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 Early-stage detection of chronic kidney disease (CKD) is crucial in research 

to enable timely intervention, enhance understanding of disease progression, 

reduce healthcare costs and support public health initiatives. The traditional 
approaches on early-stage chronic kidney disease detection often suffer from 

slow convergence and not integrate advanced technologies, impacting their 

effectiveness. Additionally, security and privacy concerns related to patient 

data are ineffectively addressed. To overcome these issues, this research 
incorporates novel optimized artificial intelligence-based approaches. The 

main aim is to enhance detection process through enhanced hybrid mud ring 

network (EHMRN), a novel detection technique combining light gradient 

boosting machine and MobileNet, involving extensive data collection, 
including a large dataset of 100,000 instances. The introduced network is 

optimized through the mud ring optimization to attain enhanced 

performance. Incorporating spark ensures secure cloud-based storage, 

enhancing privacy and compliance with healthcare data regulations. This 
approach represents a significant advancement in primary stage detection 

more effectively and promptly. The results show that the introduced 

approach outperforms traditional approaches in terms of accuracy (99.96%), 

F1-score (99.91%), precision (100%), specificity (99.98%), recall (100%) 
and execution time (0.09s). 
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1. INTRODUCTION 

Chronic kidney disease (CKD) poses a significant global health challenge, characterized by a 

gradual decline in kidney function. Despite its asymptomatic nature, CKD progress silently to advanced 

stages, leading to severe complications and increased healthcare burdens. The imperative for early-stage 

CKD detection is underscored by its potential to substantially improve patient outcomes through timely 

intervention and management [1]. Recognizing the importance of this issue, this research seeks to address 

existing challenges in CKD detection by employing a novel big data analytics approach [2], [3]. 

Traditional methods for detecting CKD encounter significant challenges when faced with large-

scale datasets, managing missing data, and selecting optimal features. These limitations hamper their 

effectiveness in early detection. Recent advancements in machine learning (ML) and deep learning (DL) 

have introduced various techniques tailored for early-stage detection of chronic kidney disease (ESDCKD). 

https://creativecommons.org/licenses/by-sa/4.0/
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Deep neural network (DNN) and an adaptive moment estimation optimization function is developed in [4] to 

predict early-stage CKD. To enhance interpretability, predictions of the DNN-CKD model are explained 

using the local interpretable model-agnostic explainer (LIME). The model is trained on diagnostic patient 

data using a five-layered DNN with three hidden layers. However, this approach is susceptible to overfit and 

require substantial computational resources. By adding measurable features, convolutional neural network 

(CNN) model [5] is developed for improved CKD detection in ultrasound images. Using a mask regional 

CNN, organ segmentation and feature extraction, such as kidney length and echogenicity ratio, were 

performed. The ResNet18 model classified images into CKD and non-CKD groups, with and without 

measurable feature input. But this technique is computationally intensive and attains a minimum 

convergence. A method in [6] aims to create a predictive model for CKD heart disease data using various 

open-source Python modules. By comparing with algorithms like k-nearest neighbor (KNNs) and recurrent 

neural network (RNN), the goal is to achieve high prediction and precision in machine learning methods. 

Although, this approach face issues with vanishing/exploding gradient problems, making them challenging to 

train effectively. The algorithm in [7] utilizes a two-layer architecture with real-time data. It employs 

artificial neural networks (ANN) to learn features and extreme gradient boosting (XGB) for predictions 

which struggle with noisy data and exhibit slow training on large datasets. New CKD detection model 

including preprocessing, segmentation, feature extraction and classification is developed in [8]. The output 

features are fed into long short-term memory (LSTM) for improved accuracy. But LSTM is associated with 

computational complexity and a risk of overfitting. Addressing these drawbacks is essential for optimizing 

the effectiveness of these techniques in early-stage CKD detection. 

Addressing the existing challenges in machine learning entails overcoming hurdles such as 

overfitting, resource-intensive requirements, difficulties with vanishing/exploding gradients, handling noisy 

data effectively, improving training efficiency on large datasets, enhancing scalability, ensuring 

interpretability, simplifying complexity, minimizing sensitivity to hyperparameter tuning, and mitigating the 

risk of overfitting. Despite the advancements in CKD detection techniques, several unsolved problems 

persist, including the need for more accurate and efficient detection methods, especially in early-stage CKD. 

To address these challenges, this research proposes a novel approach that leverages big data analytics to 

augment the dataset size for comprehensive analysis. This approach is a significant departure from traditional 

methods and contributes to the field by offering a novel perspective on CKD detection [9], [10]. 

In this research, a comprehensive methodology is introduced aimed at advancing early-stage CKD 

detection by fusing artificial intelligence (AI) based techniques. Specifically, enhanced light gradient 

boosting machine (ELightGBM) and MobileNet (MN) is utilized and optimized through mud ring 

optimization algorithm (MROA), to enhance accuracy and efficiency compared to traditional methods. 

Additionally, generative adversarial network (GAN) is employed for big data analytics, expanding the dataset 

size and contributing to a more thorough analysis of CKD. 

The contributions of this research are as follows: i) The use of generative adversarial networks 

(GANs) in the big data analytics process aims to replicate the original data's characteristics, thereby 

expanding the dataset size for comprehensive analysis. This innovative approach to data augmentation 

represents a significant contribution to chronic kidney disease detection, as it introduces a novel method not 

previously explored in existing literature. The preprocessing of big data using techniques like part mean 

imputation (PMI) and improved binning (IB) further enhances the quality of the dataset; ii) The integration of 

the enhanced hybrid mud ring network (EHMRN), comprising ELightGBM and MN optimized through 

MROA, significantly improves accuracy and efficiency compared to conventional methods. This 

advancement addresses convergence challenges and provides a more robust solution with enhanced training 

for ESDCKD detection; iii) The utilization of MROA for tuning neural network parameters is driven by its 

exceptional adaptability to complex parameter spaces. This algorithm ensures rapid convergence and superior 

accuracy in CKD detection, surpassing alternative tuning methodologies; iv) The adoption of the modified 

energy valley optimizer (MEVO) is based on its outstanding capability to extract essential features efficiently 

for optimizing CKD prediction by limiting the time complexity. MEVO outperforms other algorithms by 

effectively selecting key data inputs, thereby enhancing detection accuracy; and v) Incorporating spark for 

secure cloud-based storage addresses critical privacy concerns and ensures compliance with healthcare data 

regulations, demonstrating a commitment to data security and privacy in CKD detection efforts. 

The rest of the research is organized as follows: Section 2 delves into an in-depth examination of 

recent literature, thoroughly surveying existing research findings and developments in the field. Following 

this, section 3 introduces the topology employed in this research, offering a detailed description of the 

framework or structure utilized for analysis. Subsequently, section 4 meticulously presents the outcomes 

derived from the implemented methodology, providing a comprehensive overview of the results obtained. 

Lastly, section 5 encapsulates the study with a concluding discussion, summarizing key findings and insights 

drawn from the research process. 
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2. REVIEW 

This section provides a concise review of recent approaches and limitations in CKD and ESDCKD. 

Modified extreme-random forest (ME-RF) with eXtreme gradient boosting (XGBoost) integration was 

applied by Rajeashwari and Arunesh [11] for classification, incorporating increased decision tree (DT) leaves 

to enhance adaptability. Evaluation on datasets with varied deep CNN (Deep CNN) configurations revealed 

high computational demands and limited interpretability as practical constraints. Rahman et al. [12] examines 

eight ensemble ML (EML) methods for early CKD diagnosis on ML datasets. It addresses missing data with 

multiple imputations by chain equation (MICE) imputation and handles data imbalance with borderline 

support vector machine with synthetic minority over-sampling (SVMSMOTE). Additionally, it employs 

feature selection techniques and hyperparameter tuning to enhance classifier performance and efficiency. 

This approach was unable to identify the stage of the disease. Kidney fibrosis in patients with CKD was 

predicted by Ge et al. [13] using radiomics of two-dimensional ultrasound and sound touch elastography 

(STE) images in grouping with clinical attributes. Yet, this method showed inaccuracies in its classification. 

Islam et al. [14] explored hybrid machine learning (HML)'s potential for early CKD diagnosis, emphasizing 

the importance of timely intervention. Employing predictive modeling and testing twelve classifiers, the 

study identifies XGBoost as the most effective, showcasing advancements in ML for accurate kidney disease 

prediction. The model faced challenges due to the insufficient sophistication and representativeness of the 

available data. Support vector machine (SVM) was utilized as a classifier by Swain et al. [15] to develop a 

predictive model, with public data being leveraged for forecasting CKD. Data preprocessing and the chi-

squared test for feature extraction were employed in the pursuit of a robust predictive model. Yet, this 

method experienced lower accuracy rates and reduced effectiveness.  

A novel ensemble deep learning (EDL) approach was introduced by Alsekait et al. [16] for detecting 

early CKD, incorporating various feature selection methods to identify optimal features. The impact of these 

features on CKD from a medical perspective was studied and the EDL models with the SVM as the meta 

learner model. But the suggested algorithm experiences elevated computational complexity. The Ebola deep 

wavelet extreme learning machine (EDWELM) learning developed by Reddy and Vydeki [17] for accurate 

early CKD and non-CKD classification, involving data preprocessing and feature selection using the darts 

battle game optimizer. The last step encompassed the detection process, crucial in data mining for 

characterizing data classes. This approach demonstrated improved time consumption, a weak convergence 

rate and training. An innovative fusion DL model was introduced by Rao et al. [18], combining a graph 

neural network and a tabular data learning (GNN-TDL) approach for detecting CKD evolution early, 

leveraging the strengths of both data representations. This approach faced increased computational demands 

and reduced model interpretability. A ML model for early CKD detection was developed by Pal et al. [19], 

involving applying baseline detectors to categorical and non-categorical attributes and enhancing outcomes 

by combining outputs through a majority vote. However, this approach shows weak prediction performance. 

A modified version of weighted mean of vectors (INFO) called mINFO developed by Houssein and Sayed 

[20] addresses challenges like local optima and slow convergence. Developed with opposition-based learning 

(OBL) and dynamic candidate solution (DCS) strategies, mINFO enhances local search and overcomes 

premature convergence issues while effectively managing CKD. However, mINFO faced limitations in 

effectively handling complex variations within CKD datasets, impacting its performance in certain scenarios. 

Self-attention convolutional neural network (SACNN) optimized with season optimization algorithm (SOA) 

called SACNN-SOA was presented by Alikhan et al. [21] in a smart medical big data healthcare scheme 

using internet of things (IoT) and cloud computing. SACNN was used without disclosing optimization 

systems; instead, optimization was carried out using the SOA. This model encounters increased 

computational complexity. 

 

2.1.  Problem statement 

The existing research faces challenges. These challenges include diagnostic inaccuracy and 

increased execution time, necessitating improved diagnostic methods, faster research processes, and more 

effective therapeutic strategies to combat CKD's rising prevalence and address critical healthcare challenges. 

These limitations highlight the need for innovative approaches and solutions to overcome the obstacles in 

CKD research and healthcare interventions. 

 

 

3. INTRODUCED TOPOLOGY 

The introduced methodology is comprised of comprehensive four-phase approach to ESDCKD. The 

first stage involves a meticulous analysis of big data using GAN, delving into substantial datasets to extract 

valuable insights. Following this, a preprocessing step is implemented using PMI and IB to eliminate noise 

and address missing values, ensuring the integrity and accuracy of the data. The subsequent stage involves 

the selection of pertinent features using MEVO, a crucial step in enhancing the predictive capabilities of the 
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model. Then, detection of the likelihood of CKD is then performed using EHMRN based on the refined data. 

Finally, the outcomes, indicating the probability of CKD occurrence or absence are securely stored in the 

Spark cloud, ensuring robust data management and accessibility. This methodological framework in Figure 1 

underscores the significance of each stage, from data analysis to feature selection, in constructing a robust 

approach for early CKD detection. The secure storage of results in the spark not only facilitates efficient data 

management but also ensures the confidentiality and accessibility of critical health-related information.  

 

 

 
 

Figure 1. Architecture of introduced model 

 

 

3.1.  Input data collection 

The data utilized as input for ESDCKD is derived from three distinct datasets: CKD (dataset “I”) 

[22], CKD from Kaggle (dataset “II”) [23] and CKD–explored (dataset “III”) [24]. Dataset I, which 

originated from the UCI ML Repository, serves the purpose of predicting CKD. This dataset is typically 

collected from hospitals over a span of nearly two months, which encompasses 400 unique instances, each 

defined by 25 distinct features. Moving on, dataset II is specifically designed to ascertain whether a patient is 

afflicted with CKD or not, relying on a comprehensive set of diagnostic measurements incorporated within 

the dataset. Notably, this dataset integrates an array of medical predictor variables alongside a singular target 

variable. Meanwhile, dataset III is comprised of 24 features and one target variable, contributing to the 

comprehensive understanding of CKD. 

 

3.2.  Big data analysis 

To further bolster the data collection process, an extensive dataset has been generated using AI based 

approaches, drawing its foundation from the initial dataset I. The dataset of 400 instances is expanded to 

100,000 instances for big data analysis through a process called oversampling. Oversampling using GAN [25] 

involves creating additional synthetic instances in the dataset to rebalance the data and ensure that the model is 
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trained on a more comprehensive and representative sample. This technique is commonly employed to address 

issues related to class imbalance, where certain classes are underrepresented in the dataset. The generator 

combines the input noise 𝑧 and 𝑏 to form a joint hidden representation. Similarly, 𝑎 and 𝑏 are fed into the 

discriminator. Likewise, the discriminator takes 𝑎 and 𝑏 as input. The oversampling learning objective of a 

GAN is represented by (1), where both the discriminator and generator now depend on 𝑏 as an input. 

 

𝐺𝐴𝑁𝑙𝑜𝑠𝑠(𝑎, 𝑏, 𝜃, 𝜑) = 𝜃𝑚𝑖𝑛  𝜑𝑚𝑎𝑥(𝑒𝑎_𝑃𝑎[𝑙𝑜𝑔𝛫𝜙 (𝑎, 𝑏)] + 𝑒𝑐_𝑃𝑐[𝑙𝑜𝑔𝛫𝜙 (𝛭𝜃(𝑎, 𝑏), 𝑐))])⬚
 (1) 

 

After the training phase, when generating an observation for 𝑎 class 𝑏, the process involves first 

sampling 𝑐 from the distribution 𝑄𝐶(𝑐). Subsequently, both the sampled 𝑐 and the specified b  are fed into 

the conditional generator to produce the resulting output 𝑎′ = 𝛹𝜃(𝑐, 𝑏). By artificially enlarging the 

instances of the minority class, the dataset becomes more balanced, thus enabling the approach to absorb the 

patterns and relations within the data well. This expanded dataset boasts a substantial compilation of 100,000 

instances, accompanied by a diverse range of additional variables. Subsequently, all of this data undergoes a 

preprocessing stage. 

 

3.3.  Preprocessing phase 

The input data from the aforementioned datasets contains both missing values and noisy data. To 

address this issue, the current research employs a preprocessing technique that involves PMI and IB. This 

method aims to effectively handle missing values by replacing them with the mean of the corresponding 

feature and it also involves grouping continuous data into intervals (or 'bins') for easier analysis and 

interpretation. 

 

3.3.1. Part-mean imputation 

In Part-mean imputation (PMI) [26], the missing values of the response variable in a specific part of 

the CKD datasets are substituted by the mean of the non-missing response parameters within that part. The 

missing response value jmb  is attained from the factorial portion �̂�𝑃𝑀𝐼𝑐 =
∑ 𝑏𝑗∀𝑗≠𝑐

3
, 𝑐 ∈ 𝑗 = {1,2,3,4}, 

middle portion �̂�𝑃𝑀𝐼𝑐 =
∑ 𝑏𝑗∀𝑗≠𝑐

4
, 𝑐 ∈ 𝑗 = {5,6,7,8,9}, axial portion �̂�𝑃𝑀𝐼𝑐 =

∑ 𝑏𝑗∀𝑗≠𝑐

3
, 𝑐 ∈ 𝑗 = {10,11,12,13}, 

using PMI as in (2). The PMI (2) is applied to determine the parameter of the missing response at the design 

point within the factorial portion 𝐹4 in relation to 𝑏13. 

 

�̂�𝑃𝑀𝐼 =
𝑏10+𝑏11+𝑏12

3
 (2) 

 

3.3.2. Improved binning 

The other preprocessing approach is based on the IB [27] of numerical variables, wherein distinct 

numerical parameters are converted into ranges and classes like low (<0,4>), medium (<5,6>), high (<5,8>) 

and very high (<9,10>) are used. The discrete scale of 0–10 in the benchmark scores is mapped into 

categorical labels using this approach. This development of the IB process stemmed from interpreting and 

comprehending these categories based on the perspective of business expertise. By grouping numerical 

values into meaningful categories with the input of domain experts, IB smooth out noise. Following the 

preprocessing stage, the finest features are chosen from the preprocessed data using the MEVO method. 

 

3.4.  Feature selection phase 

The modified form of energy valley optimizer (EVO) [28] algorithm known as MEVO is used for 

selecting the finest features from the preprocessed output because this algorithm excels in identifying crucial 

features within a dataset, handling diverse data structures and providing interpretability features, ensuring its 

position as a robust tool for complex data analysis. This modification reduces time complexity by 

implementing efficient search strategies that efficiently explore the solution space, leading to faster 

convergence and reduced computational overhead. Within the MEVO framework, the population size is 

divided into two distinct segments which enhances the algorithm's convergence speed and improves the 

effectiveness of the algorithm. Initially, proportion of the injected population ratio (25%, 50%, 75%, and 

100%) are done by the modified technique. Features 𝐼𝑀𝐼 with high mutual information (MI) values are 

ensured inclusion in the initial population, guaranteeing their significance for classification which is 

determined in (3), where the binary representation of the 𝑖𝑡ℎ feature in the initial population is represented by 

𝐼𝑝 and a random number within the range of [0, 1] is denoted as 𝑟. The second portion indicates the 

remaining population (1-injected population ratio), which is randomly initialized using (4). The fitness value 

for choosing the finest features is determined using (5). 
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𝐼𝑝 = {
1, 𝑖𝑓𝑟 < 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ⥂ 𝐼𝑀𝐼
0, 𝑖𝑓𝑟 ≥ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐼𝑀𝐼

  (3) 

 

𝐼𝑝 = {
1, 𝑖𝑓𝑟 > 0.5
0, 𝑖𝑓𝑟 ≤ 0.5

  (4) 

 

𝑂 = 𝑎 ⋅ (|𝑓𝑝𝑟 − 𝑓𝑛𝑟|) + 𝑏 ⋅
|𝐹|

|𝑇|
  (5) 

 

where, the weight of each objective is represented by parameters 𝑎 and 𝑏, both of which fall between zero 

and one (with 𝑏 being derived as 1 − 𝑎). The number of selected and total features are denoted by 𝐹 and 𝑇. 

𝑓𝑛𝑟 and 𝑓𝑝𝑟 indicate the false negative rate (FNR) and false positive rate (FPR), respectively. In this 

research work, 𝑎 is predetermined as 0.99 and 𝑏 is set to 0.01. The utilization of (5) facilitates the selection of 

the best features, which are subsequently applied for ESDCKD.  

 

3.5.  Detection phase 

The introduced hybrid network [29], [30] is designed to accept a specific set of chosen features as its 

input. These features play a crucial role in enabling the network to effectively differentiate instances of CKD 

with precision. By leveraging these carefully selected features, the hybrid network endeavors to achieve 

accurate identification and classification of CKD cases. Notably, the predictions generated by the MN 

component of the hybrid network serve as input labels for the training process of the ELightGBM model, 

contributing to the model's learning and predictive capabilities. 

 

3.5.1. MobileNet detection 

MobileNet classifies medical images into categories indicating the presence or absence of CKD. The 

output of MN 𝑂𝑀𝑁 represents the initial predictions. Following the initial predictions made by the MN 

component, these outcomes serve as essential input labels for the subsequent stage involving the ELightGBM 

model. This model, being an integral part of the process, undertakes further refinement of the detections 

based on the provided input labels. By leveraging this refined information, the ELightGBM model then 

generates the final likelihood estimates for CKD, which encapsulate a more comprehensive and accurate 

assessment of the presence of CKD within the analyzed data. 

 

3.5.2. Enhanced LightGBM model training 

The MN predictions 𝑂𝑀𝑁 serve as input labels for training the LightGBM model. The objective 

function (OF) for ELightGBM 𝑂𝑖 and its components remain consistent with the standalone ELightGBM in 

(6), where 𝑖 = 1,2, . . 𝑛 signifies the overall samples of training, 𝐿 signifies the loss function, 𝑦𝑖 is the true 

label of the 𝑖𝑡ℎ training sample, 𝐿(𝑦𝑖, 𝐹(𝑥𝑖)) is the loss incurred for predicting when the true label is 𝑦𝑖. The 

ELightGBM model's loss function is improved by incorporating a dynamic loss mechanism to address the 

vanishing gradient problem, resulting in improved training convergence performance. This dynamic loss is 

formally defined in the accompanying (7). 

 

𝑂𝑖 = ∑ 𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))
𝑛
𝑖=1  (6) 

 

𝐿(𝑥, 𝛽, 𝑦) =

{
 

 
0.5(𝑥/𝑦)2𝛽 = 2

𝑙𝑜𝑔((𝑥/𝑦)2 + 1)𝛽 = 0

1 − 𝑒𝑥𝑝(−0.5(𝑥/𝑦)2) 𝛽 = −∞

𝐿(𝑥, 𝛽, 𝑦)𝑜𝑡ℎ𝑒𝑟𝑠

 (7) 

 

When considering a residual value represented by 𝑥, the hyperparameter 𝛽 plays a crucial role in adjusting 

various components within the loss function. Additionally, the coordination parameter 𝑦 is employed to fine-

tune the bending scale of the loss function at 𝑥 = 0, thereby determining its appropriateness for the 

introduced gradient-detection method. The primary objective in the training process is to minimize the 

incurred loss across all samples. This training loss is subsequently reduced by incorporating a MROA known 

for its effective exploration capability and faster convergence rate. To achieve optimal detection 

performance, the hybrid network model's hyperparameter 𝛽and loss function 𝐿 in (7) need to be optimized. 

Therefore, these tuning of parameters serve as the fitness evaluation function for the mud ring optimization 

algorithm (MROA). 
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3.6.  Tuning of loss function and hyperparameter 

The MROA is favored over traditional algorithms for its exceptional performance in exploration and 

convergence rates, offering adaptability in complex search spaces and efficient solutions for diverse 

optimization problems. The OF for achieving improved detection outcomes is derived by the MROA 

approach. A numerical value is specified to represent the improved effectiveness of potential solutions. In 

this research work, the OF in (8) is considered as the tuning of 𝛽 and 𝐿 of the hybrid network (from (7)). This 

OF mentioned in (8) is achieved using the exploration and exploitation stages of MROA [31]. The overall 

process of MROA is depicted in Figure 2. 

 

𝑂𝐹(𝑂𝑖) = 𝑡𝑢𝑛𝑖𝑛𝑔{𝐿, 𝛽} =
misclassified𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100  (8) 

 

 

 
 

Figure 2. Flowchart of MROA 

 

 

The EHMRN, which integrates ELightGBM and MN optimized through MROA, enhances accuracy 

by leveraging the strengths of both models and optimizing their performance through advanced optimization 

techniques. ELightGBM is known for its efficient gradient boosting capabilities, while MN provides deep 

learning capabilities for complex pattern recognition. The MROA optimization further refines the model 

parameters, improving convergence and reducing overfitting, resulting in enhanced accuracy. This 

integration and optimization process synergistically improve the model's ability to capture intricate patterns 

and make accurate predictions, making EHMRN a powerful tool for achieving high accuracy in various 

machine learning tasks. 
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Hence, the introduced AI based approaches has accurately executed ESDCKD. The methodology 

has demonstrated its capability to identify and address early signs of kidney disease, showcasing its 

proficiency in contributing to the advancement of diagnostic processes for renal health. Subsequently, the 

collected data undergo a process of aggregation and are securely stored within the spark cloud infrastructure. 

This entails the systematic compilation and organization of the acquired information, ensuring its integrity 

and accessibility within the spark cloud environment. The storage mechanism employed facilitates efficient 

data management, enabling seamless retrieval and analysis when needed. This step plays a pivotal role in 

establishing a robust and scalable data repository, contributing to the overall efficacy and reliability of the 

information storage system. 

 

 

4. SIMULATION OUTCOMES 

This section provides an extensive explanation of the results generated by the methodology 

introduced. The methodology was executed utilizing Apache Spark with PySpark in the Python programming 

language. The evaluation of this model's effectiveness is conducted by comparing it to several existing 

approaches. This comparative analysis offers valuable insights into the strengths and contributions of the 

introduced model. 

Table 1 outlines key hyperparameters for training introduced neural network model. It specifies 100 

epochs for overall training duration, up to 3 hidden layers using Rectified linear unit (ReLU) activation 

functions. The optimization is handled by the MROA optimizer, with a batch size of 16 and a learning rate 

set at 0.001. These parameters collectively guide the model's training process, influencing its performance 

and ability to learn from the data. 

 

 

Table 1. Experimental settings of the introduced approach 
Hyperparameters Ranges 

Overall training epochs 100 

Overall hidden layers 3 

Activation function ReLU 

Optimizer MROA 

Batch size 16 

Learning rate 0.001 

 

 

Figure 3 presents the confusion matrices, providing a detailed representation of the model's 

performance. Notably, the EHMRN exhibits a commendable level of accuracy by correctly identifying all 

instances of genuine true positive events (7,531 for dataset “I”, 19 for both datasets “II” and “III”) and true 

negative events (7,469 for dataset “I”, 40 for both datasets “II” and “III”). This evaluation through the 

confusion matrices offers a comprehensive insight into the model's discriminative capabilities, highlighting 

its effectiveness in distinguishing between positive and negative events in the analyzed datasets “I”, “II”, and 

“III”, as shown in Figures 3(a) dataset I, 3(b) dataset II, and 3(c) dataset III. 

The absolute correlations between the class label and various features of datasets “I”, “II”, and “III” 

are elucidated in Figures 4(a)-(c). Noteworthy correlations include positive associations with blood pressure, 

specific gravity, albumin, sugar, blood urea, serum creatinine, blood glucose random and sodium, while 

hemoglobin, potassium, white blood cell count and red blood cell count exhibit negative correlations. This 

visual depiction of data relationships, showcased in Figure 4, allows for an intuitive examination of the 

intricate connections between features, offering valuable insights into their interdependencies within the 

dataset. The accuracy and loss curves, tracked across iterations in Figure, showcase the model's learning 

dynamics. In this context, the introduced approach excels by consistently achieving a superior steady-state 

accuracy value in Figures 5(a), 5(c) and 5(e) indicating its sustained high-level performance in making 

correct predictions. The corresponding loss curve in Figures 5(b), 5(d) and 5(f) underscores the model's 

effective error minimization, highlighting its efficiency in learning and accurate prediction. 

Figures 6(a)-(e) showcases a comparative analysis of various AI based techniques for detecting 

CKD using accuracy, F1-score, precision, recall and specificity. Each technique is evaluated with respect to 

the key evaluation metrics, including accuracy, F1-score, precision, recall and specificity. EHMRN 

consistently outperforms established methods like deep convolutional neural network (Deep CNN) [11], 

ensemble machine learning (EML) [12], hybrid machine learning (HML) [14], support vector machine 

(SVM) [15], ensemble deep learning (EDL) [16], Ebola deep wavelet extreme learning machine (EDWELM) 

[17], graph neural network and a tabular data learning (GNN-TDL) [18], SACNN-SOA [21], and mINFO 

[20]. EML, EDL and EDWELM also demonstrate exceptional performance, consistently scoring above 99% 
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in all metrics. SVM and HML exhibit strong results with accuracy and precision and recall around at 99%. 

Deep CNN achieves high accuracy at 98.50% and well-balanced F1-score, precision, recall and specificity.  

GNN-TDL and SACNN-SOA show slightly lower scores, with GNN-TDL having an accuracy of 95.089% 

and SACNN-SOA achieving 99% accuracy but with a lower F1-score. mINFO performs well in accuracy 

99.34% and precision 99.55% but has a comparatively lower F1-score 91.02% and recall 99.29%. Notably, 

the introduced approach, EHMRN, attains exceptional scores, achieving above 99.9% in all metrics, 

signifying its outstanding predictive capabilities. The uniform excellence across diverse metrics establishes 

EHMRN as a benchmark for accurate and reliable CKD prediction. Its optimal trade-off between sensitivity 

and specificity is particularly noteworthy, crucial for minimizing both false positive rates and false negative 

rates in medical applications. This adaptability underscores the robustness and versatility of the introduced 

technique beyond the scope of the current analysis. 

Figure 7 outlines receiver operating characteristic (ROC) values for various AI based approaches, 

offering insights into their discriminatory performance in a binary classification task, potentially related to 

ESDCKD. EML displays robust discriminative ability with a ROC value of 0.9888, while SVM excels with 

0.9932. EDWELM showcases near-perfect discrimination at 0.9983. An unspecified machine learning 

achieves a moderate ROC value of 0.77. SACNN-SOA exhibits strong discriminatory capabilities, achieving 

a ROC value of 0.97. Notably, the introduced approach, stands out with a perfect ROC value of 1, indicating 

flawless discriminatory performance and optimal classification in the evaluated task. 

The precision-recall curve for the EHMRN in Figure 8 shows that it has high precision and recall at 

all thresholds, indicating that it is able to accurately identify both positive and negative cases. Figure 8 

unequivocally demonstrates that the EHMRN surpasses all conventional algorithms in terms of accuracy. 

This advantage arises from integrating MROA with hybrid network, strategically avoiding local optima 

pitfalls. By navigating through the intricacies of the solution space, this combined approach successfully 

identifies the global optimum solution. The outcome is a substantially elevated accuracy rate, establishing 

EHMRN as a noteworthy advancement in achieving more accurate and dependable results compared to 

traditional algorithms. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 3. Confusion matrices of datasets (a) “I”, (b) “II”, and (c) “III” 
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(c) 

 

Figure 4. Correlation matrices of datasets (a) “I”, (b) “II” and (c) “III” 
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(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

 

Figure 5. Training and validation curves of (a) accuracy using dataset “I”, (b) loss using dataset “I”, 

(c) accuracy using dataset “II”, (d) loss using dataset “II”, (e) accuracy using dataset “III”, and  

(f) loss using dataset “III” 

 

 

EHMRN exhibits superior accuracy compared to other optimization algorithms, as illustrated in 

Figure 9. This is attributed to the integration of MROA with hybrid network, preventing entrapment in local 

optima and facilitating the discovery of global optimum solutions, consequently leading to enhanced 

accuracy. EHMRN consistently achieves higher accuracy across all numbers of features, surpassing other 

algorithms by a significant margin. Figure 10 contrasts the execution time against the number of iterations for 

EHMRN and several traditional algorithms, including EML, SACNN-SOA and mINFO. Strikingly, despite 

being the most intricate and accurate algorithm among the considered methods, EHMRN exhibits the shortest 

execution time. This intriguing finding underscores not only the algorithm's complexity but also its 

efficiency, positioning EHMRN as a compelling choice for minimizing computational time while. The 

Table 2 presents Matthew’s correlation coefficient (MCC) scores as percentages for various approaches, 

including Deep CNN, EDWELM and EHMRN. Deep CNN achieves a commendable 96% MCC, indicating 

robust predictive performance. EDWELM outperforms with an impressive 99.83% MCC, while EHMRN 

attains a perfect 100% MCC, highlighting its flawless predictive accuracy. 

This implies that EHMRN excels in making precise predictions, showcasing its potential as a highly 

accurate classification model. Similarly, Table 3 shows Kappa scores for SVM, EDWELM and EHMRN. 

SVM achieves 98.67%, EDWELM surpasses with 99.66% and EHMRN attains a perfect 100%, indicating 

exceptional accuracy in classification tasks. Table 4 displays execution times for EML, SACNN-SOA, 
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mINFO and EHMRN. EML records the shortest time at 0.119 seconds, indicating swift execution. SACNN-

SOA and mINFO exhibit longer durations of 18 seconds and 8.0488 seconds, respectively. Notably, the 

introduced EHMRN method achieves the shortest execution time of 0.09 seconds, showcasing its efficiency 

and speed. The MROA incorporated into hybrid network contributes to its superior performance by ensuring 

better convergence speed compared to the other approaches. 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

 
(e) 

 

Figure 6. Performance of (a) accuracy, (b) F1-score, (c) precision, (d) recall and (e) specificity comparison 

 

 

  
 

Figure 7. ROC curve 

 

Figure 8. Precision-recall curve 
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Figure 9. Accuracy vs features 

 

 

 
 

Figure 10. Execution time 

 

 

Table 2. MCC comparison 
Approaches Deep CNN [11] EDWELM [17] EHMRN (Introduced) 

MCC (%) 96 99.83 100 

 

 

Table 3. Kappa comparison 
Approaches SVM [15] EDWELM [17] EHMRN (Introduced) 

Kappa (%) 98.67 99.66 100 

 

 

Table 4. Execution time comparison 
Approaches EML [12] SACNN-SOA [21] mINFO [20] EHMRN (Introduced) 

Time (s) 0.119 18 8.0488 0.09 

 

 

4.1.  Discussion 

The existing problems in CKD detection include limited dataset sizes and the challenge of 

optimizing algorithms for enhanced accuracy and efficiency. The proposed method tackles these issues 

comprehensively. Firstly, the use of GAN for big data analytics expands the dataset size, addressing the 

problem of limited data availability, potentially enhancing model generalization and accuracy. Notably, the 

EHMRN, optimized via the MROA, demonstrated exceptional performance, achieving above 99.9% 

accuracy across key evaluation metrics by tuning the hyperparameter 𝛽 and loss function 𝐿. This superiority 

was complemented by theoretical advancements, as EHMRN strategically avoided local optima pitfalls and 

efficiently navigated the solution space to identify global optimum solutions. Additionally, the application of 

MROA for tuning neural network parameters accelerates convergence and enhances accuracy, outperforming 

alternative methodologies. However, the comparative analysis highlights EHMRN's numerical superiority 

over established methods in CKD detection. Moreover, the incorporation of MEVO for feature selection 

underscored the theoretical soundness of the approach, ensuring the extraction of crucial features for 
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optimizing CKD prediction models. Additionally, this research addressed privacy concerns by leveraging 

Spark for secure cloud-based storage, aligning with theoretical principles of ethical data handling in 

healthcare artificial intelligent research. 

Enhanced hybrid mud ring network (EHMRN) consistently achieves exceptional scores across key 

evaluation metrics, surpassing Deep CNN, SVM, EDWELM, and other methods. Notably, EHMRN attains 

accuracy, precision, recall, and specificity scores above 99.9%, showcasing its outstanding predictive 

capabilities. Additionally, EHMRN achieves a perfect MCC score of 100%, indicating flawless predictive 

accuracy, while traditional methods like deep CNN achieve a commendable 96% MCC. EHMRN also 

outperforms in classification tasks, achieving a perfect Kappa score of 100%, while SVM and EDWELM 

achieve 98.67% and 99.66%, respectively. Moreover, EHMRN demonstrates superior execution times, with 

the shortest time of 0.09 sec compared to other algorithms, further emphasizing its efficiency and speed. 

These numerical comparisons underscore EHMRN's significant advancements in achieving highly accurate 

and efficient CKD detection results, establishing it as a benchmark for accurate and reliable prediction 

models in the field.  

EHMRN consistently achieves exceptional scores across key evaluation metrics, surpassing Deep 

CNN, SVM, EDWELM, and other methods. Notably, EHMRN attains accuracy, precision, recall, and 

specificity scores above 99.9%, showcasing its outstanding predictive capabilities. Additionally, EHMRN 

achieves a perfect MCC score of 100%, indicating flawless predictive accuracy, while traditional methods 

like deep CNN achieve a commendable 96% MCC. EHMRN also outperforms in classification tasks, 

achieving a perfect Kappa score of 100%, while SVM and EDWELM achieve 98.67% and 99.66%, 

respectively. Moreover, EHMRN demonstrates superior execution times, with the shortest time of  

0.09 seconds compared to other algorithms, further emphasizing its efficiency and speed. These numerical 

comparisons underscore EHMRN's significant advancements in achieving highly accurate and efficient CKD 

detection results, establishing it as a benchmark for accurate and reliable prediction models in the field. By 

combining numerical advancements with theoretical innovations, the research made a substantial contribution 

to the field of CKD detection, leading to the development of more accurate, efficient, and ethically sound 

healthcare AI solutions. 

 

 

5. CONCLUSION 

This research underscores the pivotal role of early-stage chronic kidney disease (ESDCKD) 

detection in facilitating timely intervention and enhancing understanding of disease progression. The 

introduction of EHMRN represents a significant breakthrough, effectively addressing existing limitations 

surrounding slow convergence, insufficient integration of advanced technologies, and privacy concerns. By 

leveraging extensive data collection through AI-based approaches and optimizing the hybrid network's 

performance with MROA, this study propels the prompt and accurate identification of CKDs in their nascent 

stages. Unlike previous methodologies, EHMRN effectively addresses several critical limitations, including 

slow convergence, inadequate integration of advanced technologies, and privacy concerns. By leveraging 

extensive data collection using AI-based approaches and optimizing the hybrid network's performance 

through MROA, this study pioneers a comprehensive and efficient approach to prompt and accurate CKD 

identification. Furthermore, the incorporation of Spark bolsters privacy measures, ensuring compliance with 

healthcare data regulations. The compelling results, boasting remarkable metrics including accuracy 

(99.96%), execution time (0.09 sec), MCC (100%), Kappa (100%), and ROC (1), underscore the remarkable 

advancement achieved in the realm of CKD detection. Moving forward, efforts to address interpretability 

challenges, enhance model robustness across diverse demographics, and validate methodologies through 

collaboration with healthcare institutions are imperative for realizing the real-world applicability and broader 

impact of ESDCKD detection techniques. Overall, this study heralds a new era in early CKD detection, 

promising improved patient outcomes and transformative contributions to healthcare delivery. 

In future, addressing interpretability challenges, enhancing model robustness across demographics, 

and validating CKD detection methods through collaboration with healthcare institutions are crucial steps for 

their real-world application and broader impact. Overcoming interpretability hurdles ensures transparency in 

decision-making processes, while improving model robustness ensures equitable healthcare outcomes across 

diverse populations. Collaborations with healthcare institutions facilitate the integration of CKD detection 

tools into clinical practice, ultimately improving patient care and advancing public health efforts. 
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