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 The detection of coronavirus disease (COVID-19) using standard laboratory 

tests, such as reverse transcription polymerase chain reaction (RT-PCR), is 

time-consuming. Complex medical imaging problems are currently being 

solved using machine learning and deep learning techniques. Our proposed 

solution utilizes chest radiography imaging techniques, which have shown to 

be a faster alternative for detecting COVID-19. We present an efficient and 

lightweight deep learning architecture for identifying COVID-19 using chest 

X-ray images which achieve 99.81% accuracy in intra-database testing and 

100% accuracy in cross-validation testing on a separate data set. The results 

demonstrate the potential of our proposed model as a reliable tool for 

COVID-19 diagnosis using chest X-ray images, which can have a significant 

impact on improving the efficiency of COVID-19 diagnosis and treatment. 
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1. INTRODUCTION 

The severe acute respiratory syndrome coronavirus (SARS-CoV-2, COVID-19 in short) is a new 

virus causing lung sickness which spread worldwide rapidly including Bangladesh [1] and was declared a 

world pandemic and crisis by the World Health Organization (WHO). There are two types of tests to 

diagnose COVID-19, antigen test and molecular/polymerase chain reaction (PCR) test. Antigen test is quick 

and less expensive but is comparatively less accurate [2]. On the other hand, the molecular test requires 

expensive machines, highly trained personnel, and specific reagents. Both tests need to transport samples 

from the hospital to the lab, which may require some time. Therefore, it is necessary to initiate an automated 

detection system to identify the presence of anomalies in collected samples (near) real-time. 

Chest X-ray and computed tomography (CT) image-based COVID-19 classification methods are 

relatively easily accessible, cost-effective, and faster clinical methods [3], [4]. These images are being used 

in detecting various respiratory diseases including COVID-19 using machine learning and deep learning 

algorithms [5]–[9]. AlexNet was found to achieve 98% and 94.1% accuracy in COVID-19 detection from  

X-ray and CT images respectively [10]. Kang et al. [11] used a neural network-based approach which 

achieved accuracy and sensitivity of 95.5% and 96.6% respectively. Xu et al. [12] used a summation of 

location-attention technique and 3D ResNet-18 to identify COVID-19 from CT images and got an overall 

86.7% accuracy. The tempered inception architecture was proposed by [13] to detect COVID-19 from CT 
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images which yield 79.3% accuracy and 0.67 sensitivity. A model based on a multi-layer perceptron followed 

by an long short-term memory (LSTM) layer is used by Fang et al. [14] and acquired a 0.95 area under the 

curve (AUC) score. In another paper [15] 2D convolutional neural network (CNN) is applied to classify the 

COVID-19 cases using the CT chest images and achieved an accuracy and AUC score of 94.98% and 

97.91% respectively. Jin et al. [16] combined ResNet-50 and 3D UNet++ from ten thousand chest CT 

volumes and achieved a 97.77% AUC score for the 1943 testing data set. Afshar et al. [17] proposed the 

COVID-CAPS model, a variant of CapsuleNet, which was pre-trained on natural image data and fine-tuned 

using X-ray images and gained accuracy, sensitivity, and AUC score of 98%, 80%, and 0.97 respectively. 

Song et al. [18] worked with the dynamic radius-encoding neural network (DRE-Net) method on chest CT 

images and obtained 86% accuracy. Zheng et al. [19] proposed UNet+3D deep network and obtained 90% 

accuracy on 630 CT images where 499 images were used for training and 131 images were for testing. Since 

X-ray images are of particular interest in this study, the below section describes COVID-19 detection studies 

based on X-ray images. Many researchers use deep learning models for COVID-19 detection from X-ray 

images. Hemdan et al. [20] used seven types of pre-trained CNN models namely VGG16, DenseNet201, 

ResNetV2, InceptionV3, InceptionResNetV2, Xception, and MobileNetV2 and they used only 50 images 

where there were 50% normal and 50% COVID-19 positive images. Among all the models, they got the 

highest 90% accuracy for both VGG16 and DenseNet201. Another study [21] used VGG-19 models along 

with binary robust invariant scalable key-points (BRISK) algorithm and achieved 96.60% detection accuracy. 

Apostolopoulos et al. [22] designed a CNN model to group COVID-19 cases and gain a better testing 

accuracy of 93.48% for 3 class classifications (such as COVID, pneumonia, and normal) and 98.75% for 

binary class classification (such as COVID and normal). Ucar and Korkmaz [23] proposed a model, 

COVIDiagnosis-Net, based on SqueezeNet and taking the Bayesian optimizer and getting 98.3% testing 

accuracy for 3-class classification. In another study [24], ResNet-50 which is a pre-trained architecture has 

been applied on a small X-ray chest data set with an accuracy of 98% on a data set of 100 images where there 

are 50 normal images and 50 COVID-19 positive images. Sethy et al. [25] extracted features using ResNet50 

and used support vector machine (SVM) as a classifier which yields 95.38% detection accuracy on a limited 

dataset of 50 images. Ozturk evaluated a network using deep learning (DL), called DarkCOVIDNet which 

has 17 convolution layers that can diagnose COVID-19 automatically by analyzing X-ray images [26]. The 

model obtained a better accuracy that is 87.02% and 98.08% for 2 types of class, one is multi-class having 

COVID-positive, pneumonia-affected, and normal images and another is two-class having COVID and 

normal images. Wang et al. [27] proposed COVIDNet, a ResNet-based 19-layer architecture, which acquired 

93.3% accuracy on the chest X-ray data set. Togacar et al. [28] utilized social mimic optimization-based 

feature extraction using two deep learning models - MobileNetV2 and SqueezeNet and later used SVM for 

classification which achieved 99.27% accuracy. In [29] a 22-layer CNN model was proposed for detecting 2, 

3, and 4-class classification and obtained accuracy values 99.1%, 94.2%, and 91.2% respectively. 

Most of the deep learning studies in the literature used pre-trained models in detecting COVID-19 

from the images of the chest X-ray data set. Parameters from already trained models are fixed and only the 

upper layers including the decision layer can be fine-tuned with currently limited samples. Although the time 

and space complexity of transfer learned models follow the similar complexity of the original models, 

sometimes the transfer learning process itself and the description and amount of limited training samples 

remain unclear. In addition, the selection of a suitable transfer learning model often did not consider a large 

number of state-of-the-art models. Thus, building a minimal (such as least time and space complexity) but 

efficient deep learning model has been the prime focus in this study, which performs similarly to the transfer 

learning models and generalizes well across unknown test data sets. In this study, we put forward three key 

contributions, i) we introduce an efficient lightweight model for rapid identification of COVID-affected cases, 

ii) the generalizability of the proposed model is judged with a 2nd data set, and iii) the performance, 

complexity, and generalizability of the state-of-the-art transfer learning models are evaluated. 

 

 

2. METHOD 

The problem formulated, in this study, as a binary classification problem. Where the input is chest 

X-ray images and the output is a binary decision (such as COVID-19 vs normal). Figure 1 shows the overall 

system flow which includes dataset collection, pre-processing, CNN model, classification, decision-making, 

and performance analysis. 

 

2.1. Dataset 

We collected two types of datasets from kaggle.com [30], [31]. Which consist of images related to 

chest X-rays of COVID-19-positive and normal subjects. Where the first data set has 2,159 images and the 

other data set has 96 images. 
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Figure 1. Overall system flow 
 

 

2.2. Pre-processing 

The input images used were of different sizes. That is why the first step was to resize all the images 

to 224×224 to unify the input shape for the model. Then we scaled the images by dividing them by 255 to get 

a value between 0 to 1 for all pixels. 
 

2.3. Proposed model 

Size and the number of kernels is the key hyperparameters of all convolution operations. We use 

1×1, 3×3, and 7×7 kernels to build our architecture. The no of kernel tells about the depth of the output 

feature maps and we use 64, 128, and 256 respectively. We use a 7×7 kernel as a larger kernel removes more 

noise from the image [32]. But, this larger kernel size has a disadvantage. It blurs out edges more than 3×3 

kernel size. That means the 7×7 kernel removes more noise but can extract less information from the image. 

That is why a 3×3 kernel is used to extract information from the images. Before applying the 3×3 kernel, we 

use a 1×1 kernel, as it down-samples the input and produces smaller feature vectors for 3×3 convolution to 

work on. By reducing the no of parameters, we are reducing the no of unrelated features possible. This helps 

the model to learn features common to different situations and so to generalize better. We define padding as 

the same for the layer’s outputs will have the same spatial dimensions as its inputs. The outputs of 

convolution layers are then passed through a linear activation function. We use the rectified linear unit 

(ReLU) that determines the function: 𝑓(𝑎) = maximum (0, a). We use max pooling and the size of the filter 

is 2×2 with a stride of 2 which down-samples the dimension of feature maps by a factor of 2. In fully 

connected layer output feature maps are converted into a 1D (one-dimension) array and each input is 

connected with every output by a learnable weight. Our first dense layer has 224 neurons and the final fully 

connected layer has two nodes as we are classifying two types of images. Dropouts reduce the chances of 

over-fitting by dropping neurons. Here we use 0.2 as it gives us a better performance. We use the sigmoid 

function in the decision-making layer which normalizes output real value from zero to one and the 

summation of all values is 1. If the value is greater than or equal to 0.5 then the model predicts the output as 

COVID positive otherwise non-COVID for a particular image. Table 1 summaries of models. Figure 2 

summarizes the CNN model architecture which consists of an initial single convolution layer followed by 3 

blocks of layers followed by a final dense layer. Also, the summary of our model is given below: 
 

 

Table 1. Summary of our model 
Layer Output shape Parameters 

conv2d input (InputLayer) [(None, 224, 224, 3)] 0 

conv2d (Conv2D) (None, 224, 224, 64) 9472 
max-pooling2d (MaxPooling2D) (None, 112, 112, 64) 0 

conv2d 1 (Conv2D) (None, 112, 112, 64) 4160 

conv2d 2 (Conv2D) (None, 112, 112, 64) 36928 
max-pooling2d (MaxPooling2D) (None, 56, 56, 64) 0 

conv2d 3 (Conv2D) (None, 56, 56, 128) 8320 

conv2d 4 (Conv2D) (None, 56, 56, 128) 147584 
max-pooling2d (MaxPooling2D) (None, 28, 28, 128) 0 

conv2d 5 (Conv2D) (None, 28, 28, 256) 33024 

conv2d 6 (Conv2D) (None, 28, 28, 256) 590080 
max-pooling2d (MaxPooling2D) (None, 14, 14, 256) 0 

flatten (Flatten) (None, 50176) 0 

dense (Dense) (None, 224) 11239648 
dropout (Dropout) (None, 224) 0 

dense 1 (Dense) (None, 1) 225 

Total parameters: 12069441   
Trainable parameters: 12069441   

Non-trainable parameters: 0   
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Figure 2. Proposed CNN architecture 

 

 

2.4. Model training 

We use 1,726 images (COVID-460 images and normal-1266 images) which is about 70% of our total 

dataset-1 to train our model. We also use 5-fold cross-validation to get a more accurate result with this medium 

range of datasets. In this respect, at first 100 epochs are used and also early stopping. We observe that 17 

epochs are executed with patient=5. So, we use 20 epochs for all the models. We use the Adam optimizer for 

updating the weights, binary cross-entropy loss, and the default learning rate of 0.001. 

 

2.5. Model testing 

Model testing usually entails evaluating a trained model’s resilience, generalization capacity, and 

predictive accuracy using a variety of datasets. We use the rest of the 30% images of dataset-1 as testing 

where there are 433 images (116 COVID images and 317 normal images). To observe how our model is 

generalized, we used an additional dataset (we call it dataset-2) where there are 96 images (30 COVID images 

and 66 normal images). 

 

 

3. RESULTS AND DISCUSSION 

This section narrates the experimental results, and performance of VGG19, ResNet50, ResNet101, 

NasNetMobile, and our proposed model separately and traces the best suitable model for the detection of 

COVID-19 performed on chest X-ray dataset. We evaluate the performances based on accuracy, precision,  

re- call, and F-1 score which can be computed by counting the number of accurate predictions using the terms 

true/false position/negative, where true positive (TP) indicates that a COVID case is truly identified as 

COVID, true negative (TN) indicates that a normal instance is truly identified as normal, false positive (FP) 

indicates that the event is normal and is identified as COVID-19, and false negative (FN) indicates that the 

thing is COVID and is identified as normal. Precision (P) is the ratio of TP to the summation of TP and FP. 

recall (R) is the ratio of TP to the summation of TP and FN F-1 score (F1) is the harmonic mean of the 

previous two terms which are precision and recall. The correctness of our model is assessed by performing 

the experiment. 

Table 2 describes the results acquired by diverse popular CNN transfer learning models to diagnose 

COVID-19 automatically by using Chest X-ray images. It can be observed that VGG-19 outperforms in both 

accuracy and F1 score which are 99.54% and 98.68% for dataset 1. Whereas ResNet-101 has the lowest 

accuracy and F1 score of 86% and 84.50% respectively. 

Figure 3 describes the training and testing accuracy when we use 100 epochs (using 11 CNN layers) 

and set the early stopping at patient=5 based on the validation accuracy. The X-axis denotes the number of 

epochs and Y-axis represents accuracy. If the model does not get higher testing accuracy than the previous 

one for consecutive 5 times, then the learning is stopped. For the training part, from the figure, it can be seen 
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that at first the accuracy is below 75% but it increases dramatically at the 2nd epoch and achieves about 90% 

accuracy and at the end, it achieves about 99%. The testing part, it is also seen some fluctuation. Though the 

beginning testing accuracy is near 80%, it increases by about 14% from the previous one. After epoch 10 the 

model is unable to increase the accuracy for the next 5 consecutive epochs and stops. The same types of 

results are experienced for the 10 layers, 8 layers, 7 layers, 6 layers, and 5 layers CNN model. That is why we 

use 20 epochs for our next experiments instead of 100 epochs. 

From Figure 4 it can be observed that all the CNN architectures performed well in terms of 5-fold 

average testing accuracy and 7 layers CNN architecture has the highest value which is 99.81%. On the other 

hand, for cross-validation, some fluctuations in accuracy were observed. At first, for 11-layer CNN, the 

accuracy is 98.96% then it goes down for 10-layer CNN which is about 82% and for 7-layer CNN it hits the 

highest point (100% accuracy). Then again it shows some downfall and reaches the lower point in 5 layers 

CNN which is about 72%. 

Figure 5 describes the number of trainable parameters in terms of layers where the X-axis represents 

the number of layers and the Y-axis represents the number of trainable parameters. The curve shows some 

fluctuations. When the number of layers of CNN architecture is 11 then the trainable parameter is 27,507,265 

but it falls dramatically when we reduce one layer. For, the 8-layer CNN architecture the number of trainable 

parameters increases instantly and achieves the highest value which is 46,050,881. 

 

 

Table 2. Performances of different transfer learning models 
Model name Dataset 1 Dataset 2 

Accuracy F1 score  Accuracy F1-score 

VGG-19 99.54 98.68 98.96 98.50 

ResNet-50 99.00 98.50 76.08 76.50 
ResNet-101 86.00 84.50 62.50 62.00 

NasNetMobile 99.00 98.50 98.96 98.50 

 

 

 
 

Figure 3. Training and testing accuracy with early stopping 

 

 

 
 

Figure 4. Accuracy in different layers CNN model for dataset-1 and dataset-2 
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Figure 5. Number of trainable parameters in different CNN architectures 

 

 

Table 3 describes the precision, recall, F1-score, and support for CNN architectures of different 

depths for cross-validation datasets. We get the best result for 7 layers of CNN architecture where for both 

true and false, we get 100% accurate results in terms of precision, recall, and f1 score. On the other hand, we 

get the lowest values for 5-layers of CNN architecture. 11-layer CNN architecture achieve the 2nd highest 

F1-score which is 0.99. 

Figure 6 shows the confusion metrics of our proposed CNN architecture. Table 4 describes weighted 

memory and execution time for some popular transfer learning CNN mod els and our proposed CNN model. 

For the execution time, all the samples of dataset 2 are used (96 images). It can be seen that our model has 

the lowest weight which is 23,808 and execution time is 4 seconds which is the lowest. VGG-19 has the 

second-highest weight which is 154,112 but it takes the highest execution time of 42.02 seconds. 

NasNetMobile has the highest amount of weights but it takes less time to classify the images which is about 7 

seconds. 

 

 

Table 3. Precision, recall, F1 Score and support of different layers CNN architecture for dataset-2 
Model Precision Recall F1-score 

11 layer 0.975 0.985 0.985 

10 layer 0.87 0.82 0.812 

8 layer 0.96 0.93 0.94 

7 layer 1.00 1.00 1.00 

6 layer 0.985 0.97 0.975 

5 layer 0.795 0.765 0.715 

 

 

 
 

Figure 6. Confusion matrix of 7 layers CNN model 

 

 

Table 4. Weighted memory and execution time of different models for dataset-2 
Model Weights (convolution layers) Execution time (seconds) 

VGG-19 154,112 42.02 

ResNet-50 390,144 25.08 
ResNet-101 390,144 15.12 

NasNetMobile 1,013,888 7.08 

Ours 23,808 4.00 
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4. DISCUSSION 

From the result section it is seen that pre-trained deep convolution neural networks perform well for 

chest X-ray imaging problems. But we tried to address a question, is it possible to do better or similar by 

using a lightweight model with less run time? For this, we have built a lightweight CNN model that generalizes 

well and outperforms, or at least performs at the same level as, the pre-trained models. VGG-19 is one of the 

most popular transfer learning CNN models to solve real-world deep learning problems and in our COVID-19 

detection problem, it performs best. Because VGG-19 uses higher convolution layers and only one kernel size 

(3×3) and for the non-linear multiple layers the depth of the network increases and it is possible for the 

architecture to learn more complicated features. In dataset 2, VGG-19 correctly identified almost all the 

images which is why the accuracy and F1 score are near to 100%. However, ResNet-101 cannot identify the 

true negative (normal images) properly and gives an accuracy of 62.50%. Because ResNet works on the basis 

of the skip connection technique and sometimes memorizes the training data instead of realizing the feature 

[33]. So, this model may perform worse for a limited dataset as used in this study. 

Regarding searching for a lightweight CNN model, we investigated different possible architectures 

and found a more efficient and generalized CNN model that performs well in terms of time and space 

complexity. In this respect, we use CNN architectures with six different depths including 11-layer, 10-layer, 

8-layer, 7-layer, 6-layer, and 5-layer CNN models. From the experiment, we observed that the CNN model 

with 7-layers performed best. For the 7-layer CNN model, the average testing accuracy for dataset-1 is 

99.81% and for dataset-2 this accuracy is 100%. That means the 7-layer CNN model generalizes best for the 

identification of COVID-19 chest X-ray images. Though we do not use more layers as compared to VGG-19 

(which gives 98.96% accuracy for dataset-2), we were able to achieve the best result. We use a 7×7 kernel as 

our first input layer which helps us to remove the noise from the images and a 1×1 kernel which down-

samples the input and helps us to extract information. When we increase the layers by adding another layer  

(8 layers CNN model) the number of trainable parameters increased by about 4 times but the accuracy 

decreased. That means it is not mandatory to get higher accuracy with the help of a higher number of 

trainable parameters and we can get better accuracy by using a suitable architecture. For the 11-layer CNN 

model, the average testing accuracy is 99.074% for dataset-1 and the total training parameters are 27,507,265 

which is the 2nd highest, and achieved 98.96% cross-validation accuracy for dataset-2. For 10 CNN layers, 

the trainable parameters are 9,597,505 which yields similar testing performance for dataset-1 but for dataset-

2 the validation accuracy decreased by about 16%. We reduced the last layer (used in the 11-layer CNN 

model) which contains a 1×1 kernel and this kernel is used to produce smaller feature vectors for which the 

performance dropped. CNN model with 7-layer depth seems suitable for the current study and any shallow or 

deep version yields poor accuracy, thus we finally use the 7-layer CNN model as our proposed model. 

For both datasets 1 and 2, transfer learning (TL) architectures perform well as they are already pre- 

trained by the image-net dataset. The main favor of this TL is that the models are already generalized for the 

classification problems by extracting features for a target problem where there is insufficient data. On the 

other hand, the customized model seems to perform better for both sufficient and insufficient data. Initially, 

most of the customized models cannot start with higher accuracy as transfer learning but as they learn 

through training epochs, their learning increases and is found to achieve similar performances to the transfer 

learning models. 

 

 

Table 5. Comparison between different state of art models and our model 
Name K-fold Methodology ACC (2-class) ACC (multi-class) 

Ozturk et al. [26] 5- fold 17 layers CNN (DarkCOVIDNet) 98.08% 87.02% 

Wang et al. [27] NA 19 layers CNN (ResNet variant) - 93.30% 

Togacar et al. [28] 5- fold MobileNetV2-SqueezeNet & SVM 99.27% - 

Hussain et. al. [29] 5- fold 22 layers CNN 99.1% 94.2% 
Ours 5- fold 7 layers CNN 100% - 

 

 

From Table 5 it is seen that four state-of-the-art CNN models proposed by different authors can 

identify COVID with > 87% accuracy using chest X-ray images. Hussain et al. [29] got a higher accuracy of 

99.1% for binary classification by using 22 22-layer CNN model. On the other hand, our model outperformed 

by achieving 100% accuracy with only a 7-layer deep CNN model which has a comparatively small memory 

footprint. Our proposed model provides similar performance to some existing transfer learning models but in 

terms of time and space complexity, our model performs better than the others, see in Table 4. Considering the 

space complexity, for a convolution layer the weighted memory can be calculated from the kernel size  

(𝑛 × 𝑛), no of filters (𝑓), no of channels (𝑐), and image shape [34]. 
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𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 = ∑ (𝑛𝑖 ∗ 𝑛𝑖 ) ∗  𝑓𝑖
𝑥
𝑖=1 ∗ 𝑐𝑖 (1) 

 

where x is the total number of layers in the architecture. In our model, the weights of the first convolution 

layer is 9,472 (7×7 kernel, 64 filters, 3 channels and 224×224 image shape, yields 7×7×3×64+64=9,472), the 

second convolution layer is 256(=1×1×3×64+64), the third convolution layer is 1792(=3×3×3×64+64), the 

fourth to seventh layers are 512, 3,584, 1,024 and 7,168 respectively which yields a total weight of 23,808. 

The weights will be increased if the convolution layer increases. For the other models (TL models in  

Table 4), the no of convolution layer is higher than our proposed model, so the total weights are also higher 

which consumes more memory. 

 

 

5. CONCLUSION 

In this study, we propound a light weighted CNN model for predicting and classifying COVID-19 

vs normal X-ray images. The exploration results conclude that our model is best suited for the prediction of 

COVID-19. Our proposed model is susceptible to redact binary classification tasks with an accuracy of 

100%. The performance evaluation argues that it outsails some similar existing models. According to these 

results, our proposed model seems to be an applicable tool that can lend a helping hand to the medical staff to 

diagnose and predict COVID-19 infection cases in a measurable time which will allow them to make faster 

decisions about the quarantine of patients. Also, it may reduce the pressure on medical staff and quicken the 

process of identifying COVID-19 events. The utility of our mentioned model for coronavirus detection can 

also be thought to be useful for other chest-related disease detection including tuberculosis and pneumonia, 

however, this requires further investigation to ascertain, which forms a natural extension of current work. The 

main attenuation of this study is that the model is underpinned using an average number of COVID-19 

samples and we plan to validate our approach using a large and diverse dataset. 
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