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 This paper proposes an efficient extension of functional links artificial neural 
networks (EE-FLANN) for the active noise control (ANC) application. The 

developed EE-FLANN controller can upgrade the model accuracy with the 
actual system thanks to adding the cross-terms to the trigonometric function. 
Unlike the method in the generalized FLANN (GFLANN) controller, the 
EE-FLANN exploits include cross-term symmetry. However, this causes the 
computational burden to increase remarkably. To reduce this disadvantage, 
we truncate the cross-terms appropriately based on the simplified strategy. 
Furthermore, the adaptive algorithm is designed to partially update the filter 
coefficients appropriately. Specifically, the cross-terms that do not satisfy 

certain magnitude conditions will be omitted during the update process to 
reduce costs. Experiments have shown that the proposed EE-FLANN 
controller can achieve comparable performance to the GFLANN controller 
but the complexity is reduced by up to 20%. 

Keywords: 

Active noise control 

Functional links artificial 

neural networks 

Generalized functional links 
artificial neural networks 

Nonlinear filter 

Partial update 
This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Dinh Cong Le 

School of Engineering and Technology, Vinh University 

Vinh 43108, Vietnam  

Email: ldcong@vinhuni.edu.vn 

 

 

1. INTRODUCTION 

Research on noise-canceling has been receiving special attention from many scholars around the 

world [1]–[5]. There are two basic methods for this problem. The passive noise control (PNC) method uses 

soundproofing or sound-absorbing materials to reduce high-frequency noise sources [3]. Whereas, the active 

noise control (ANC) exploits the interference properties of two sound waves to suppress low-frequency 
noise. Linear controllers (e.g., finite impulse response (FIR)) have been widely used in traditional ANC 

applications [2], [3]. However, to compensate for nonlinear distortions arising in the system, nonlinear 

controllers have been adopted to replace the FIR controller [5]. Prominent among these systems are 

controllers based on artificial neural networks (ANN), multilayer perceptron networks (MLPs), Volterra, 

functional links artificial neural networks (FLANN) [5]. 

Many studies in [6]–[8] have shown that the FLANN is an effective alternative to the MLPs. Its 

structure includes trigonometric extension functions, has no hidden layers and thus computational complexity is 

lower than that of the MLPs. The FLANN has been applied for nonlinear identification, signal prediction, and 

acoustic echo cancellation [6]–[12]. The FLANN-based ANC system was first developed by Das and Panda in 

2004 [13] and pointed out to be effective in reducing noise for systems containing nonlinearity. After the work 

[13], many improved FLANN controllers were developed [14]–[19]. In study [14], a recursive FLANN filter 
with a stability condition was introduced. Two structures based on feedback FLANN (FFLANN) have been 

presented in [15]. The FLANN filters with exponentially varying sinusoidal nonlinearity have been developed 

in [16], [17]. Several schemes based on the convex combination FLANN have also been proposed in literatures 

https://creativecommons.org/licenses/by-sa/4.0/
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[18], [19]. However, because the nature of FLANN is a point-wise expansion function [14], [20], its 

performance is degraded when the system contains the memory nonlinearity. Additionally, the influence of 

memory nonlinearity in ANC systems is remarkable. To mitigate this disadvantage, the authors in [20] 

developed the GFLANN structure based on exploiting cross-terms. Thanks to this idea, many improved 

structures of the GFLANN have been given in [21]–[25]. 

This paper develops an EE-FLANN structure for nonlinear ANC based on efficient exploitation of 
the cross-terms. The cross-terms are formed based on the comprehensive model and the suitable selection 

technique. In addition, to mitigate the computational costs for the EE-FLANN controller, the M-max partial 

update strategy has been adopted. Many computational simulations have been performed to evaluate the 

proposed EE-FLANN controller for the ANC system. The rest of this study includes: section 2 proposes  

EE-FLANN structure for the ANC system, section 3 analyzes the computational cost, section 4 presents 

simulation experiments; and section 5 is the conclusion. 

 

 

2. PROPOSED CONTROLLER 

Figure 1 illustrates the GFLANN filter-based ANC system that was developed in [20]. Here, the 

GFLANN is the nonlinear controller; the 𝑃(𝑧) denotes transmission line between input signal 𝑋(𝑛) and 

primary noise 𝑑(𝑛); the 𝑆(𝑧) denotes transmission line between the output of the controller 𝑦(𝑛) and the 

estimate of 𝑑(𝑛); 𝑒(𝑛) illustrates the residual noise. This paper presents another implementation for 

exploiting the cross-terms, which differs from the approach taken in [20]. Furthermore, the study adopts a 

simplified strategy described in [26] to truncate the cross-terms and employs the partial update algorithm to 

reduce computational complexity. 
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Figure 1. Illustrates the GFLANN filter-based ANC system 

 

  

2.1.  EE-FLANN structure 

As reported in [20], the FLANN structure can improve the capabilities of nonlinear signal 

processing when adding the cross-terms into its extension function. However, the strategy uses cross-terms 

that will affect the performance and complexity. Assuming 𝑋(𝑛) = [𝑥(𝑛)𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝑁 + 2)𝑥(𝑛 −
𝑁 + 1)]𝑇 denotes 𝑁 external input signal, the expansion of FLANN is described by (1). 

 

𝑦𝐹𝐿𝐴𝑁𝑁(𝑛) = ∑ 𝜑𝑖(𝑛)𝑁−1
𝑖=0 𝑥(𝑛 − 𝑖) + ∑ ∑ 𝜓1𝑏𝑖

𝑁−1
𝑖=0 (𝑛) 𝑠𝑖𝑛( 𝑏𝜋𝑥(𝑛 − 𝑖))𝐵

𝑏=1 +
∑ ∑ 𝜓2𝑏𝑖

𝑁−1
𝑖=0 (𝑛) 𝑐𝑜𝑠( 𝑏𝜋𝑥(𝑛 − 𝑖))𝐵

𝑏=1    (1) 

 

where 
𝑖
(𝑛),1𝑏𝑖(𝑛),2𝑏𝑖(𝑛) denote the coefficients corresponding to the expanded input samples 

including the linear and the 𝑠𝑖𝑛(), 𝑐𝑜𝑠() parts; 𝐵 denotes order of the FLANN. This paper adds the cross-

terms to the first-order FLANN structure according to the following manning: 

 

𝑦(𝑛) = ∑ 𝜑𝑖(𝑛)𝑁−1
𝑖=0 𝑥(𝑛 − 𝑖) + ∑ 𝜓1𝑖

𝑁−1
𝑖=0 (𝑛) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 𝑖)) + ∑ 𝜓2𝑖

𝑁−1
𝑖=0 (𝑛) 𝑐𝑜𝑠( 𝜋𝑥(𝑛 − 𝑖)) +  

 

∑ ∑ 𝜏1𝑖,𝑗
𝑁−1
𝑣=1

𝑁−1
𝑡=0 (𝑛)𝑥(𝑛 − 𝑡) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 𝑣)) + ∑ ∑ 𝜏2𝑖,𝑗

𝑁−1
𝑣=1

𝑁−1
𝑡=0 (𝑛)𝑥(𝑛 − 𝑡) 𝑐𝑜𝑠( 𝜋𝑥(𝑛 − 𝑣))  (2) 

 

where 𝜏1𝑖,𝑗, 𝜏2𝑖,𝑗 denote the weights of the cross-terms.  

As mentioned above, adding cross-terms to the FLANN expansion function can increase the 

computational cost. Sicuranza and Carini [20] used a method similar to that implemented in the Volterra 

filter to reduce computational cost. By adopting the strategy of the bilinear filter [26], the cross-terms in this 

study are truncated to, 
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𝑦(𝑛) = ∑ 𝜑𝑖(𝑛)𝑁−1
𝑖=0 𝑥(𝑛 − 𝑖) + ∑ 𝜓1𝑖

𝑁−1
𝑖=0 (𝑛) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 𝑖)) + ∑ 𝜓2𝑖

𝑁−1
𝑖=0 (𝑛) 𝑐𝑜𝑠( 𝜋𝑥(𝑛 − 𝑖)) +  

 

∑ ∑ 𝜏1𝑖,𝑗
𝑁−1
𝑣=0

𝑅2
𝑡=𝑅1

(𝑛)𝑥(𝑛 − 𝑡) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 𝑣)) + ∑ ∑ 𝜏2𝑖,𝑗
𝑁−1
𝑣=0

𝑅2
𝑡=𝑅1

(𝑛)𝑥(𝑛 − 𝑡) 𝑐𝑜𝑠( 𝜋𝑥(𝑛 − 𝑣))  (3) 

 

where 𝑅1 = 𝑁/2− 𝛬; 𝑅2 = 𝑁/2 + 𝛬;  𝛬 < 𝑁/2 represents the choice parameter of the cross terms, 

 is truncation operation [26]. Equation (3) represents the model of the proposed EE-FLANN structure. 

Refer to the method in [22], we represent (3) in vector form as (4):  

 

𝑦(𝑛) = 𝛷𝑇(𝑛)𝑋(𝑛) + 𝛹1𝑇(𝑛)𝑋1(𝑛) + 𝛹2𝑇(𝑛)𝑋2(𝑛) + 𝛵1𝑇(𝑛)𝑋3(𝑛) + 𝛵2𝑇(𝑛)𝑋4(𝑛)  (4) 

 

where the coefficient and signal vectors are expressed as (5)-(10). 

 

𝛷(𝑛) = [𝜑0(𝑛) 𝜑1(𝑛), . . . . , 𝜑𝑁−1(𝑛)]𝑇   (5) 

 

𝑋(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1), . . . . , 𝑥(𝑛 − 𝑁 + 1)]𝑇  (6) 

 

𝛹1(𝑛) = [𝜓10(𝑛) 𝜓11(𝑛), . . . . . , 𝜓1𝑁−1(𝑛)]𝑇  (7) 

 

𝑋1(𝑛) = [𝑠𝑖𝑛( 𝜋𝑥(𝑛)) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 1)), . . . . , 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 𝑁 + 1))]𝑇  (8) 

 

𝛹2(𝑛) = [𝜓20(𝑛) 𝜓21(𝑛), . . . . , 𝜓2𝑁−1(𝑛)]𝑇    (9) 

 

𝑋2(𝑛) = [𝑐𝑜𝑠( 𝜋𝑥(𝑛)) 𝑐𝑜𝑠( 𝜋𝑥(𝑛 − 1)), . . . . . . , 𝑐𝑜𝑠( 𝜋𝑥(𝑛 − 𝑁 + 1))]𝑇 (10) 

 

Notice that the coefficients vector T1(n) consists of the following vectors: 

 

𝛵1(𝑛) = [𝛵1𝑅1(𝑛)𝑇𝛵1𝑅1+1(𝑛)𝑇 , . . . . . , 𝛵1𝑅2(𝑛)𝑇]𝑇 (11) 

 

where 

 

𝛵1𝑅1(𝑛) = [𝜏1𝑅1,1(𝑛) 𝜏1𝑅1,2(𝑛) ⋯ 𝜏1𝑅1,𝑁(𝑛) ]𝑇 (12) 

 

𝛵1𝑅1+1(𝑛) = [𝜏1𝑅1+1,1(𝑛) 𝜏1𝑅1+1,2(𝑛) ⋯ 𝜏1𝑅1+1,𝑁(𝑛) ]𝑇 (13) 

 

𝑀 =  𝑀 

𝛵1𝑅2(𝑛) = [𝜏1𝑅2,1(𝑛) 𝜏1𝑅2,2(𝑛) ⋯ 𝜏1𝑅2,𝑁(𝑛) ]𝑇 (14) 

 

Corresponding to the vector T1(n), the input samples X3(n) include the following vectors: 

 

𝑋3(𝑛) = [𝑋3𝑅1(𝑛)𝑇𝑋3𝑅1+1(𝑛)𝑇 ⋯ 𝑋3𝑅2(𝑛)𝑇]𝑇 (15) 

 

where  

 

𝑋3𝑅1(𝑛) = [𝑥(𝑛 − 𝑅1) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 1)) 𝑥(𝑛 − 𝑅1) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 2)) ⋯ 𝑥 

(𝑛 − 𝑅1) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 𝑁 + 1))]𝑇 (16) 

 

𝑋3𝑅1+1(𝑛) = [𝑥(𝑛 − 𝑅1 − 1) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 1)) 𝑥(𝑛 − 𝑅1 − 1) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 2)) ⋯ 𝑥 

(𝑛 − 𝑅1 − 1) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 𝑁 + 1))]𝑇  (17) 

 

𝑀 =  𝑀 

𝑋3𝑅2(𝑛) = [𝑥(𝑛 − 𝑅2) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 1)) 𝑥(𝑛 − 𝑅2) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 2)) ⋯ 𝑥 

(𝑛 − 𝑅2) 𝑠𝑖𝑛( 𝜋𝑥(𝑛 − 𝑁 + 1))]𝑇 (18) 

 

The weight vector 𝑇2(𝑛) and input sample vectors 𝑋4(𝑛) for the cross-terms of the 𝑐𝑜𝑠() function are 

derived in the same way as 𝑇1(𝑛) and 𝑋3(𝑛). Figure 2 shows a structure of the proposed EE-FLANN 

expansion function.  
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Figure 2. The proposed EE-FLANN structure 

 

 

2.2.  Adaptive algorithm 

Based on the adaptive filtering principle, we adopt the following cost function 𝜉(𝑛) = 𝐸[𝑒2(𝑛)]. 
The goal of the algorithm is to reach optimal weights through the function 𝜉(𝑛). Figure 3 shows the ANC 

using the proposed EE-FLANN controller with adaptive algorithm. 
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Figure 3. The ANC using the proposed EE-FLANN controller 

 

 

For calculation convenience, we represent the coefficient vectors as (19). 

 

𝐻(𝑛) = [𝛷𝑇(𝑛) 𝛹1𝑇(𝑛) 𝛹2𝑇(𝑛) 𝛵1𝑇(𝑛) 𝛵2𝑇(𝑛)]𝑇 (19) 

 

Correspondingly, we represent the input sample vector as (20). 

 

𝑈(𝑛) = [𝑋𝑇(𝑛) 𝑋1𝑇 (𝑛) 𝑋2𝑇 (𝑛) 𝑋3𝑇 (𝑛) 𝑋4𝑇 (𝑛)]𝑇  (20) 
 

Therefore, the output of the EEFLANN can be expressed as (21). 

 

𝑦(𝑛) = 𝐻𝑇(𝑛)𝑈(𝑛) (21) 
 

Based on adaptive filtering theory, the vector 𝐻(𝑛) is adaptively adjusted by (22). 
 

𝐻(𝑛 + 1) = 𝐻(𝑛) −
1

2
𝜇

𝜕𝐸(𝑒2(𝑛))

𝜕𝐻(𝑛)
= 𝐻(𝑛) + 𝜇𝑒(𝑛)

𝜕�̂�(𝑛)

𝜕𝐻(𝑛)
 (22) 
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Assuming the memory-size of 𝑆(𝑧) equal to 𝐾𝑆, the partial derivatives 
𝜕�̂�(𝑛)

𝜕𝐻(𝑛)
 in (22) is transformed 

into 
𝜕�̂�(𝑛)

𝜕𝐻(𝑛)
= ∑

𝜕�̂�(𝑛)

𝜕𝑦(𝑛−𝑙)

𝐾𝑠
𝑙=0

𝜕𝑦(𝑛−𝑙)

𝜕𝐻(𝑛)
. Setting the parameter 𝜇 so that the vector 𝐻(𝑛) adapts slowly, the term 

𝜕𝑦(𝑛−𝑙)

𝜕𝐻(𝑛)
 is calculated by (23). 

 

𝜕𝑦(𝑛 − 𝑙)

𝜕𝐻(𝑛)
≈

𝜕𝑦(𝑛 − 𝑙)

𝜕𝐻(𝑛 − 𝑙)
= [[

𝜕𝑦(𝑛 − 𝑙)

𝜕𝛷(𝑛 − 𝑙)
]

𝑇

[
𝜕𝑦(𝑛 − 𝑙)

𝜕𝛹1(𝑛 − 𝑙)
]

𝑇

[
𝜕𝑦(𝑛 − 𝑙)

𝜕𝛹2(𝑛 − 𝑙)
]

𝑇

[
𝜕𝑦(𝑛 − 𝑙)

𝜕𝛵1(𝑛 − 𝑙)
]

𝑇

[
𝜕𝑦(𝑛 − 𝑙)

𝜕𝛵2(𝑛 − 𝑙)
]

𝑇

]

𝑇

 

= [𝑋𝑇(𝑛 − 𝑙) 𝑋1𝑇 (𝑛 − 𝑙) 𝑋2𝑇 (𝑛 − 𝑙) 𝑋3𝑇(𝑛 − 𝑙) 𝑋4𝑇(𝑛 − 𝑙)]
𝑇

= 𝑈(𝑛 − 𝑙)  (23) 

 

Substituting the result in (23) into the partial derivative above, we obtain (24). 

 
𝜕�̂�(𝑛)

𝜕𝐻(𝑛)
= ∑

𝜕�̂�(𝑛)

𝜕𝑦(𝑛−𝑙)

𝐾𝑠
𝑙=0 𝑈(𝑛 − 𝑙) (24) 

 

Referring to [27], we adopt a virtual secondary path having the following coefficients, 

 

�̃�(𝑛) = [�̃�(𝑛, 0), �̃�(𝑛, 1), . . . , �̃�(𝑛, 𝑙), . . . . , �̃�(𝑛, 𝐾𝑠)]
𝑇

= [
𝜕�̂�(𝑛)

𝜕𝑦(𝑛)
,

𝜕�̂�(𝑛)

𝜕𝑦(𝑛−1)
, . . . . ,

𝜕�̂�(𝑛)

𝜕𝑦(𝑛−𝐾𝑠)
]

𝑇

 (25) 

 

Substituting the coefficients (25) into (24), we have (26). 

 
𝜕�̂�(𝑛)

𝜕𝐻(𝑛)
= ∑ �̃�(𝑛, 𝑙)

𝐾𝑠
𝑙=0 𝑈(𝑛 − 𝑙)      (26) 

 

Note that the term ∑ �̃�(𝑛, 𝑙)
𝐾𝑠
𝑙=0 𝑈(𝑛 − 𝑙) in (26) is the convolution of 𝑈(𝑛) and �̃�(𝑛). Set 𝑈𝑓(𝑛) =

𝑈(𝑛) ∗ �̃�(𝑛), with 𝑈𝑓(𝑛) is the filtered input samples by the 𝑆(𝑧), * represents the convolution. Combining 

(26) and (22), we have the equation for updating the weights. 

 

𝐻(𝑛 + 1) = 𝐻(𝑛) + 𝜇𝑈𝑓(𝑛)𝑒(𝑛)  (27) 

 

For flexibility, (27) can be expressed in groups of weights with the same characteristics. Namely, 

the group of the external input sample coefficients (𝑛); the group of 𝑠𝑖𝑛(. ) 𝑐𝑜𝑠(. ) signal coeficients 

Ѱ(𝑛) = [ Ѱ1𝑇(𝑛), Ѱ2𝑇  (𝑛)]𝑇; the group of the cross-terms coefficients 𝛵(𝑛) = [𝛵1𝑇(𝑛) 𝛵2𝑇(𝑛)]𝑇. 

Furthermore, the algorithm can apply the M-max partial update strategy to optimize the selection of the 

cross-terms [28]–[31]. Therefore, (27) can be rewritten by (28)-(30). 
 

𝛷(𝑛 + 1) = 𝛷(𝑛) + 𝜇1𝑒(𝑛)𝑋𝑓(𝑛) (28) 

 

𝛹(𝑛 + 1) = 𝛹(𝑛) + 𝜇2𝑒(𝑛)𝑋𝑓12(𝑛) (29) 

 

𝛵(𝑛 + 1) = 𝛵(𝑛) + 𝜇3𝛤(𝑛)𝑒(𝑛)𝑋𝑓3,4(𝑛) (30) 

 

with 𝑋𝑓(𝑛) = �̃�(𝑛) ∗ 𝑋(𝑛); 𝑋𝑓1,2(𝑛) = �̃�(𝑛) ∗ [𝑋1(𝑛)𝑇𝑋2(𝑛)𝑇]𝑇; 𝑋𝑓3,4(𝑛) = �̃�(𝑛) ∗ [𝑋3(𝑛)𝑇𝑋4(𝑛)𝑇]𝑇; and 

𝛤(𝑛) denotes matrix of set of 𝑀 largest input signal values, refer to [24] we can be defined as (31). 

 

𝛤(𝑛) = [

𝛾1(𝑛) 0 ⋯ 0
0 𝛾2(𝑛) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝛾𝐿𝑐

(𝑛)

] (31) 

 

where, 𝛾𝑗(𝑛) = [
1 𝑖𝑓 |𝑥𝑓34𝑗(𝑛)| ∈ 𝑚𝑎𝑥

1≤𝑚≤𝐿𝑐
(|𝑥𝑓34𝑘(𝑛)|, 𝑀)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (32) 

 

where 𝑥𝑓34𝑗(𝑛) is the jth term of vector 𝑥𝑓34(𝑛); 𝐿𝑐 = (𝑅2 − 𝑅1 + 1)𝑁 denotes the number of the cross-

terms; M is the M-max parameter (1M  LC). 
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3. COMPLEXITY ANALYSIS 

In this section, the computational cost of the EE-FLANN and that of the works in [13] and [20] have 

been analyzed. The complexity of the ANC system includes the following basic operations: i) The operations 

for calculating the output of the controller; ii) The operations for calculating the filtered reference signal; and 

iii) The operations for calculating the weights update. Assuming that N, Ng, and Nf denote the external signal 

length for EE-FLANN, GFLANN, and FLANN respectively; Λ the parameter of the EE-FLANN; M denotes 
the M-max parameter; Nd is parameter of the GFLANN; Ks is the size of the secondary path. Table 1 

illustrates a complexity comparison for all systems.  
 

 
Table 1. Comparison of the complexity of controllers 

Controllers Multiplications Additions 

FLANN 2(2B+1)Nf+(2B+1)Ks 2(2B+1)Nf+(2B+1)(Ks-1) 

GFLANN 6Ng+2Nd(Nd+1)+(3+2Nd)Ks 6Ng+2Nd(Nd+1)+(3+2Nd)(Ks-1) 

EE-FLANN 6N+2(Λ +1)N+M+(3+M )Ks 6N+2(Λ +1)N+M+(3+M)(Ks-1) 

 

 

4. RESULTS AND DISCUSSION 

To evaluate the effectiveness, many simulations comparing the noise reduction of the EE-FLANN 

controller and that of GFLANN [20] and FLANN [13] controllers have been presented. In all experiments, 

the NMSE performance [21] of controllers is calculated by (33). 

 

𝑁𝑀𝑆𝐸 = 10 𝑙𝑜𝑔 1 0 (
𝐸(𝑒2(𝑛))

𝛿𝑑
2 ) (33)  

 

where 𝛿𝑑
2 denotes variance of the 𝑑(𝑛). The parameters are set: FLANN (memory length 𝑁𝑓 = 10, extension 

order B=3); GFLANN (memory length 𝑁𝑔=10; cross-term selection parameter Nd=9); EE-FLANN (memory 

length N=10; cross-term selection parameter Λ =3, the M-max parameter selection M=20).  

 

4.1.  Experiment 1 

To compare the performance, we adopt the nonlinear model as investigated in [17]. Noise source 

model: x(n)= 2 sin(2500n/8000). The secondary path model: 𝑆( 𝑧) = 𝑧−2 + 1.5𝑧−3 − 𝑧−4. Primary path 

model:𝑑(𝑛) = 𝑡(𝑛 − 2) + 0.8𝑡2(𝑛 − 2) − 0.4𝑡3(𝑛 − 2), where t(n)=x(n)*k(n) and k(n) is the impulsive 

response of the transfer function 𝑘(𝑧) = 𝑧−3 − 0.3𝑧−4 + 0.2𝑧−5. 

Figure 4 illustrates the NMSE performance of the FLANN, GFLANN, proposed EE-FLANN 

controllers. It is easy to see that the proposed EE-FLANN controller outperforms the FLANN controller, and 

is equivalent to the GFLANN controller. Besides, Table 2 reveals the complexity of EE-FLANN controller 

reducing by 20% multiplication and 23% addition in comparison with that of GFLANN. 

 

 

 
 

Figure 4. Comparison of the noise-canceling performance of the controllers in experiment 1 
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Table 2. Illustrate the computational cost of controllers per iteration 
Controllers  Multiplications Additions 

FLANN (Nf=10, B=3, Ks=5) 185 168 

GFLANN Ng=10, Nd=9, Ks=5) 345 324 

EE-FLANN (N=10, Λ =3, Ks=5, M=20) 275 252 

 
 

4.2.  Experiment 2 

In this experiment, we adopt a secondary path model similar to experiment 3 of the study [20], as (34): 

 

𝛼(𝑛) = 𝑡𝑎𝑛ℎ( 𝑦(𝑛)) 

�̂�(𝑛) = 𝛼(𝑛) + 0.2𝛼(𝑛 − 1) + 0.05𝛼(𝑛 − 2) (34) 

 

The primary path model is referred from [21], 
 

𝑑(𝑛) = 𝑥(𝑛) + 0.8𝑥(𝑛 − 1) − 0.8𝑥(𝑛)𝑥(𝑛 − 1) + 0.3𝑥(𝑛 − 2) + 0.9𝑥(𝑛)𝑥(𝑛 − 2) + 0.4𝑥(𝑛 − 3) + 
0.7𝑥(𝑛 − 3)𝑥(𝑛 − 3) − 3.9𝑥2(𝑛 − 1)𝑥(𝑛 − 2) − 2.6𝑥2(𝑛 − 1)𝑥(𝑛 − 3) + 2.1𝑥2(𝑛 − 2)𝑥(𝑛 − 3) (35) 

 

Two input data scenarios are selected: case 1: The noise source model is a chaotic process 𝑥(𝑛 + 1) =
𝜆𝑥(𝑛 − 1)[1 − 𝑥(𝑛 − 1)], where =4 and x(0)=0.9 [13]. 

Case 2: The noise source model is a colored noise  

 

         

         

0.04 1 0.034 2 0.0396 3 0.07565 4

0.06984 4 0.0353 3 0.137 2 0.1 0.01 1

x n x n x n x n x n

n n n n n    

       

        
    (36) 

 

where 𝛽(𝑛) denotes Gaussian white noise [17]. 

The NMSE performance and complexity of all three FLANN, GFLANN, and EE-FLANN 

controllers are shown in Figures 5, 6, and Table 3, respectively. For more clarity, we give a comparison of 

the noise attenuation [20] of the systems in Table 3. Note that we calculate the noise attenuation of the 

algorithms after 30,000 samples. Based on the simulation results, we see the EE-FLANN-based system 
reaches better noise reduction and lower complexity than the GFLANN-based system. 

 

 

  
 

Figure 5. Comparison of the performance of the 

controllers for the chaotic noise source 

 

Figure 6. Comparison of performance of the 

controllers for the colored noise source 

 

 

Table 3. The noise attenuation (NA) and the computational complexity per iteration 
Controllers NA for chaotic noise (dB) NA for colored noise (dB) Mul Add 

FLANN (Nf=10, B=3, Ks=3) 

GFLANN (Ng=10, Nd=9, Ks=3) 

EE-FLANN (N=10, Λ =3, Ks=3, M=20) 

6.7254 

9.1059 

9.1760 

4.0963 

5.8566 

5.9543 

161 

303 

229 

154 

312 

206 
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4.3.  Experiment 3 

To illustrate the strong nonlinear distortion arising in the ANC system, this experiment uses the 

secondary path model in study [27], �̂�(𝑛) = 𝑦(𝑛) + 0.35𝑦(𝑛 − 1) − 0.5𝑦(𝑛)𝑦(𝑛 − 1) + 0.09𝑦(𝑛 − 2) +
0.4𝑦(𝑛)𝑦(𝑛 − 2). The model of the nonlinear primary path is used similar to experiment 2. The reference 

noise source is assumed to be a Gaussian process. 

Figure 7 exhibits the NMSE performance of the FLANN, GFLANN, proposed EE-FLANN 

controllers for experiment 3. The EE-FLANN controller is superior to FLANN and slightly better than 

GFLANN in terms of noise reduction. This is suitable because the structure of the proposed EE-FLANN 

exploits the symmetric cross-terms, thus the obtained performance may be better than GFLANN. 

 

 

 
 

Figure 7. Comparison of performance of the controllers for experiment 3 

 

 

5. CONCLUSION  

This paper proposes the EE-FLANN controller for nonlinear ANC applications. The EE-FLANN 
exploits symmetric cross-terms to improve performance and uses a simplified technique to choose 

appropriate cross-terms. In addition, the adaptive algorithm is developed based on the data-dependent partial 

update strategy, thus, the EE-FLANN controller can decrease complexity at the weight update stage. The 

simulation results as well as the complexity analysis of the EE-FLANN controller proved the effectiveness of 

the developed solution. 
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