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 Cancer is known as a dangerous disease to humans with a very high death 

rate. There are a lot of cancer treatment methods that have been studied and 

applied in the world. One of the main methods is using radiation beams to 

kill cancer cells. This method, also known as radiotherapy, requires experts 

having a high level of skill and experience. Our work focuses on the 3D dose 

prediction problem in radiotherapy by proposing a framework aiming to 

create a medical intelligent system for this problem. To do that, we created a 
convolutional neural network based on ResNet and U-Net to generate the 

predicted radiation dose. To improve the quality of the training phase, we 

also applied some data processing techniques based on the characteristics of 

the 3D computed tomography (CT) data. The experiment used the dataset 
from patients who were cancer-treated with radiotherapy in the OpenKBP 

competition. The results achieved good evaluating metrics, the first is by the 

Dose-score and the second is by the dose-volume histogram (DVH) score. 

From the training result, we built the medical system supporting 3D dose 
prediction and visualizing the result as slices in heatmap form. 
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1. INTRODUCTION 

Cancer is currently one of the most dangerous diseases for people all over the world. In 2020, the 

World Health Organization (WHO) [1] had a statistics report presenting nearly ten million deaths related to 

cancer. The figure meant nearly one-sixth of deaths and the report also showed that there are approximately 

400,000 children developing cancer each year. According to [2] in 2019 and 2020, Vietnam recorded nearly 183 

thousand new cancer patients and approximately 123 thousand deaths. Many reasons may cause cancer, such as 

using alcohol, using cigarettes, and unhealthy life routines. From the medical view, cancer starts when there is 

an appearance of cancer cells, and then they would grow to create malignant tumors. The cancer cells would 

invade and eliminate healthy organs in the human body. So, the main idea in many cancer treatments is the way 

to destroy cancer cells and remove cancer tumors. And one of the most common methods is radiotherapy. 

Radiotherapy tries to destroy cancer cells by using the power of radiation therapy beams in treatment 

machines. By the way, we can prevent the growth of the disease. An advantage of radiation therapy is that this 

method can be applied to almost all parts of the human body, but it also is a complex process requiring high-

level experts [3]. This method can take hours to calculate the radiotherapy dose distribution and adjust to get the 

final optimal planning. To do that, practitioners need to be skillful and experienced to reach the accuracy of 

each detail of the whole process. 

https://creativecommons.org/licenses/by-sa/4.0/
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This paper concerns dose prediction, a method to help make a high-quality plan quickly. There were 

some studies that attempted to apply traditional machine-learning models to this problem. In 2016, McIntosh 

and Purdie [4] applied the regression forests to predict dose. Results, the overall dose prediction accuracies 

reached 78.68%, 64.76%, and 86.83% respectively. Next in 2021, Zhou et al. [5] presented a study using a 

support vector machine to predict doses in the case of cervical cancer with the mean squared error and Gamma 

metrics. The experimental data came from 50 patients in the affiliated Hospital of Southwest Medical University 

over the 2-years period between 2016 and 2018. 

Today, the deep learning approach was applied successfully in many studies of the medical field 

with various different data types. In 2021, Furtado [6] conducted a study to segment abdominal organs in 

magnetic resonance imaging data using two deep-learning architectures DeepLabV3 and fully convolutional 

network (FCN). Also in 2021, Chen et al. [7] designed Squeeze-and-Excitation convolutional neural network 

(CNN) to classify lung nodules from computed tomography images. In 2023, Toan et al. [8] had research 

using several convolution neural networks on chest X-ray images for tuberculosis diagnosis. Furthermore, 

recent deep learning research in healthcare is also oriented towards building applicable systems. For example, 

Prabakaran and Selvaraj [9] presented an intelligent healthcare system using an ensemble approach to 

diagnose lung disease. The same year, Alquran et al. [10] showed a hybrid automated system to classify liver 

tumors on magnetic resonance images. 

In recent times, the deep-learning approach has been applied widely in the radiotherapy dose 

prediction problem. In 2021, a 3D Dense-U-Net model was presented by Liu et al. [11] in the report with 

respectively 2.93% and 2.42% of the average deviations from the maximum and average dose values of organs 

at risks (OARs) and planning target volumes (PTVs). The authors experimented on the data of 124 patients 

treated with TomoTherapy. Another study is a convolutional neural network of Ahn et al. [12]. Their 

architecture was based on the U-Net model and adjusted to fit the dose prediction problem in radiotherapy.  

50 samples of therapy plans for breast cancer were used to test that method and the authors also conducted the 

comparison with RapidPlan™. The work of Babier et al. [13] with the generative adversarial network (GAN) 

model was conducted on annotated computed tomography (CT) images from 127 samples in the accepted 

treatment plans for oropharyngeal cancer cases. In another attempt, many versions of convolutional neural 

networks were tested in the work of Gronberg et al. [14]. They trained and tested their model on the data of the 

OpenKBP challenge [15] with some different options of hyperparameters and augmentation methods. In the 

same dataset, Soomro et al. [16] published an architecture combining dilated DenseNet and ResNet to predict 

dose called DeepDoseNet. In experiments, some loss functions were used and the quality of that model was 

scored in terms of dose-score and dose-volume histogram (DVH) score. Zimmermann et al. [17] applied one 

cycle learning to their customized U-Net version and also experimented on the dataset of the OpenKBP 

challenge. In that study, some changes were tried with loss functions and Mish activation function, and at that 

time, their results ranked 4th and 2nd respectively on dose score and DVH score in the OpenKBP challenge.  

This paper is interested in the radiation therapy dose prediction problem. In detail, we use CT images 

of patients treated with radiotherapy in our framework and apply the deep learning approach. The results of 

deep-learning methods are highly related to the training dataset, in both quantity and quality. Particularly for 

medical images, there are many cases where it is difficult to distinguish between regions of internal organs due 

to poor contrast and different configurations of imaging machines. Moreover, medical images are generally 

more scarce than regular images due to privacy and security constraints. So, on the one hand, we need 

normalization techniques to reduce noise to get normalized data. On the other hand, we also have to deal with 

the scarcity of data by applying data augmentation. In this work, our study aims to build a dose prediction 

system in the context of radiotherapy treatment by proposing a framework connecting all tasks. Firstly, we 

designed a customized convolution neural network for dose prediction and applied some preprocessing and 

augmentation techniques to enhance this model. Secondly, we analyzed the predicted results in many faces, 

using standard metrics such as dose-score and DVH-score, visualizing the predicted results and comparing them 

to the ground truth data, providing running time information. Lastly, we built a complete system to support 3D 

radiotherapy dose prediction and visualize the result in different dimensions. 

 

 

2. METHOD 

This section describes how we conducted our research and the experimental procedure. Inside, we 

would present the proposed framework and then detail the components in this. They include data preprocessing 

and augmentation techniques, the custom convolutional neural network, and the dose visualization technique. 

 

2.1.  Proposed framework 

The framework includes the training and the testing phases as in Figure 1. The training phase aims 

to improve the quality of the model based on the training data. In this work, the training data includes CT 

images, annotated information about PTVs and OARs. OARs and PTVs are masks to point out the annotated 
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regions. So, the input data has 11 channels with CT images, OARs, and PTVs. The input data would be 

preprocessed and augmented before pushing to the model in the training task. During the training phase, the 

state of the model's weights would be evaluated at each epoch with some metrics. Here, the dose score and 

the DVH score are two indicators used for scoring the model's checkpoints to choose the best state. 

The testing phase aims to the prediction function of the study's problem which can be applied in the 

medical software of radiotherapy. Here, the input data also includes CT images, OARs, and PTVs. The input 

data would be preprocessed and then pushed into the trained model to get the predicted dose. This dose 

would be applied to the constraint about the value range to get the final result. This dose also would be 

displayed as a heatmap to help people easily understand. 

 

 

 
 

Figure 1. The proposed framework 

 

 

2.2.  Data processing techniques 

The data used in this work were CT images of patients who had head-and-neck cancer and were 

treated by radiotherapy treatment. Before the deep learning task, we tried to apply some data processing 

techniques to CT images. This step would help normalize image data to improve the final results. In 

comparison with normal images, because of the difference between capturing machines, CT image data has 

some particular characteristics. Pixel values are related to the material of captured objects, such as bone, and 

high-fat tissues. This information is referenced in Hounsfield units [18].  

For augmentation, in the case of this study, the data were 3D CT scans. In CT images, the empty 

space usually gets values close to zero. Because we are only interested in the body in the CT image, we 

would apply transformations with translation and flipping and no change in the scale of the CT image. In this 

way, the 3D content of the human body is still preserved. Another reason is that the image-capturing pose is 

fixed due to medical indications. This means that objects in CT images often have stable size. 

The first technique is flipping: As described in Figure 2, this technique will rotate images randomly 

by an angle equaling 180 degrees. So, the image result will have a different pose versus origin. In this case, 

we can quickly apply this technique and do not need to calculate image content at gaps in the corner regions 

of 3D volume. The second is translation: As described in Figure 3, this technique will translate the CT image 

with a random displacement and not lose any body parts. This technique is also simple and fast to perform. 

 

 

  
 

Figure 2. Image flipping example: the original image 

(left) and the flipped image (right) 

 

Figure 3. Image translation example: the original 

image (left) and the translated image (right) 
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2.3.  The custom convolutional neural network  

In this work, we designed an architecture that is inspired by the study of Ronneberger et al. [19] in 

2015. We also used a residual block presented by He et al. [20] in their architecture for the image 

classification problem. Figure 4 shows the design of a residual block. 

In this work, the structure has two parts as described in Figure 5. The first is the down-sampling part 

and the second is the up-sampling part. In this architecture, residual blocks would be used in both parts. In 

Figure 5, the input data is at the beginning of the down-sampling part as described on the left-top side, and 

the output data is at the end of the up-sampling part as described on the right-top side. 

The size of the input data is 128×128×128×11. The first three numbers are the size of the CT input 

image and the last number is the amount of channels. Among the 11 channels, there is one channel for the CT 

input image, seven channels for OARs, and three channels for PTVs. Residual blocks are designed of two 

convolution layers. Each layer has the same 3×3×3 sliding window size, 1 stride, and also is padded to keep 

size. LeakyReLU functions are set following convolution layers. Besides, in the up-sampling part, a 

deconvolution layer is used after each residual block. The end of the architecture is added with a ReLU 

function. This function helps keep each pixel from negative values because of the meaning of radiation doses. 

At last, the output data size is 128×128×128. 

 

 

 
 

Figure 4. Residual block 

 

 

 
 

Figure 5. Our custom CNN architecture 

 

 

2.4.  Dose visualization  

In this work, the output dose is in 3D raster format. Thus, all results would be displayed as images 

of each slice. Because the CT image has one channel, the displayed image is grayscale. But human vision is 

not sensitive to the changes in gray levels, we often distinguish well in colors. So, we use the colormap 

technique to enhance the view of the results. 

In implementation, the 256-color look-up table is applied to displayed images. Each dose data slice 

needs to be transformed into the grayscale to be able to apply the colormap technique. In the experiment, we 

coded this module with the support of Matplotlib [21]. Matplotlib is the Python library that supports some 

options of colormaps. An example of dose visualization was described in Figure 6. 
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Figure 6. Dose visualization of an example in the dataset: the CT data (left), the visualization result (right) 

 

 

3. RESULTS AND DISCUSSION 

3.1.   Experiment setup  

3.1.1. Dataset  

The dataset used in our work was collected from 340 patients who had head-and-neck cancer and 

were treated by radiotherapy treatment. This data has a source from the open-access database TCIA. TCIA 

contains medical images supporting cancer research and belongs to the University of Arkansas. The authors 

pushed all data into the data-cleaning step. Each patient's dose influence matrix was obtained using 6 MV 

step-and-shoot intensity modulated radiation therapy (IMRT). This task was conducted with equispaced 

coplanar fields at 0°, 40°, 80°, 120°, 160°, 200°, 240°, 280°, and 320°. All fields were divided into 5×5 mm 

beamlets. The OpenKBP challenge organized this data for the competition. So, the dataset was organized 

with the training set, the testing set and the validation set with sizes of 200, 40, and 100 respectively. Each 

patient's record includes a CT image with a size of 128×128×128, annotations for organs at risk, annotations 

for planning target volumes, and information about the treated radiotherapy dose distribution. In detail, 

organs at risk consist spinal cord, brain stem, left parotid gland, right parotid gland, larynx, mandible, and 

esophagus. Planning target volumes consist of 56 Gy, 63 Gy, and 70 Gy regions. Figure 7 shows a data 

sample in this dataset. 

 

 

 

 

Figure 7. Data example: CT image (left), target regions visualization (middle), and dose visualization (right) 

 

 

3.1.2. Evaluation metrics 

To evaluate results, we need metrics. This experiment used the DVH-score and the dose-score to 

analyze the dose-predicted results. All metrics are calculated between the true dose and the predicted dose.  

The dose-score is calculated using the volume of interest receiving radiation therapy with the mean 

of the absolute difference between the true value and the predicted value. The dose-score needs to be 

calculated in each voxel. The formula of the dose-score is described as (1): 
 

αp =  
‖sP−ŝP‖1

|vP|
 (1) 

 

The score αp is calculated for patient p. In detail, patient p has the volume treated radiotherapy vP with the 

size of |vP|. About doses, sP is the predicted dose, and lastly, ŝP is the true dose.  

The DVH score is calculated as the absolute distance between the DVH values of the true dose and 

the predicted dose. For OAR, the task is to estimate the dose average and the dose maximization 

corresponding to organs. Similarly, for PTV, the task is to estimate the dose corresponding to the target 

volumes at 1 percent, 95 percent, and 99 percent rates. The DVH-score is calculated as (2): 
 

βP = ‖D(sP) − D(ŝp)‖1 (2) 

 

The score βP is calculated for patient p. About the predicted result, sP is the predicted dose with D(sP) is the 

DVH value of sP. About the ground truth, ŝp is the true dose and D(ŝp) is the DVH value of ŝp. 
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3.1.3. Training configuration 

Input data consists of 11 channels with each channel measuring 128×128×128, and the output data 

size is 128×128×128×1. For input, the first channel is a CT image, the next 7 channels contain OAR 

information, and the last 3 channels contain PTV information. Training task was conducted using Adam's 

algorithm [22]. Our study was implemented in Python language and using the deep-learning platform 

TensorFlow [23]. The experiment software run on both the Google Colab system [24] and the Kaggle system 

[25], which are supported by the computation power of NVIDIA graphics processing units (GPUs). The loss 

function is the mean of absolute error. Inside, we set up the learning rate by 1𝑒 − 3, the decay by 1𝑒 − 4, the 

momentum β1 by 0.9, and the momentum β2 by 0.99. The formula of the mean absolute error loss function is 

calculated as (3): 

 

L =
1

n
∑ |yi − ŷi|

n
i=1  (3) 

 
In which, 𝑛 is the number of samples, 𝑦𝑖 is the predicted dose, and �̂�𝑖 is the true dose of sample 𝑖. 

In the experiment, we design one more case of model training to clarify the effect of preprocessing 

and augmentation techniques. This case used original data, which had no augmentation and preprocessing. 

The detail was described in Table 1. In our hypothesis, the results from case 2 should be better than case 1. 

The result figures would be the evidence proving the effect of preprocessing and augmentation in the 

experiment. For training and scoring the model, we used the training set with 200 volume samples and the 

testing set with 100 volume samples. 

 

 

Table 1. Two cases of model training 
Training case Description 

1 Using an original dataset 

2 Using a dataset which was applied augmentation and preprocessing 

 

 

3.2.  Result and evaluation 

To begin with, we investigated the training results of two cases in this study. The line graphs of the 

loss functions are presented in Figure 8. In general, the training losses were reduced during the training 

period. In case 2, the loss value was 0.607552 at the first epoch, decreased to 0.316148 at the third epoch, and 

continued to decline at a lower rate. The training loss value in case 1 was also reduced but it had some small 

fluctuations in the line graph. Specifically, the lowest value always belonged to the loss value of case 2. It 

reflects our theoretical hypothesis because in case 2, the model was trained with better training data, which 

was performed preprocessing and augmenting. 

 

 

 
 

Figure 8. The training results of two cases 

 

 

The next task is to evaluate the trained models in training cases. The detailed results are shown in 

Table 2. To do this, we used a 100-sample test set and 2 measures of DVH-score and dose-score. Easy to see, 

case 1 is worse than case 2 in both measures. About DVH-score, this score in case 1 is 18.931728 while in 

case 2 is 2.011907. About dose-score, this score in case 1 is 11.307606 while in case 2 is 3.111332. All 
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figures pointed out that the result in case 2 is better than the results in case 1. This conclusion also conforms 

to our hypothesis when setting up training cases. 

 

 

Table 2. Evaluation of two cases in the testing phase  
Training case Dose-score DVH-score 

1 11.307606 18.931728 

2 3.111332 2.011907 

 

 

To get clearer, we conducted an analysis of the predicted result in one sample. In detail, the analysis 

was performed on the result of our custom model that was trained with preprocessed and augmented data, 

which means case 2. The randomly chosen sample is sample 258 in the dataset. The corresponding dose-

score is 2.592035 and the corresponding DVH-score is 1.805577. We focused on the visualization of the 

predicted result. And because the input data is CT slices and the output is the 3D volume of doses, we would 

analyze when viewing slices of data. By using visualization as mentioned in subsection 2.4, we would 

observe each slice of predicted dose as a heatmap, as displayed in Figure 9. 

In Figure 9, the higher radiation dose intensity would correspond to the brighter color in the 

heatmap, and also vice versa. In this way, we can observe the distribution of radiation dose directly with our 

eyes. The next task is to represent the comparison between the true dose and the predicted dose, as described 

in Figure 10. 

 

 

 
 

Figure 9. Three views of the prediction result of sample 258: the CT images (first row) and the dose 

visualizations (second row) 

 

 

 
 

Figure 10: The comparison of the prediction results with the ground truth data of sample 258: the ground 

truth (left), the predicted dose (middle), and the difference image (right) 

 

 

In Figure 10, the first two columns are the predicted doses and the true doses which are displayed as 

heatmaps. The last column is the difference images between the predicted doses and the true doses. Each 
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difference image is computed by subtracting the corresponding predicted dose from the corresponding true 

dose and getting the absolute value of the subtraction result. The difference images are also shown as 

heatmaps and easily to see, values of pixels in the difference images are low over the majority of the area. 

About the comparison of case 1 and case 2, we also present in Figure 11. 

 

 

 

 

Figure 11. The comparison between cases of sample 258: case 1 (left) and case 2 (right), each column 

includes the predicted dose visualization and the difference image 

 

 

In Figure 11, we observe the predicted doses in the first row and the difference images, which are 

the result of a comparison between the predicted doses to the ground truth in the second row. In detail, 

information about case 1 is presented in the first column and information about case 2 is presented in the 

second column. When observing the second row, we can see that case 2 is better than case 1 because the 

difference image in case 2 has lower intensity than case 1 in general. The next task is the information on the 

running time as described in Table 3. In detail, we presented the running time of one epoch in the training 

phase and the running time of one sample prediction. About prediction, we supplied time information when 

running in both the GPU machine and the central processing unit (CPU) machine. 

To estimate the running time in cases, we used the Google Colab platform supported by Tesla K80 

GPU and our personal laptop with the simple configuration of Intel I5 with 1.60 GHz. As presented in 

Table 3, the running time in the CPU machine is not long and it is acceptable in our real test. This 

information is helpful for us because GPU machines are rather expensive and not easy to be ready for 

deployment in general. Another estimation is the comparison with the result of DeepDoseNet in the study 

[16]. In that research, the authors experimented with some different loss functions. In this study, we 

performed a comparison between our result in case 2 with the result of DeepDoseNet in the same context 

experiment of the loss function - the mean absolute error loss. All details are shown in Table 4. 

 

 

Table 3. Running time information  
Case Machine Approximate time 

One epoch training of case 1 GPU 10.37 minutes 

One epoch training of case 2 GPU 30.45 minutes 

Predicting one sample of case 2 GPU 1.24 second 

Predicting one sample of case 2 CPU 11.15 seconds 

 

 

Table 4. Comparison with the DeepDoseNet in case of the same loss function 
Model Dose-score DVH-score 

Our model (case 2) 3.111332 2.011907 

The DeepDoseNet 3.5 2.3 

 

 

From the theory of the DeepDoseNet, Soomro et al. [16] also applied the residual blocks. However, 

our model was designed with more layers. In addition, Soomro et al. [16] did not perform augmenting data 

and they also did not talk about preprocessing data. Finally, we built a medical system for predicting dose as 

described in Figure 12. This software would output the dose prediction and display it as a heatmap on the 

application canvas. Besides, we also support viewing dose data in different dimensions. 
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Figure 12. The application interfaces  

 

 

4. CONCLUSION 

Cancer is a dangerous disease so requires a lot of attempts to prevent it. One of the leading cancer 

treatments is radiotherapy which applies radiation therapy beams to eliminate cancer cells. This study 

investigated the applying of the deep learning approach to radiotherapy dose prediction. We found that it was 

necessary for suitable deep architecture and data-processing techniques. The proposed method in this study 

uses a network architecture for 3D dose prediction based on Res-U-Net 3D and preprocessing and 

augmentation techniques based on analysis of data characteristics. Our study demonstrates the performance 

when compared to the DeepDoseNet study which does not apply data-processing techniques. Lastly, we also 

developed the 3D dose prediction application supporting dose visualization. This paper obtained some 

success but to be able to build a medical intelligent system that can work effectively in reality, we also have 

to do a lot of work. The success of this work is one of the first steps in our way of preventing cancer in the 

intelligent medical industry. 
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