first stage and the 

second scheme used the proposed DLT-LV (MobileNetV2) for LV chamber segmentation in first stage. 

Across all network configurations, the combination models with the proposed DLT-LV model at the first 

stage consistently achieved higher scar Dice scores and Jaccard index compared to the baseline 

DeepLabV3+. This improvement scar Dice scores ranged from 3.72% for proposed DLT-LV with baseline 

DeepLabV3+ (ResNet50) in second stage and to 7.12% for our proposed dual-stage model, demonstrating 

the capability of DeeplabV3+ architecture in capturing scar features, particularly when used our proposed 

DLT-LV as the first stage LV chamber segmentation model. The proposed dual-stage using DeeplabV3+-

based model achieved mean scar Dice scores of 68.01% and Jaccard index of 57.68% outperformed both 

baseline model showing the effectiveness of the improved ASPP module. 
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Table 2. Comparison of the proposed dual-stage model with original DeepLabV3+ architecture in myocardial 

scar segmentation 

 

 

3.3.  Discussion 

Compared to previous works performance as in Table 3, our proposed dual-stage model achieved 

better performance with a mean Dice score of 68.01%. Our model addresses the limitations of previous 

works by using end-to-end global segmentation approach, without cropping the region of interest. 

Furthermore, the dataset utilizes the entire slices range of LGE-CMR images from lowest epical and upper 

basal region making it more practical for real-scenario applications. Regardless, it is essential to acknowledge 

that the comparison with previous works may not be entirely reliable due to variations in datasets, which can 

significantly impact the overall results. Each dataset may exhibit different degrees of complexity and 

variations in imaging quality, influencing the performance of segmentation algorithms. 

 

 

Table 3. Comparison of the proposed dual-stage model with related works in myocardial scar segmentation 
Model Dataset Myocardial scar mean Dice score (%) 

Moccia et al. [17] -FCNNs LGE (private) 55 

Chen et al. [18] -U-net LGE (private) 67 

Dan et al. [30] -Deep Learning  LGE (private)+artificial LGE (GAN) 57 
Our proposed dual stage model LGE (private) 68.01 

 

 

In the first stage segmentation, the DLT-LV model has demonstrated its efficacy as a reliable 

approach for segmenting the LV chamber with higher mean Dice score and Jaccard index above 96% and 

93% respectively. We found that this proposed model is capable in handling variations in LV chamber size, 

particularly at the lowest epicardial and upper basal region. Despite the improvement achieved in the 

subsequent stage, delineating myocardial scar tissue from LGE-CMR images remains a challenging task, as 

evidenced by the mean Dice score still falling below 70%. This challenge arises from the inherent intricacy 

of the scar tissue, the variability in pixel intensities that complicate precise delineation, and the relatively 

small size of the infarcted scar compared to the background class. Although the GDL function addressed the 

imbalanced pixel distribution among the classes, it was only partially effective as it was unable to adequately 

handle the challenges posed by the hard sample problems arises from complex or ambiguous features in 

certain samples, causing difficulty to distinguish from other classes. Furthermore, such images may be rare, 

have unusual characteristics, or fall near the decision class boundary, making them challenging for the model 

to learn due to limited training data. As a result, certain scar regions posed significant difficulty in achieving 

accurate segmentation. 

It is also critical to acknowledge some limitations of this study, which should be further 

investigated. Firstly, the generalization of the proposed model was only applied to a small dataset. Thus, 

further training and validation on larger and diverse datasets must be conducted using the proposed model. 

Additionally, the GDL was the only function utilized in this study. Hence, investigating diverse loss 

functions in handling the hard sample problem will be explored in our future research to improve the scar 

segmentation performance. Despite these limitations, the proposed dual-stage DeepLabV3+ model offers a 

valuable contribution to automated myocardial scar segmentation using LGE-CMR images, promising 

prospects for advancing cardiac image analysis in clinical practice. This research can be further used for 

myocardial infarction quantification diagnosis benefiting patients with cardiac diseases. 

 

 

4. CONCLUSION 

This study introduced a new automatic dual-stage DeepLabV3+-based model for myocardial scar 

tissue segmentation in short-axis LGE-CMR images. By leveraging the strengths of pretrained MobileNetV2 

and ResNet50 as the network backbones and modified ASPP module with lower atrous dilated rates to 

optimize each specific task contributed to precise and reliable segmentation, leading to a Dice score of 

96.02% for LV chamber segmentation and 68.01% for scar tissue extraction. Hence, the proposed dual-stage 

DeepLabV3+ based model demonstrated better performance, surpassing previous works in myocardial scar 

Network (Backbone) Mean Dice (%) Jaccard index (%) Overall 

Dice score First stage Second stage Background Scar Background Scar 

DeepLabV3+(MobileNetV2) DeepLabV3+(ResNet50) 99.87 60.89 99.74 49.93 80.38 

Proposed DLT-LV (MobileNetV2) DeepLabV3+(ResNet50) 99.87 64.61 99.75 53.79 82.24 
Proposed DLT-LV (MobileNetV2) Proposed DeepLabV3+ 

(ResNet50) 

99.88 68.01 99.76 57.68 83.95 
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segmentation in small dataset and has valuable contribution to myocardial scar segmentation, paving the way 

for enhanced clinical applications in cardiac image analysis.  
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