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 This article presents an improvement to the traditional Vigenere encryption 

method, specifically adapted for the encryption of color images. This 

enhancement relies on the use of two chaotic maps widely employed in the 

field of cryptography. After vectorizing the original image and calculating 

the initialization value, which alters the seeding pixel to trigger the 

encryption process, our approach integrates two new large substitution 

tables. These tables are linked to confusion and diffusion functions, 

incorporating multiple reversible pseudo-random affine functions at the pixel 

level. Finally, a global permutation is applied to the entire resulting vector to 

increase the temporal complexity of potential attacks on our system. 

Simulations conducted on a diverse set of images of various sizes and 

formats demonstrate the resilience of our approach against any unexpected 

attacks. 
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1. INTRODUCTION 

Ciphering images is the process of protecting them by altering their pixels in a way that makes them 

indecipherable. It protects image confidentiality and integrity, particularly when the images are sensitive and 

confidential, as is the military case [1] and medical images [2], [3]. Perturbations in ciphering steps 

complicate the statistical relationships between original and ciphered images and make predicting them 

difficult. Diffusion, on the other hand, distributes data in its initial form efficiently and uniformly throughout 

the entire ciphered image [4], [5]. Encryption methods achieve diffusion and confusion through dense 

substitution and permutation of each pixel. Substitution is performed by changing the image pixel values to 

other values. Permutation randomly arranges image pixels [6] to conceal the statistical relationships between 

the image pixels. Various methods can be used for replacement, such as the S-box operation [7]–[9]. As the 

patterns of replacement and permutations become more difficult, the situation becomes more unpredictable 

and complex. Therefore, a combination of replacement, which integrates dynamic affine functions, and 

permutations must be applied at the smallest unit of images, which is the pixel. Thus, improving existing 

classical techniques such as Hill [10], [11], Caesar, Vigenere [12]–[16], and affine [17], [18] adds value to 

image encryption. The classic Vigenere encryption method depends on a predetermined (26, 26) matrix that 

is purpose-built for the encryption of text. Additionally, Researchers described in the article [19], [20] a new 

encryption method that combines the Vigenere cipher with dynamic deoxyribonucleic acid (DNA) and 

ribonucleic acid (RNA) sequence coding [17], [18]. First, the image to be encrypted is converted to a vector 

https://creativecommons.org/licenses/by-sa/4.0/
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format and then mutated genetically. Next, an initialization value is determined to create a diffusion process 

[15]. This value is used as the initial condition for the Vigenere cipher. The key is a crucial element in the 

encryption process, playing a vital role in safeguarding the confidentiality of ciphered data. Therefore, the 

key needs to meet various criteria, including considerations such as length, space, and complexity [21], [22]. 

This implies that preprocessing of the user-inputted key for image encryption is necessary to generate a more 

intricate form, such as a pseudorandom sequence [23]. However, these keys can be altered by simple 

operations like rearranging the image stream [24], [25]. 

The challenge lies in the fact that most classical algorithms rely on independent block encryption, 

making them vulnerable to statistical attacks. Additionally, the small size of private keys exposes them to 

brute force attacks. However, in the absence of diffusion and chaining functions between encrypted and 

plaintext blocks, these methods remain susceptible to differential attacks. 

Our contribution is evident through the development of a novel image encryption system. This new 

system utilizes a large private key to safeguard against exhaustive attacks. Furthermore, the use of new 

confusion and diffusion functions employing reversible dynamic affine functions provides high resilience to 

our system against unforeseen attacks. 

The remainder of this article is organized into several sections, including one detailing our method 

elucidating the intricacies of the encryption and decryption process. Another section is dedicated to results 

and discussion, presenting research conclusions along with comparisons to other similar techniques. Finally, 

a section summarizes the findings and suggests directions for future research. 

 

 

2. METHOD 

Based on chaos, our method uses a profound improvement of the classic Vigenere technique by 

employing large substitution tables [26], [27] attached to new pseudorandom substitution functions. We 

integrated reversible affine functions into the encryption process. This technique is based on the axes 

below. 

 

2.1.  Axis 1: choice of chaotic sequences 

2.1.1. Skew tent map 

The skew tent map [28] is a mathematical function commonly employed in chaos theory and 

cryptography. It is a one-dimensional map, renowned for its chaotic behavior and ease of integration into any 

crypto-system. The general expression of this map, denoted by the numerical sequence h, is defined by (1). 

The parameters (ℎ0) and (𝑘) represent the initial value and control parameter, respectively. 

 

{
 

 
ℎ0 ∈ [0.5; 1], 𝑘 ∈ [0.5; 1]           

ℎ𝑛+1 = {

ℎ𝑛

𝑘
  𝑖𝑓  0 < ℎ𝑛 < 𝑘

 
1−ℎ𝑛

1−𝑘
          elsewhere

     
 (1) 

 

2.1.1. Logistic map 

The logistic map [29] is a mathematical function commonly employed to simulate the growth of a 

population over time within a constrained space. It is frequently utilized in chaos theory and cryptography. 

This logistic map is expressed by (2). 

 

{
𝑙0 ∈ [0.5; 1] 𝑎𝑛𝑑 𝛿 ∈ [3.75; 4]

𝑙𝑛+1 = 𝛿. 𝑙𝑛(1 − 𝑙𝑛)      
 (2) 

 

2.2.  Axis 2: construction of pseudorandom vectors 

2.2.1. Used chaotic sequences 

The two selected chaotic maps for our new system are highly sensitive to initial conditions and easy 

to implement in a cryptographic system. They are used for pseudo-random vector generation. The resulting 

vectors form the encryption subkeys. 

 

2.2.2. Sub keys construction 

Our system needs the construction of keys and sub keys. So, we need seven pseudorandom vectors 

(𝑉𝑐1), (𝑉𝑐2), (𝑉𝑐3), (𝑉𝑟), (𝑉𝑒), (𝑉𝑎), and (𝑉𝑏). These vectors are described by coefficients in the ring 

(𝑍/256𝑍) and generated by Algorithm 1. 
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Algorithm 1. Pseudorandom vectors generation 
𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 3𝑛𝑚 
     𝑉𝑐1(𝑖) =  [𝐸(𝑠𝑢𝑝(ℎ(𝑖); 𝑙(𝑖)).〖10〗^11 )  𝑚𝑜𝑑 253] + 2 
     𝑉𝑐2(𝑖) =  [𝐸(((ℎ(𝑖) + 2 ∗ 𝑙(𝑖))/3).〖10〗^11 )  𝑚𝑜𝑑 254] + 1 
     𝑉𝑐3(𝑖) =  [𝐸(|ℎ(𝑖) − 𝑙(𝑖)|.〖10〗^10 )  𝑚𝑜𝑑 254] + 1 

     𝑉𝑟(𝑖) =  [𝐸((ℎ(𝑖) + 𝑙(𝑖)). 1012) 𝑚𝑜𝑑 253] + 2 

   𝑉𝑒(𝑖) =  [𝐸 ((
2∗ℎ(𝑖)+3∗𝑙(𝑖)

5
) . 1012)  𝑚𝑜𝑑 253] + 2 

   𝑉𝑎(𝑖) = [2 ∗ 𝐸((ℎ(𝑖) + 𝑙(𝑖)). 1012) + 1] 𝑚𝑜𝑑 256 

   𝑉𝑏(𝑖) = [2 ∗ 𝐸((ℎ(𝑖) ∗ 𝑙(𝑖)). 1012) + 1] 𝑚𝑜𝑑 256 

𝑒𝑛𝑑 𝑓𝑜𝑟 
 

The two vectors (𝑉𝑎) and (𝑉𝑏) contain only the invertible elements in the ring (𝑍/256𝑍). In 

addition, our system requires the generation of three binary vectors, (𝐵𝑎1), (𝐵𝑎2), and (𝐵𝑎3), to control the 

encryption process. These two vectors are generated by Algorithm 2. 
 

Algorithm 2. (𝐵𝑎𝑖) Binary random vectors generation, 𝑖∈ {1, 2, 3} 
//Binary vectors construction 

𝑓𝑜𝑟 𝑗 ← 1 𝑡𝑜 3𝑛𝑚 
    𝑖𝑓 ℎ(𝑗) > 𝑙(𝑗) 𝑡ℎ𝑒𝑛 :𝐵𝑎1(𝑗)  ← 0  

    𝑒𝑙𝑠𝑒 ∶ 𝐵𝑎1(𝑗)  ← 1 
    𝑒𝑛𝑑 𝑖𝑓 
    𝑖𝑓 ℎ(𝑗) > 0.5 𝑡ℎ𝑒𝑛 :𝐵𝑎2(𝑗)  ← 0  

    𝑒𝑙𝑠𝑒 : 𝐵𝑎2(𝑗)  ← 1   
    𝑒𝑛𝑑 𝑖𝑓 
    𝑖𝑓 ℎ( 𝑗 )  ≤ 𝑙(𝑗) 𝑡ℎ𝑒𝑛: 𝐵𝑎3(𝑗)  ←  0   
    𝑒𝑙𝑠𝑒 : 𝐵𝑎3(𝑗)  ←  1  

    𝑒𝑛𝑑 𝑖𝑓: 𝑒𝑛𝑑 𝑓𝑜𝑟 

 

2.3.  Axis 3: substitution table construction 

Our algorithm requires the development of two new replacement tables (Tv1) and (Tv2). Each table 

is a matrix of size (256;256) with coefficients in the ring (Z/256Z). The construction of these substitution 

tables is described as follows. 

 

2.3.1. (Tv1) S-Box construction 

The main mission of this section is to construct the new Vigenere substitution matrix, called (Tv1), 

with a size of (256;256), following the instructions provided below. 

- The first row of the table (Tv1) is the permutation (Pt1) of the first 256 values of the vector (Vc1), 

obtained by sorting them in decreasing order. 

- For ranks higher than 1, the rank line is a rank shift 𝑉𝑐2(𝑗) or 𝑉𝑐3(𝑗), depending on the value of the 

control vector 𝐵𝑎1(𝑗). This table was generated by Algorithm 3. 
 

Algorithm 3. (Tv1) Substitution box construction 
// 𝐹𝑖𝑟𝑠𝑡 𝑙𝑖𝑛𝑒 
𝑓𝑜𝑟 𝑗 ←  1  𝑡𝑜  256   
        𝑇𝑣1(1, 𝑗)  ←  𝑃𝑡1(𝑖) 
𝑒𝑛𝑑 𝑓𝑜𝑟 
// 𝑁𝑒𝑥𝑡 𝑙𝑖𝑛𝑒𝑠 

𝑓𝑜𝑟 𝑗 ←  2  𝑡𝑜  256  
     𝑓𝑜𝑟 𝑘 ←  1  𝑡𝑜  256 
          𝑖𝑓 𝐵𝑎1(𝑗) = 0 𝑡ℎ𝑒𝑛  
                    𝑇𝑣1(𝑗, 𝑘)  ←  𝑇𝑣1(𝑗 − 1,𝑚𝑜𝑑(𝑘 + 𝑉𝑐2(𝑗),256)) 
         𝑒𝑙𝑠𝑒:  𝑇𝑣1(𝑗, 𝑘)  ←  𝑇𝑣1(𝑗 − 1,𝑚𝑜𝑑(𝑘 + 𝑉𝑐3(𝑗),256)) : end 𝑖𝑓 
     𝑒𝑛𝑑 𝑓𝑜𝑟: 𝑒𝑛𝑑 𝑓𝑜𝑟 

 

2.3.2.  (Tv2) S-Box construction 

The construction of the new substitution matrix (𝑇𝑣2) of size (256;256) is described by these steps: 

- The 1st line is the rearrangement (𝑃𝑟1) obtained by a broad ascending sort on the first 256 values of the 

vector (𝑉𝑐3); 

- The 2nd line is the rearrangement (𝑃𝑟2) obtained by a broad ascending sort on the first 256 values of the 

vector (𝑉𝑐2); 

- The 3rd line is the rearrangement (𝑃𝑟3) obtained by a broad ascending sort on the first 256 values of the 

vector (𝑉𝑐1); 

- The ith line (𝑖 > 3) is the composition of the functions of the line (𝑖 − 2) and (𝑖 − 3) or (𝑖 − 3) and  

(𝑖 − 1), depending on the value of the control vector 𝐵𝑎2(𝑖). 
These steps are illustrated in Algorithm 4. 
 

Algorithm 4. (Tv2) substitution box construction 
//3 first lines 

𝑓𝑜𝑟 𝑗 ←  1  𝑡𝑜  256   
        𝑇𝑣2(1, 𝑗)  ←  𝑃𝑟1(𝑗) 
        𝑇𝑣2(2, 𝑗)  ←  𝑃𝑟2(𝑗)        
𝑇𝑣2(3, 𝑗)  ←  𝑃𝑟3(𝑗) 
𝑒𝑛𝑑 𝑓𝑜𝑟 

𝑓𝑜𝑟 𝑗 ←  4  𝑡𝑜  256 //Next lines 

     𝑓𝑜𝑟 𝑘 ←  1  𝑡𝑜  256 
    𝑖𝑓  𝐵𝑎2(𝑗) = 0  𝑡ℎ𝑒𝑛 :  𝑇𝑣2(𝑗, 𝑘)  ←  𝑇𝑣2(𝑗 − 2, 𝑇𝑣2(𝑗 − 3, 𝑘)) 
           𝑒𝑙𝑠𝑒: 𝑇𝑣2(𝑗, 𝑘)  ←  𝑇𝑣2(𝑗 − 3, 𝑇𝑣2(𝑗 − 1, 𝑘)) ∶  𝑒𝑛𝑑 𝑖𝑓      
     𝑒𝑛𝑑 𝑓𝑜𝑟 
𝑒𝑛𝑑 𝑓𝑜𝑟 
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2.4.  Axis 4: global permutation construction 

To increase the attack complexity on the proposed system, the vector (𝑍) undergoes a global 

rearrangement process (𝑃𝑔). This permutation is achieved through a descending sort on the first (3 nm) 

values of the chaotic sequence (l). The permutation process is determined by Algorithm 5. 

 

Algorithm 5. Global permutation 
𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 3𝑛𝑚 
𝑍𝑠(𝑖) = 𝑍(𝑃𝑔(𝑖)): 𝑒𝑛𝑑 𝑓𝑜𝑟 

 

2.5.  Axis 5: affine and hybrid chaining functions construction 

2.5.1. Affine functions in 𝒁/𝒏𝒁 

Let (𝑓) be an affine function defined in the ring (𝑍/𝑛𝑍) by (3). The function (𝑓) is bijective in 

(𝑍/𝑛𝑍) if and only if (𝑎) is invertible and (𝑏) is any. 

 

{
𝑓: 𝑍/𝑛𝑍 →   𝑍/𝑛𝑍                                     

𝑥 ⟼    𝑚𝑜𝑑(𝑎𝑥 + 𝑏; 𝑛)      
𝑎, 𝑏 ∈  𝑍/𝑛𝑍        (3) 

 

Indeed, we have 𝑦 = 𝑚𝑜𝑑(𝑎𝑥 + 𝑏; 𝑛), then, 𝑎𝑥 = 𝑚𝑜𝑑(𝑦 − 𝑏; 𝑛) and 𝑥 = 𝑚𝑜𝑑(𝑎−1. (𝑦 − 𝑏); 𝑛) where 

(𝑎−1) is the inverse of (𝑎) in ring (𝑍/𝑛𝑍). Or, we know that (𝑎) is invertible in (𝑍/𝑛𝑍) if and only  

if a⋀n = 1. Particular case: 𝑛 = 2𝑘 , 𝑘 ∈ 𝑁, (a) is invertible in ring (𝑍/2𝑘𝑍) if and only if (𝑎) is odd. 

 

2.5.2. Expression of the improved affine function 

Let (𝑓𝑖) be the family of affine functions acting on pixels. These functions are defined by (4). Here, 

𝑉𝑎(𝑖) and 𝑉𝑏(𝑖) are invertible elements in the ring (𝑍/256𝑍). The affine functions (𝑓𝑖)  generated are 

reversible for all 𝑖 ∈  [1; 3 𝑛𝑚]. 
 

{

𝑓𝑖: 𝑍/256𝑍 →   𝑍/256𝑍                                                           

𝑥 ⟼   {
𝑚𝑜𝑑(𝑉𝑎(𝑖) ∗ 𝑋(𝑖) + 𝑉𝑒(𝑖); 256) 𝑖𝑓 𝐵𝑎2(𝑖) = 0

𝑚𝑜𝑑(𝑉𝑏(𝑖) ∗ 𝑋(𝑖) + 𝑉𝑟(𝑖); 256) 𝑖𝑓 𝐵𝑎2(𝑖) = 1
  (2) 

 

2.5.3. Expression of the improved affine function 

The new substitution function involving tables (𝑇𝑣1) and (𝑇𝑣2) is given by Algorithm 6. This 

replacement function promotes the process of diffusion. It can enhance the security of our system. 

 

Algorithm 6. (𝐹𝑣) Hybrid chaining function expression 
𝑍(𝑖) = 𝐹𝑣(𝑋(𝑖)) 
𝑖𝑓 𝐵𝑎2(𝑖) = 0 𝑡ℎ𝑒𝑛: 𝑍(𝑖)  ←  𝑇𝑣1(𝑉𝑐1(𝑖), 𝑇𝑣2(𝑉𝑐2(𝑖);𝑚𝑜𝑑(𝑉𝑎(𝑖) ∗ 𝑋(𝑖) + 𝑉𝑒(𝑖); 256))) 

𝑒𝑙𝑠𝑒:  𝑍(𝑖)  ←  𝑇𝑣2(𝑉𝑐3(𝑖), 𝑇𝑣1(𝑉𝑐1(𝑖);  𝑚𝑜𝑑(𝑉𝑏(𝑖) ∗ 𝑋(𝑖) + 𝑉𝑟(𝑖); 256))): 𝑒𝑛𝑑 𝑖𝑓 

 

2.6.  Axis 6: phase of encryption 

The encryption phase unfolds through two stages. The first stage involves vectorizing the image. 

Then, the second stage introduces the new Vigenere function to enhance the confusion/diffusion operation. 

 

2.6.1. Original image vectorization 

After extracting the three color channels (RGB) and converting them into vectors (𝐶𝑟), (𝐶𝑔), and 

(𝐶𝑏) respectively, a pseudo-random concatenation is applied under the control of the binary decision vector 

(𝐵𝑎1). This operation gives rise to the vector (𝑋) of dimension (1, 3 nm). The concatenation process is 

determined by Algorithm 7. 

 

Algorithm 1. Original image vectorization algorithm 
𝑓𝑜𝑟 𝑗 ←  1  𝑡𝑜  𝑛𝑚 
    𝑖𝑓 𝐵𝑎1(𝑗) = 0 𝑡ℎ𝑒𝑛  
          𝑋(3𝑗 − 2)  ←  𝐶𝑟(𝑗)⨁ 𝑉𝑐1(𝑗) 
          𝑋(3𝑗 − 1)  ←  𝐶𝑔(𝑗)⨁ 𝑉𝑐2(𝑗) 
          𝑋(3𝑗)  ←  𝐶𝑏(𝑗)⨁ 𝑉𝑐3(𝑗) 

    𝑒𝑙𝑠𝑒  
          𝑋(3𝑗 − 2)  ←  𝐶𝑟(𝑗)⨁ 𝑉𝑐3(𝑗) 
          𝑋(3𝑗 − 1)  ←  𝐶𝑔(𝑗)⨁ 𝑉𝑐1(𝑗) 
          𝑋(3𝑗)  ←  𝐶𝑏(𝑗)⨁ 𝑉𝑐2(𝑗) 
    𝑒𝑛𝑑 𝑖𝑓:𝑒𝑛𝑑 𝑓𝑜𝑟 

 

2.6.2. Improved Vigenere by the affine method 

The new encryption process requires the computation of an initialization value (In) linked to the 

original image. This value is determined solely to alter the starting pixel value and thereby initiate the 

encryption process. The calculation of this value is provided by Algorithm 8. 
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Algorithm 2. Initialization value calculation 
𝐼𝑛 = 0 
𝑓𝑜𝑟 𝑖 =  2 𝑡𝑜 3 𝑛𝑚 
 𝑖𝑓 𝐵𝑎3(𝑖) = 0 𝑡ℎ𝑒𝑛 
 𝐼𝑛 =  𝐼𝑛⨁𝑋(𝑖)⨁𝑉𝑐2(𝑖) 

 𝑒𝑙𝑠𝑒 
 𝐼𝑛 =   𝐼𝑛⨁𝑋(𝑖)⨁𝑉𝑐3(𝑖) 
 𝑒𝑛𝑑 𝑖𝑓   
𝑒𝑛𝑑 𝑓𝑜𝑟 

 

To overcome any differential attack, we employ diffusion functions utilizing pseudo-random vectors 

and dynamic affine functions. This chaining process enhances the impact of the avalanche effect. The 

application of diffusion functions is depicted by Algorithm 9 and interpreted in Figure 1. 

 

Algorithm 3. Hybrid chaining function expression 
//First-pixel encryption 

𝑍(1) =  𝐹𝑣( 𝑋(1)⨁𝐼𝑛⨁𝑉𝑐1(1)) 
//Next pixels encryption 

𝑓𝑜𝑟 𝑖 =  2 𝑡𝑜 3 𝑛𝑚   
   𝛼 = 𝑓𝑖(𝑋(𝑖))⨁𝑍(𝑖 − 1) 
   𝑖𝑓 𝐵𝑎3(𝑖) = 0 𝑡ℎ𝑒𝑛   

      𝑍(𝑖) =   𝐹𝑣(𝛼⨁𝑉𝑐2(𝑖)) 
   𝑒𝑙𝑠𝑒 
      𝑍(𝑖) =   𝐹𝑣(𝛼⨁𝑉𝑐3(𝑖)) 
   𝑒𝑛𝑑 𝑖𝑓 
𝑒𝑛𝑑 𝑓𝑜𝑟 

 

The obtained vector (Z) undergoes global permutation (Pg) to generate the vector (Zs). This vector represents 

the encrypted image. 

 

 

 
 

Figure 1. New circuit using dynamic pseudorandom affine functions 

 

 

2.7.  Axis 7: phase of decryption 

Our new algorithm is a symmetric encryption system employing diffusion functions. Consequently, 

the decryption process must commence with the final step utilizing the inverse encryption functions. The 

encrypted image is transformed into a vector (Zs) of dimension (1; 3 nm), upon which the steps below. 

 

2.7.1. Application of the inverse of the global permutation 

This operation involves permuting the pixels of the vector (Zs) by the inverse function (Gp) of the 

function (Pg). This enables the restoration of the vector (Z) upon which the inverse Vigenere function is 

applied. This decryption process is determined by Algorithm 10. 

 

Algorithm 4. Inverse permutation 
𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 3 𝑛𝑚 
      𝐺𝑝(Pg(i)) = 𝑖:  
𝑒𝑛𝑑 𝑓𝑜𝑟 

 

2.7.2. Application of the substitution function 

The inverse of the replacement function requires the construction of two inverse substitution tables 

(Vt1 and Vt2), as provided by Algorithm 11. The inverse function of substitution is given by Algorithm 12. 

 

Algorithm 5. (Vt1) and (Vt2) inverse substitution box construction 
𝑓𝑜𝑟 𝑗 ←  1  𝑡𝑜  256   
        𝑉𝑡1(1, 𝑇𝑣1(𝑖; 𝑗))  ←  j 
𝑒𝑛𝑑 𝑓𝑜𝑟 

𝑓𝑜𝑟 𝑗 ←  1  𝑡𝑜  256   
        𝑉𝑡2(1, 𝑇𝑣2(𝑖; 𝑗))  ←  j 
𝑒𝑛𝑑 𝑓𝑜𝑟 

 𝑋(1) 𝑋 (1) 𝑋 (3𝑛𝑚) 

 = 𝑡  𝑉𝑐1(1)  = 𝑡  𝑉𝑐2(2) 

𝑍 (3𝑛𝑚) = 𝐹𝑣( ) 

 = 𝑡  𝑉𝑐3(2)  = 𝑡  𝑉𝑐2(3𝑛𝑚)  = 𝑡  𝑉𝑐3(3𝑛𝑚) 

𝑍 (1) = 𝐹𝑣( ) 𝑍 (2) = 𝐹𝑣( ) 

𝐵𝑎3(2) 𝐵𝑎3(3𝑛𝑚) 

𝑡 = 𝑋(1)  𝐼𝑛 𝑡 = 𝑓2(𝑋(2)) 𝑍(1) 𝑡 = 𝑓3𝑛 (𝑋(3𝑛𝑚))  𝑍(3𝑛𝑚 − 1) 

𝑁𝑜  𝑒𝑠 𝑁𝑜  𝑒𝑠 
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Algorithm 6. (𝑉𝑓) The inverse of hybrid chaining function expression 
𝑋(𝑖) = 𝑉𝑓(𝑍(𝑖)) 
𝑖𝑓 𝐵𝑎2(𝑖) = 0 𝑡ℎ𝑒𝑛:  

𝑋(𝑖)  ← mod((Va(i))−1 ∗ (𝑉𝑡2(𝑉𝑐2(𝑖); 𝑉𝑡1(𝑉𝑐1(𝑖); 𝑍(𝑖)))) − (Va(i))−1 ∗ Ve(i); 256) 

𝑒𝑙𝑠𝑒:  

          𝑋(𝑖)  ←  mod((Vb(i))−1 ∗ (𝑉𝑡1(𝑉𝑐1(𝑖); 𝑉𝑡2(𝑉𝑐3(𝑖); 𝑍(𝑖)))) − (Vb(i))−1 ∗ Vr(i); 256): 𝑒𝑛𝑑 𝑖𝑓 

 

 

3. RESULTS AND DISCUSSION 

All the simulations were implemented in Python on the Windows 10 operating system with a 

hardware environment consisting of an i7 processor laptop, a 1 TB hard drive, and 32 GB of RAM. The 

tested images samples were taken from [30]. The keys and other experimental parameters are generated from 

the chaotic maps described above. Before initiating the decryption process, the secret key needs to be 

securely transmitted to the recipient through a protected channel. 

 

3.1.  Statistical attacks 

A statistical attack utilizes statistical analyses of encrypted data to reveal details about the 

encryption key or the plaintext or plain images. Several reference images chosen at random were tested by 

our new algorithm at this stage. The recorded simulations are described in the following subsections: 

 

3.1.1. Analysis of possible key space 

Our algorithm uses two chaotic maps generated by four real parameters represented by 32 bits each. 

The all-key space encompasses a key of 120 bits. This ensures that our system is resistant to any brute-force 

attack. 

 

3.1.2. Key sensitivity analysis 

The two chaotic maps used are characterized by their extreme sensitivity to initial conditions. This 

means that any perturbation of the private key will result in completely different encrypted images. For 

instance, as illustrated in Figure 2, a small modification in the key value of 0.000001 leads, during 

decryption, to another decrypted image distinct from the original image. 

 

 

 
 

Figure 2. Key sensitivity analysis 

 

 

3.1.3. Analysis of histograms 

Table 1 shows RGB histograms of original and encrypted Lena and Baboon images using our 

method. The RGB histogram results of encrypted images by our algorithm shows a uniform distribution. 

These results ensure that our system can withstand histogram-based attacks. 

 

3.1.4. Analysis of entropy 

Entropy is a metric that assesses the level of uncertainty in a sequence. Higher entropy indicates 

greater randomness and increased difficulty in predicting the key or data. Crypto-systems often strive to 

maximize entropy to enhance security, thereby making the system more resistant to attacks. The entropy of 

an image is given by (5), 

 

 𝑆(𝑀𝐶) =
−1

3𝑛 
∑ 𝑝(𝑖). 𝑙𝑜𝑔2(𝑝(𝑖))
3𝑛 
𝑖=1   (5) 

 

where, 𝑝(𝑖) represents the probability of occurrence of level (i) in the plain image. 

Table 2 shows a comparison of the entropy value level of our system with other similar algorithms. 

These results ensure that our technique is more efficient than the other algorithms compared in references 

[31], [32]. This confirm that our system is robust against statistical attacks. 
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Table 1. Histograms of cipher and plain images 
Images 

Lena 

Clair histogram 

 

 

Cipher histogram 

 

Baboon 

Clair histogram 

 

Cipher histogram 

 

 

 

Table 2. Comparison of encrypted image entropy with other methods: (L) Lena, (Pe) Pepper, (H) House 
Algorithm Images Encrypted 

Red Green Blue 

Proposed (L) 7,9973 7,9974 7,9971 

(Pe) 7,9994 7,9994 7,9995 

(H) 7,9983 7,9982 7,9983 
[31] (L) 7.9974 7,9974 7,9971 

(Pe) 7,9993 7,9994 7,9992 

(H) 7,9993 7,9992 7,9993 
[32] (L) 7,9972 7,9973 7,9970 

(Pe) 7,9993 7,9994 7,9994 

 
 
3.1.5. Correlation analysis 

Equation (6) provides the correlation of an image with dimensions (n, m). Table 3 provides the 

calculated values of the correlation for some reference images taken from the SIPI database [30] tested by 

our algorithm. The values of correlation calculated by our algorithm adhere to international standards. The 

obtained results ensure that our crypto-system is immune to correlation attacks. 

 

 

Table 3. Correlations between pixels in images taken from the SIP database 
Images Original image Encrypted image 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Lena Red 0.9558 0.9648 0.9325 -0.003771 0.008149 -0.00132 

Green 0.93556 0.95756 0.91902 -0.002981 0.009127 -0.006732 

Blue 0.90773 0.9393 0.8913 -0.001449 -0.006716 0.000643 
Apricot Red 0.98385 0.96944 0.98629 -0.00136621 -0.0018756 -0.0054082 

Green 0.97883 0.98511 0.96537 -0.00106622 0.0015054 0.0023428 

Blue 0.99153 0.98348 0.98724 0.0048931 -0.0057105 -0.0011768 
Panda Red 0.95175 0.96552 0.93161 0.0051302 -0.0007677 -0.0049534 

Green 0.95215 0.96436 0.93066 0.0078786 -0.0007949 0.0002736 

Blue 0.95542 0.97086 0.94265 0.000070 0.0109689 -0.0010586 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Improved Vigenere approach incorporating pseudorandom affine functions … (Hamid El Bourakkadi) 

2691 

𝑐𝑜𝑟𝑟 =
𝑐𝑜𝑣(𝑥,𝑦)

√𝑣𝑎𝑟(𝑥).√𝑣𝑎𝑟(𝑦)
  (6) 

 

where Cov(x, y) is the covariance between the two variables x and y; and Var(x) and Var(y) are the variances 

of the variables x and y, respectively. 

Table 4 details a comparison at the level of the correlation of our approach with other similar 

approaches. This shows that our technique is more efficient compared to other algorithms in references  

[31]–[33]. The obtained results ensure that our crypto-system is immune to statistical attacks. 

 

 

Table 4. Correlation between ciphered “Lena” pixels 
Method Horizontal Vertical Diagonal 

Proposed -0.002733667 0.00352 -0.002469667 

[31] -0.0042707 -0.0032498 -0.0020192 
[32] -0.0029883 0.0091357 -0.0067375 

[33] -0.0098 -0.0050 -0.0013 

 

 

3.2. Differential attacks 
Differential attacks leverage variations in input processing within a crypto-system. They focus on 

the system's responses to subtle changes in plaintext or the key to deduce sensitive information, such as the 

encryption key. To assess the algorithm's efficacy against differential attacks, metrics such as the number of 

pixel change rates (NPCR), the unified average change intensity (UACI), and the avalanche effect are 

employed. 

 
3.2.1. NPCR and UACI metrics analysis 

NPCR and UACI are metrics used to evaluate the performance of image encryption algorithms. 

These metrics are commonly employed in the field of image encryption and provide quantitative measures of 

the quality and security of the encryption process. They can be given by (7) and (8) respectively. 

 

𝑁𝑃𝐶𝑅 = (
1

3𝑛 
∑ 𝐷𝑓(𝑖, 𝑗)3𝑛 
𝑖,𝑗=1 ) . 100   (7) 

 

𝑈𝐴𝐶𝐼 = (
1

3𝑛 
∑

|𝐼 1(𝑖,𝑗)−𝐼 2(𝑖,𝑗)|

255

3𝑛 
𝑖,𝑗=1 ) . 100  (8) 

 

where, 

- 𝐷𝑓(𝑖, 𝑗) = {
1 𝑖𝑓 𝐼𝑚1(𝑖, 𝑗) ≠ 𝐼𝑚2(𝑖, 𝑗)

0 𝑖𝑓 𝐼𝑚1(𝑖, 𝑗) = 𝐼𝑚2(𝑖, 𝑗)
  

- 𝐼𝑚1(𝑖, 𝑗) is the first encrypted image pixel of rank (𝑖, 𝑗) 
- 𝐼𝑚2(𝑖, 𝑗) is the second encrypted modified image pixel of rank (𝑖, 𝑗). 

Table 5 presents the UACI and NPCR values calculated on the reference images tested by our 

algorithm. The values of differential constants calculated by our algorithm adhere to international standards. 

This confirms that our technique outperforms other algorithms [31], [32], [34], [35]. This ensures the 

protection of our system against any differential attack.  

 

 

Table 5. Comparison of the NPCR and UACI (L) Lena and (Pe) Pepper 
Method Lena Pepper 

NPCR UACI NPCR UACI 

Proposed 99.68% 33.49 99.67 33.48 

[31] 99.68% 33.46 99.67 33.48 
[31] 99.60% 33.49 99.61 33.46 

[34] 99.66% 33.44 99.63 33.47 

[35] 99.64% 33.03 - - 

 
 
3.2.2. PSNR metric analysis 

The PSNR is evaluated in decibels and is inversely proportional to the mean squared error. It is 

determined by (9). 

 

𝑃𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔10 (
(2𝐿−1)

2

𝑀𝑆𝐸
) (𝑑𝐵) (9) 
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where,  

- 𝑀𝑆𝐸 =
1

(𝟑𝒏𝒎)𝟐
∑ |𝐼𝑚1(𝑖, 𝑗) − 𝐼𝑚2(𝑖, 𝑗)|

2𝟑𝒏𝒎
𝑖,𝑗=1 : mean squared error 

- (𝐼𝑚1) and (𝐼𝑚2) represent the original and encrypted images, respectively. 

- L=8 denotes the bit depth of the particular image, (n) and (m) are the dimensions of the given image. 

Table 6 presents the PSNR values calculated on the reference images tested by our algorithm. The 

obtained values by our algorithm are within the standards, ensuring that our encryption algorithm is better 

than that of references [31], [36]. This confirm that our system is robust against differential attacks. 

 

 

Table 6. The PSNR (dB) between the original image, the encrypted image, and the decrypted image 
Method_ Type of PSNR Lena Baboon Panda Vegetables 

Ours Original to Encrypted ∞ ∞ ∞ ∞ 

Original to Encrypted 7,0312 7,1811 7,1748 6,8800 

[31] Original to decrypted ∞ ∞ ∞ ∞ 

Original to Encrypted 8,1102 8,7776 8,1648 6,8760 

[36] Original to Encrypted 8.9605 9.2372 - - 

 

 

4. CONCLUSION 

The analysis of statistical and differential constants, in accordance with international standards, was 

carried out using pseudo-random and reversible affine functions in the confusion and diffusion functions. 

Additionally, two S-Boxes generated from chaotic maps were integrated. This approach led to the creation of 

a large-scale algorithm that imparts a uniformly distributed histogram to each encrypted image. As a result, 

our cryptographic system exhibits robustness against all known attacks, as demonstrated by comparisons with 

several similar algorithms.  
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