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 This article introduces an advanced solution for anonymizing large-scale 

sensitive data, addressing the limitations of traditional approaches when 

applied to vast datasets. By leveraging the Spark distributed computing 

framework, we propose a method that parallelizes the data anonymization 

process, enhancing efficiency and scalability. Utilizing Spark's resilient 

distributed datasets (RDD), the approach integrates two primary operations, 

Map_RDD and ReduceByKey_RDD, to execute the anonymization tasks. 
Our comprehensive experimental evaluation demonstrates our solution's 

effectiveness and improved performance in preserving data privacy while 

balancing data utility and confidentiality. A significant contribution of our 

study is the development of a wide array of solutions for data owners, 
particularly notable for a 500 MB dataset at an anonymity level of K=100, 

where our methodology produces 832 unique solutions. This study also 

opens avenues for future research in applying different privacy models 

within the Spark ecosystem, such as l-diversity and t-closeness. 
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1. INTRODUCTION  

The emergence of big data, generated from mobile devices, sensor networks, social networks, and 

the internet of things (IoT), has increased data volumes and the potential for personal information leakage. As 

diverse sources contain identifiable information, there is a heightened risk to privacy. Given the increased 

risk to privacy from diverse sources containing identifiable information, it is critical to prevent personal data 

leaks by anonymizing sensitive information before publication. 

In recent years, significant research has been conducted on preserving privacy during data 

publication to protect individuals while modifying data as little as possible [1], [2]. Different methods are 

used to transform the original data, depending on the selected privacy model, such as k-anonymity [3], 

l-diversity [4], and t-closeness [5]. K-anonymity is the most commonly used privacy model, which protects 

privacy by transforming data so that each set of quasi-identifier values appears at least k times in the table to 

be published [6], [7]. Additionally, l-diversity is a data de-identification method that allows sensitive 

information to be distributed in a dataset while ensuring k-anonymity [4]. t-closeness is a technique proposed 

to address the weaknesses of k-anonymity and l-diversity, which aims to avoid the clustering of sensitive 

information with similar values by adjusting the distribution of sensitive data around a specific value [5]. 

Today, several de-identification technologies prevent personal information leaks when publishing big data.  

https://creativecommons.org/licenses/by-sa/4.0/
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With the growing demand for publishing big data across various fields, the development of support 

systems has generated increasing interest [8]. In this context, our article presents an algorithm aimed at 

anonymizing large and confidential data to ensure secure publication. The algorithm employs a lattice where 

each node represents a potential generalization of the original table. The algorithm aims to identify the lowest 

level of the generalization lattice containing one or more solutions and all their generalizations. To aid in 

selecting the optimal solution from the stored nodes, we provide a metric of information loss (IL) to the data 

publisher. To accelerate the anonymization process on Big Data platforms, we have employed the distributed 

execution framework Spark. 

 

 

2. PRELIMINARY NOTIONS 

This section introduces the terminology, data model, and metric employed in this article to measure 

information loss. The terminology clarifies specific concepts for understanding the methods discussed, while 

the data model outlines the organization and handling of data critical for the analysis. The information loss 

metric is crucial for evaluating the impact of data anonymization techniques on data utility. 

 

2.1.  The k-anonymity model 

Regarding confidentiality, the data publisher has a table that includes identifiers, quasi-identifiers, 

and sensitive and non-sensitive attributes. An original table T can be represented as T (identifier, quasi-

identifier, sensitive attribute, non-sensitive attribute). In order to ensure a good understanding of these terms 

within the scope of this document, it is crucial to review their definitions. 

˗ Definition 1 (Identifier): an identifier is specific information, like a first name, last name, or social 

security number, used to recognize or distinguish an individual. Identifiers should be excluded from 

published data. 
˗ Definition 2 (Quasi-identifier): a quasi-identifier is an attribute that can indirectly disclose personal 

information when combined with external data sources. For instance, {Sex, zip code, date of birth} can 

uniquely identify individuals in large datasets. Like this set, Quasi-identifiers must be anonymized to 

protect privacy, often using the k-anonymity model. 

˗ Definition 3 (Sensitive attribute): a sensitive attribute contains data that individuals tend to keep 

confidential or not disclose, such as medical or salary information. 

˗ Definition 4 (non-sensitive attribute): a non-sensitive attribute is neither an explicit identifier nor a quasi-

identifier and does not directly identify a person or reveal sensitive information. The k-anonymity model, 

proposed as the first privacy protection model, transforms quasi-identifier values into more general ones, 

forming equivalence classes. Each class comprises data with the same quasi-identifier value. According to 

the principle of k-anonymity, defined in [9]: 

˗ Definition 5 (k-anonymity): a database table T with quasi-identifier attributes Q satisfies the k-anonymity 

criterion if every distinct tuple in the projection of T onto Q appears at least k times. 

K-anonymity ensures that at least k-1 other records in the same equivalence class cannot be 

distinguished from a particular record [3], [6]. For instance, evaluating the 2-anonymity of Table 1 with 

'Age,' 'Gender,' and 'Zip code' as quasi-identifier attributes, we find that each combination of values 

(equivalence classes) appears at least twice, meeting the criterion. Conversely, Table 2 fails the 2-anonymity 

criterion, as some equivalence classes contain only one record (the last in the table). 

 

 

Table 1. Table that satisfies 2-anonymity 
Age Gender Zip code Disease 

30-39 Male 1415* Fever 

30-39 Male 1415* Asthma 

60-69 Female 1417* Back Pain 

60-69 Female 1417* Heart Attack 

60-69 Female 1417* Diabetes 

 

 

Table 2. Table that does not satisfy 2-anonymity 
Age Gender Zip code Disease 

30-39 Male 1415* Fever 

30-39 Male 1415* Asthma 

60-69 Female 1417* Back Pain 

60-69 Female 1417* Heart Attack 

70-79 Female 1417* Diabetes 
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2.2. Generalization techniques 
The goal of generalization is to strengthen k-anonymity. This technique involves partitioning data 

into groups based on their quasi-identifier value and then modifying the quasi-identifier values in each group 

to make them less specific. As a result, each individual can be confused with k-1 other individuals in the 

published table. There are two approaches to achieving k-anonymity: global generalization and local 

generalization [10], [11]. 
Global generalization is a data generalization technique that uses a generalization lattice for the 

original data. This lattice represents the possible combinations of predefined taxonomic trees for all quasi-

identifier attributes. Each taxonomic tree is a hierarchical tree where the higher the level, the higher the level 

of attribute generalization, and the more data accuracy is lost. For example, Figure 1 shows the taxonomic 

trees of the Age, Gender, and Postal Code attributes and their generalization level (GL). In addition, Figure 2 

illustrates the lattice associated with these same attributes. Each node of the lattice corresponds to a possible 

generalization of the original table, and the lower the level, the closer the generalized data is to the original 

data, while the higher the level, the greater the distortion of the original data. Therefore, the appropriate level 

of generalization must be selected based on the required level of anonymity. Global generalization is 

predicated on the following generalization property, as elucidated in Definition 6. 

˗ Definition 6 (generalization property): Let 𝐸 and 𝐹 be two sets of attributes of a table 𝑇 such that the 

attribute set of 𝐹 is more general than 𝐸 (𝐸 is more specific than 𝐹). If 𝑇 is k-anonymous with respect to 𝐸, 

then 𝑇 is also k-anonymous with respect to F. For example, if < 𝐴1,𝐺0, 𝑍𝐶2 > satisfies k-anonymity, and 

if < 𝐴1,𝐺1, 𝑍𝐶2 > and < 𝐴2,𝐺0, 𝑍𝐶2 > are more general than < 𝐴1,𝐺0, 𝑍𝐶2 >, then < 𝐴1,𝐺1, 𝑍𝐶2 > 

and < 𝐴2,𝐺0, 𝑍𝐶2 > also satisfy k-anonymity. Conversely, if T is not k-anonymous with respect to F, then 

T is not k-anonymous with respect to E. For example, if < 𝐴1,𝐺0, 𝑍𝐶2 > does not satisfy k-anonymity, and 

if < 𝐴0,𝐺0, 𝑍𝐶2 > and < 𝐴1,𝐺0, 𝑍𝐶1 > are more specific than < 𝐴1,𝐺0, 𝑍𝐶2 >, then < 𝐴0,𝐺0, 𝑍𝐶2 > 

and s also do not satisfy k-anonymity. 

 

 

 
 

Figure 1. Taxonomic trees of the attributes Age, Gender, and Zip Code 

 

 

 
 

Figure 2. Generalization lattice of the three attributes Age, Gender, and Zip Code 
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On the other hand, local generalization employs clustering techniques to group records, forming 

equivalence classes containing at least k records [7]. Here, data confidentiality is maintained by substituting 

original values with cluster centroids. The level of anonymization under local generalization may vary based 

on user-defined cluster characteristics. However, the process of preserving confidentiality leads to a loss of 

information. It is essential to minimize this loss to ensure that relevant information can still be extracted from 

the published data. The following section will explore the appropriate information loss metric for this 

objective. 

 

2.3.  Information loss metric 

Ensuring data anonymization while minimizing information loss resulting from modification is one 

of the generalized data that differs from the original data, which results in information loss. The greater the 

information loss, the more significant the difference between the original and generalized data. Additionally, 

extensive generalization of attributes leads to decreased data utilization. Information loss values can be used 

to determine the extent to which anonymous data has been transformed compared to the original data through 

generalization techniques, enabling evaluation of its usefulness. Assuming that equivalent class 𝑒 comprises 

𝑚 attributes, information loss can be defined as (1) [7]. 

 

𝐼𝐿(𝑒) = |𝑒|. ∑
H(⋀(⋃Ci

))

H(TrCi)
i=1,…,m  (1) 

 

where |𝑒|: the number of records in the equivalence class 𝑒; ⋀(⋃Ci
): the subtree rooted at the lowest common 

ancestor of each value in the union of categorical attributes 𝐶1, . . . , 𝐶𝑛; and H(Tr): the height of the taxonomy 

tree Tr, i.e., the distance between the root and the farthest leaf in the tree. Suppose that equation is the set of 

all equivalence classes in a generalized table 𝑇’. In this case, the total value of information loss for the 

generalized table can be calculated using the following formula [7]. 

 

𝑇𝑜𝑡𝑎𝑙_𝐼𝐿(𝑇′) = ∑ 𝐼𝐿(𝑒)𝑒∈𝐸𝑞  (2) 

 

 

3. RELATED WORKS 

In order to avoid negative consequences related to the disclosure of sensitive personal data, it is 

essential to preserve their confidentiality when publishing a dataset. Adequate data anonymization is 

necessary to accomplish this goal. This section examines the most relevant anonymization approaches to the 

solution we developed with Apache Spark. 

The researchers explored several techniques to optimize the generalization process, including  

top-down specialization (TDS). This approach iterates through taxonomic trees from the root to the leaves, 

selecting generalizations that best preserve the classification quality while ensuring the required level of  

k-anonymity [12]. TDS effectively balances the trade-off between data utility and privacy by systematically 

evaluating each possible generalization, demonstrating its practical value in maintaining robust data 

protection. 

An implementation of the TDS algorithm for Apache Spark was presented in [13], where the dataset 

is partitioned into p partitions on n Spark nodes, with n equal to 𝑝, using this approach. In this setup, the data 

is partitioned, and scores required for the TDS algorithm, such as privacy loss and information gain, are 

computed by the master node. Experimentation with this implementation on the "adult" dataset revealed that 

significant performance improvements can be obtained by increasing the number of Spark nodes in 

proportion to the dataset size, regardless of k and dataset size values. Another study in [14] proposed a 

multidimensional sensitivity algorithm based on Apache Spark. This algorithm uses pre-determined quasi-

identifiers for anonymization and a pre-calculated k-value using linear regression. This approach considers 

each quasi-identifier's probability and prioritizes anonymizing attributes with higher probability. 

Additionally, an RDD-based method was proposed to reduce data transmission between memory and disk. 

Furthermore, SparkDA, presented in [15], is a technique based on RDDs and uses critical operations 

FlatMapRDD and ReduceByKeyRDD to perform data anonymization in memory. In [16], a generic 

framework is proposed for implementing subtree-based generalization. This approach includes three phases 

that require the output of the previous phase as input. The first phase ensures an equitable workload 

distribution for each partition and avoids duplications. The second computes privacy and utility scores for 

each attribute, and the third verifies that the generalized dataset satisfies k-anonymity requirements. 

Furthermore, Ashkouti et al. [17] proposes a distributed in-memory method to preserve the  

ℓ-diversity privacy model on Spark in three phases. Two distance functions were designed to meet the 

requirements of the ℓ-diversity model. Vimercati et al. [18] using the efficient Mondrian approach, a solution 
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is proposed to apply κ-anonymity and ℓ-diversity in a distributed manner on large datasets. This data 

partitioning limits exchanges between workers, allowing each worker to anonymize a portion of the data 

independently. Finally, Bazai et al. [19] proposes a hybrid approach for efficient and scalable 

multidimensional data anonymization. This approach allows for fewer RDDs and smaller partitions than 

existing approaches, thereby reducing re-computation, shuffle, and cache management costs. 

In another field of data anonymization using differential privacy [20], techniques have been 

proposed to anonymize the k-means clustering algorithm on the Spark platform [21], [22]. These techniques 

rely on a new partitioning mechanism optimized for the dynamic allocation of data sets, allowing for fast 

processing. The authors describe a formal proof of confidentiality that meets the requirement of ε-differential 

privacy. In a related method, Yin and Liu [23] used the Map-Reduce model to govern the parallel distribution 

of k-means clustering and adopted the Laplace method to ensure differential privacy protection. 

In this article, we adopt an anonymization-based approach to protect data privacy using Spark. 

Unlike approaches based on differential privacy, which focus mainly on theoretical foundations, 

anonymization offers a practical and easy-to-implement solution for businesses and organizations. 

Additionally, anonymization techniques can be integrated seamlessly into existing data analysis processes 

without disrupting analysis results or reducing data utility. Overall, anonymization protects data privacy 

while preserving data utility for analysis and research. 

 

 

4. PROPOSED APPROACH WITH APACHE SPARK RDD 

This section details our approach to guide data owners through the anonymization process using two 

key RDDs: Map_RDD and ReduceByKey_RDD. Map_RDD distributes tasks across nodes for parallel 

processing, while ReduceByKey_RDD aggregates the results to enhance data anonymization efficiency. 

Additionally, we introduce the symbols and notations in Table 3, which are crucial for understanding our 

methodology. 

The Spark framework, specifically designed for large-scale data processing, was chosen to optimize 

processing time and ensure system scalability. This decision facilitated data division into several blocks, 

allowing for distribution across multiple cluster nodes to enhance processing efficiency. Within this 

framework, two key resilient distributed dataset (RDD) transformations, Map_RDD and ReduceByKey_RDD, 

were applied to each block. These transformations are critical for efficiently generalizing and processing data 

in a distributed environment, making them indispensable for handling complex data anonymization 

processes. By utilizing these RDD transformations, the system can parallelize tasks, thereby reducing the 

overall processing time while maintaining high data integrity and privacy levels.  

 

 

Table 3. Symbols and notations 
Symbol Definition 

PT A private table that needs to be anonymized 

K Defines the level of K-anonymity 

nodes Contains all node(s) at level h of generalization lattice 

node A single node from nodes 

qid A quasi-identifier attribute 

sa A sensitive attribute 

Input_RDD Defines the RDD created by applying the textFile transformation to PT. 

Record(i) Defines an element of Input_RDD, Record = {qid1, qid2, . . . , qidn, sa} 

qidtuple Contains all qid within a record, qidtuple = {qid1, qid2, . . . , qidn} 

EqC Indicates equivalence class 

Generalized_RDD Contains a set of (EqC, sa) 

SA Contains a set of sa associated with an EqC 

Result Contains a set of (EqC, SA) 

listOfkAnon List of nodes from generalization lattice that satisfy k-anonymity 

 

 

4.1.  Map_RDD 

The Map_RDD transformation, algorithm 1, begins by reading the blocks of the original table and 

nodes of the generalization lattice of height h. For each record in each block, the Map_RDD transformation 

replaces each qid attribute in the qidtuple with the value of its direct parent according to the corresponding 

node of the generalization lattice. Once the qid attributes have been generalized, each record in each block is 

associated with an equivalence class based on the generalized values of the qidtuple attributes. Records 

sharing the same generalized values for all attributes of the qidtuple are grouped into the same EqC. Finally, 

each record converted into an EqC, associated with its sensitive attribute (sa), is passed to the 

ReduceByKey_RDD function as a pair (key: EqC, value: sa). 
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Algorithm 1. Map_RDD 
 Input: Input_RDD, node 

 Output: Generalized_RDD 

1 begin 

2  for i in Size(Input_RDD) do  

3   line = Record(i); 

4   qidtuple = line.get(qidtuple); 

5   sa = line.get(sa); 

6   EqC = Generalization(qidtuple, node); 

7   Generalized_RDD += (EqC, sa); 

8  end 

9  return Generalized_RDD; 

10 end 

 

4.2.  ReduceByKey_RDD 

The ReduceByKey_RDD transformation, Algorithm 2, collects all the values associated with an EqC 

key. In other words, it allows gathering sensitive data from the same equivalence class and grouping it into a 

single list. This reduction operation merges all the intermediate results associated with the same key, and 

only one value is returned for each key. The reduction technique simplifies the data structure by aggregating 

the information related to each key and reducing the amount of data that needs to be processed. 

 

Algorithm 2. ReduceByKey_RDD 
 Input: Generalized_RDD 

 Output: Result = {(EqC, SA)} 

1 begin 

2  foreach EqC ϵ Generalized_RDD do  

3   SA += sa; 

4  end 

5  return Result; 

6 end 

 

4.3.  The main function 

Our data anonymization solution is centered around the main function, as outlined in Algorithm 3. 

This function orchestrates the entire anonymization process, managing data inputs and outputs and 

facilitating the execution of essential functions. Among these are the two transformation functions described 

earlier, which are critical for effectively modifying the data while ensuring privacy. 

The main function takes as input the original private table PT, the value K, and the generalization 

hierarchy for each qid. It generates the generalization lattice from the taxonomy trees (step 2), reads the 

original data HDFS file, and saves it to an Input_RDD (step 3). The Main function caches Input_RDD to 

improve performance because it is used in many subsequent operations. 

Step 12 of our algorithm involves transferring all unmarked nodes located at the average height of 

the lattice (where the average height ℎ is calculated as ℎ = (𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ)/2) to the Map_RDD and 

ReduceByKey_RDD transformation functions. By doing so, we enable parallel processing of different 

generalization steps, significantly speeding up the anonymization process, especially when dealing with 

significant data sources. The algorithm works iteratively to find optimal nodes, starting by considering the 

entire lattice in the first iteration. Each node corresponds to a possible generalization of the original table. 

At step 13, for each node at the same level in the generalization lattice (i.e., nodes located at  

height h), we check if the number of sensitive attributes for each obtained equivalence class is greater than or 

equal to K. If the number of sensitive attributes for at least one equivalence class is less than K, the node and 

all its direct and indirect specializations are removed from the lattice because they do not satisfy k-anonymity 

(Definition 6). On the other hand, if the number of sensitive attributes for all equivalence classes is greater 

than or equal to K, the node and all its direct and indirect generalizations are marked because they also satisfy 

k-anonymity (Definition 6). If, at this height, at least one node satisfies k-anonymity, the lower half of the 

lattice (ℎ𝑖𝑔ℎ = ℎ) is defined as a new search area (step 22). However, if no node satisfies k-anonymity, the 

algorithm searches for acceptable nodes in the upper half of the lattice (𝑙𝑜𝑤 = ℎ + 1) in the next iteration. 

The goal is to find the lowest level in the lattice where one or more solutions and all their generalizations are 

located (step 30). The algorithm stops when ℎ = 0 and returns the list of stored nodes to the user. Once the 

list of stored nodes is available, the data publisher can choose the best solutions based on the information loss 

metric IL, which we calculate for each retained node. 

 

Algorithm 3. Main 
 Input: PT, K, Taxonomy Trees(one for each qid) 

 Output: listOfkAnon 

1 begin 

2  Construct_Generalization_Lattice(Taxonomy Trees);  
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3  Input_RDD = textFile(PT).cache; 

4  low =0; high = height_of_lattice; 

5  sol = Ø; 

6  while low < high do 

7   h = (low + high)/2; 

8   nodes = {node | height(node) = h}; 

9   k_check = false; 

10   foreach node ϵ nodes do 

11     if node.isMarked() == false then  

12    Result_RDD = Input_RDD .Map_RDD(Input_RDD,node) 

ReduceByKey_RDD(Generalized_RDD);    

13     if Check_k_node(Result_RDD) == true then 

14     k_check = true; 

15      node.markAllGeneralizations(true); 

16    else   

17    nodes.remove(node); 

Lattice.remove(node.getAllSpecializations()); 18   

19    end 

20    end 

21   end 

22    if k_check == true then  

23    Solution = nodes; 

high = h; 24   

25    else 

26    low = h+1; 

27    end 

28  end 

29  foreach nod ϵ Solution do 

30   listOfkAnon.add(node.getAllGeneralizations()) ; 

31  end 

32  return listOfkAnon; 

33 end 

 

 

5. METHOD  

Figure 3 provides a detailed visual of our Spark-based anonymization method, depicting the 

workflow from raw data to anonymized output. Leveraging Apache Spark and RDDs, our approach ensures 

privacy in large-scale datasets. It showcases the execution cycle, beginning with data input and progressing 

through sequential and parallel processing steps via Map_RDD transformations for generalizing quasi-

identifiers and ReduceByKey_RDD for aggregating them into equivalence classes. This process upholds 

dataset confidentiality, meeting k-anonymity standards. 

 

 

 
 

Figure 3. Workflow of the proposed solution 
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5.1.  Data preparation 

In our study, we leverage the foundational work on taxonomic trees established by Zhang et al. [24], 

incorporating their structured approach as a cornerstone in our analysis. We apply this methodology to the 

Adult dataset [25], a widely recognized data privacy benchmark that serves as the empirical basis for our 

investigation. This integration of established taxonomic structures with robust datasets allows us to evaluate 

the effectiveness of our anonymization processes thoroughly.  

Table 4 elucidates the hierarchy and diversity of quasi-identifiers extracted from these taxonomic 

trees, offering a nuanced perspective on the complexity of the data. These quasi-identifiers range from 

'Workclass' to 'Native_country', each assigned a designated generalization level (GL) that reflects the degree 

of abstraction applied to preserve individual privacy while retaining the utility of the data for analysis. 

 

 

Table 4. Adult dataset  
qid GL Distinct value 

Workclass 4 7 

Education 4 16 

Marital_status 3 7 

Occupation 2 14 

Relationship 2 6 

Race 2 5 

Gender 1 2 

Native_country 3 41 

 

 

In order to assess the scalability of our model, we augmented the Adult dataset by a factor of 5, 25, 

50, and 100, resulting in datasets of 25, 125, 250, and 500 MB, respectively. To accomplish this, we 

developed a program that inserted rows with random values drawn from the unique values list for each 

column of the original dataset. We selected eight categorical attributes, such as Workclass, Education, 

Marital status, Occupation, Relationship, Race, Gender, and Native country, as quasi-identifiers. 

 

5.2.  Experimental environment 

The experiments were conducted on a 20-vCPU cluster computer (10 CPUs x 2 vCPUs per CPU) 

with 64 GB of RAM. To enhance the computational environment for our experiments, we employed Docker 

technology, leveraging its containerization capabilities to create a highly flexible and controlled setup. We 

installed Apache Spark 2.1 using Docker images, ensuring a standardized and replicable environment across 

all tests. This approach allowed us to systematically vary the number of Docker nodes in our experiments, 

with configurations set at 1, 2, 4, 8, and 16 nodes. Such scalability was crucial for assessing our algorithm's 

performance under different computational loads. Each Docker container was meticulously allocated with 1 

GB of RAM and one virtual CPU, clocked at 3.6 GHz, to simulate a distributed computing environment that 

closely mimics real-world data processing scenarios. 

To rigorously evaluate the algorithm's efficiency, three critical parameters were taken into account: 

the number of worker nodes and partitions, which determine the algorithm's parallel processing capability; 

the dataset size, which tests the algorithm's ability to handle varying volumes of data; and the degree of 

anonymity K, which assesses the algorithm's effectiveness in preserving privacy. The primary metric for 

assessing efficiency was the execution time, meticulously measured in milliseconds. This comprehensive 

approach provided insights into the algorithm's performance under different configurations. It highlighted its 

scalability and efficiency in processing and anonymizing data, offering a nuanced understanding of its 

practical applicability in real-world scenarios. 

 

 

6. RESULTS AND DISCUSSION 

In delving into the privacy challenges within big data, our study advances beyond traditional 

analyses focused on node-to-partition ratios. We investigate the scalability of our solution itself, presenting a 

singular, comprehensive approach that benefits data stewards directly. Our research meticulously assesses 

how node-to-partition configurations impact scalability and introduces innovative measures to enhance data 

privacy. This approach addresses the scalability concerns head-on and offers a broad spectrum of solutions 

specifically designed for data custodians, enabling them to manage and secure large datasets more 

effectively. By doing so, our work extends the operational capabilities available to those in charge of data, 

providing a singular, scalable strategy for optimizing data processing and prioritizing privacy in distributed 

computing environments. 
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Our efficiency analysis, detailed in Figures 4 to 6, conducted with datasets of 25, 125, and 250 MB, 

meticulously examines the impact of partition counts on processing efficiency within the scope of data 

anonymization. By exploring configurations using 1, 2, 4, and 8 nodes with varying degrees of data 

anonymity (k-values of 10, 50, and 100), we highlight a crucial insight: optimal system performance requires 

a strategic balance between the number of partitions and computational nodes. Achieving this balance 

maximizes computational resource utilization, mitigating inefficiencies stemming from resource 

underutilization or system overload and enhancing the efficiency of data anonymization processes. 

Delving further into system scalability with a 500 MB data sample, as depicted in Figure 7, our 

experiments reveal the system's adeptness at managing escalating data volumes. The methodology 

underscores the system's robustness and flexibility, notably by aligning each partition with a singular worker 

node and progressively augmenting both. This approach significantly reduces execution times for k-values of 

10, 50, and 100, showcasing the critical role of scalability in effective data anonymization practices. These 

results, achieved with a fixed number of nodes and partitions, are primarily due to the consistent number of 

iterations for different k-values. 

A significant contribution of our study is the development of a wide array of solutions designed for 

data custodians, especially notable for a 500 MB dataset at an anonymity level of K=100, where our 

methodology produces 832 unique solutions. This abundance of options marks a considerable improvement 

over traditional methods, showcasing our strategy's effectiveness in offering precise solutions that meet the 

complex demands of data privacy and processing efficiency. 

 

 

   
 

Figure 4. Efficiency for 25 MB dataset 

 

 

   
 

Figure 5. Efficiency for 125 MB dataset 

 

 

   
 

Figure 6. Efficiency for 250 MB dataset 
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Figure 7. Scalability on 500 MB dataset 
 

 

Acknowledging the limitations of our study, such as potential network overhead and varied 

performance in different execution environments, we recognize that the observed longer execution times 

compared to prior research may be attributed to increased bus communication traffic with the expansion of 

dataset sizes and core counts. Spark documentation underscores that local execution is primarily for testing 

purposes, with specific optimizations accessible only in cluster environments. Hence, we advocate for future 

research to focus on the practical application and performance of our anonymization solutions in diverse 

computational settings, particularly emphasizing deployments in real cluster environments to leverage 

performance enhancements fully and assess scalability and efficiency in enhancing privacy comprehensively. 

Thus, our research transcends conventional node-to-partition ratio analyses by scrutinizing our 

solution's scalability and offering a unified approach that directly benefits data stewards. We meticulously 

evaluate how configurations impact scalability and devise innovative strategies to bolster data privacy. This 

methodology not only confronts scalability issues but also provides a comprehensive suite of solutions for 

data owners, enhancing their ability to secure large datasets effectively. Our findings reveal key insights into 

achieving optimal system performance through a strategic balance of partitions and nodes, significantly 

improving data anonymization efficiency.  
 

 

7. CONCLUSION 

This article describes a system that enables data owners to safely publish large amounts of data 

using the k-anonymization technique to ensure personal data privacy. We have developed a proposal that 

relies on two RDD transformations, namely Map_RDD and ReduceByKey_RDD. These transformations offer 

several advantages, including more efficient partition management, memory usage optimization through a 

cache to store frequently referenced values, and improved iteration processes. The latter point is crucial for 

our algorithm, which relies on intensive iterations. 

In our upcoming research, we aim to enhance our system by expanding its capability to support 

various privacy models, such as l-diversity and t-closeness, in addition to the currently supported k-

anonymity. This development will enhance the security and protection of personal data while improving their 

utility. Furthermore, we plan to accelerate the data anonymization process in Apache Spark by leveraging the 

processing power of GPUs. We intend to use Spark-Rapids, an open-source library that optimizes Spark 

performance by utilizing GPUs to achieve this. This approach will allow us to process larger data volumes 

and obtain results faster than Spark alone. 
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