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 With the decreasing cost of traffic cameras and rapid advancement in 

computer vision and artificial intelligence, developing robust traffic 

surveillance systems has become more feasible and practical. These systems 
can easily outperform traditional human monitoring systems, as they can 

collect and analyze traffic data coming from multiple cameras efficiently. A 

good understanding of this data allows the detection easily road anomalies in 

real time and in an autonomous way. Therefore, an intelligent traffic system 
typically consists of three components: object detection, object tracking, and 

behavior analysis components. In this paper, we present a review of some of 

the well-known object detection techniques used in traffic video 

surveillance. The review begins with a brief introduction to the history of 
object detection and the evolution of its techniques. Then we review 

separately the two main approaches of detection, which are traditional and 

deep learning approaches of detection. Finally, an experimental analysis has 

been conducted to evaluate and compare the performance of some of the 
recent relevant detection methods in terms of speed and precision, in 

detecting vehicles in a traffic scenario. 
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1. INTRODUCTION 

An intelligent traffic video surveillance system (ITVS) is a system designed to detect and track 

moving objects on roads and evaluate their behaviors based on their real-time visual information. However, 

developing an efficient ITVS is still a challenging problem due to the complexity of tasks required to process 

and analyze these gathered data. This complexity is related especially to the variety of environmental 

conditions associated with the surveillance problem such as the speed of moving vehicles, occlusions, and the 

variation in weather and luminosity. An ITVS usually performs several tasks that are: i) collecting traffic data 

from traffic network cameras; ii) extracting information about different objects (identities, speeds, and 

trajectories); and iii) understanding and evaluating objects’ behaviors. Object detection in surveillance tasks 

is performed by processing real-time video streams captured by one or multiple surveillance cameras 

mounted on high poles. These cameras constitute the physical infrastructure of the surveillance network. 

Object detection is considered the first and most important step of the surveillance system, and it is 

https://creativecommons.org/licenses/by-sa/4.0/
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responsible for translating raw video data into meaningful information. This task allows extracting object 

categories and their spatial parameters such as positions and dimensions. Afterward, the various 

spatiotemporal parameters of objects such as identity, direction, movement, speed, and acceleration, are 

calculated in the object-tracking step. In cases of occlusion or temporary disappearance, a necessary re-

identification process is added to keep track of missing objects. Finally, the object behavior analyzer 

evaluates the spatiotemporal parameters of tracked objects to detect abnormal behaviors such as accidents. In 

addition to its monitoring roles, intelligent traffic video surveillance can provide useful services by sharing 

the results of its behavioral analysis with drivers, emergency assistance, and law enforcement agencies. In 

recent years, object detection has become a popular and powerful tool supported by the artificial intelligent 

and computer vision community. It has contributed to a wide range of fields such as robotics, security, and 

self-driving vehicles. Due to its importance in any ITVS, in this work, we are interested in the object 

detection techniques and methods, especially those related to this field of application. 

In the literature, two main detection approaches can be distinguished. The first is the traditional 

detection approach, which includes generally handcrafted algorithms that allow the localization and 

classification of objects. Several works adopt this approach to detect vehicles on roads and to address traffic 

surveillance problems. Motion-object detection has been one of the popular methods used for this problem in 

the early days and used in studies [1]–[5]. In addition to motion detection, several pipelines have been 

proposed to ensure the recognition of vehicles such as in studies [6]–[11]. These works combine the 

localization task with a feature extraction to explore objects’ representations using handcrafted descriptors 

such as scale invariant feature transform (SIFT) [12], oriented FAST and rotated BRIEF (ORB) [13], or 

histogram of oriented gradient (HOG) [14]. 

Recently, and thanks to the emergence of deep convolutional neural networks (DCNNs), a 

significantly powerful approach to detection has been popularized, starting with the proposal of the regional- 

convolutional neural network (R-CNN) detector. This detector operates in two stages: i) selective search that 

proposes regions of interest (ROIs); and ii) CNN feature extractor that explores ROIs to classify them. Since 

then, several improvements have been suggested to optimize the two stages of bounding box localization and 

classification, which lead to more performant models such as Fast R-CNN, and Faster R-CNN. In contrast to 

two-stage detection, single-shot detector (SDD) and you only live once (YOLO) have been proposed as one-

stage detectors that can accomplish detection tasks through one pass by the network and via a fixed grid. This 

processing way allows reducing significantly the detection time compared to previous architectures. 

Regarding the task of vehicle detection, the majority of recent works DCNN architectures as the backbone of 

their approaches, such in studies [15]–[18]. In this paper, a systematic review is provided to summarize the 

two main approaches and their different algorithms and models proposed to address the problem of traffic 

surveillance. In addition to this review, we provide an experimental comparison and analysis of the recent 

version of YOLO detectors in terms of speed and accuracy. In our experiment, we focused only on 

comparing recent YOLO versions due to their remarkable performances that largely outperform previous 

architectures. The results show that models’ performance varies considerably according to their sizes, since 

small models like recent Nano versions of YOLO, perform faster compared to larger ones, but with less 

accuracy. 

One of the main challenges in traffic surveillance systems is the detection of vehicles and 

pedestrians with high accuracy and real-time performance, especially when operating on resource-

constrained hardware. Achieving this balance requires optimizing detection algorithms to function efficiently 

without compromising on speed or precision. Therefore, this review has been conducted in the context of 

developing a traffic surveillance system specifically designed for deployment on such devices. In this study, 

we investigate recent well-known detection approaches and establish a performance comparison of popular 

detectors to identify the most suitable candidates for resource-constrained traffic surveillance systems. The 

comparative results reveal that the small and nano models of YOLOv5 and YOLOv8 offer the best 

performance among the evaluated models. Specifically, the small models exhibit a significant advantage in 

precision, making them ideal for situations requiring notable accuracy. In contrast, the nano models 

demonstrate remarkable speed, highlighting their suitability for real-time processing in resource-constrained 

environments. This dual advantage can be capitalized upon, by proposing for example a hybrid approach that 

utilizes both models in an adaptive manner to tackle this problem. This approach could leverage the high 

precision of the small model and the remarkable speed of the nano one, by dynamically switching between 

them based on the specific requirements of the surveillance task at hand. 

Our main contribution can be summarized as follows: discussing object detection approaches and 

reviewing relevant approaches used for traffic surveillance; conducting experiments to compare the 

performance of recent YOLO detectors in terms of speed, accuracy, and precision. The rest of this paper is 

organized as follows. In section 2, traditional and DCNN object detection approaches are presented. In 

section 3 we present the review of DCNN detection approaches applied for the traffic surveillance task. 
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Afterward, we present the results of conducted experiments in section 4. At the end, some concluding 

observations are presented in section 5. 

 

 

2. OBJECT DETECTION 

Object detection can be described as a combination of localization and classification tasks, the first 

task indicates the spatial information of objects using bounding boxes, whereas the second one aims to 

recognize the categories of them. An efficient object detection system must be able to detect appearing 

objects within a reasonable time and with good accuracy. In the literature, two main approaches can be 

distinguished for object detection and categorized into two classes: traditional methods-based detectors and 

deep learning-based detectors. Object detectors have evolved over several years to meet the precision and 

rapidity required by different kinds of demanding applications such as real-time surveillance systems. In the 

following, we will focus on discussing relevant techniques and methods of traditional and deep learning-

based detectors as well as some studies based on them to address the problem of vehicle detection in traffic 

surveillance contexts. Figure 1 shows our proposed classification of relevant algorithms and approaches used 

to address the problem of detection. In this classification, we show and classify the most popular methods 

adopted for the traditional pipeline of detection, that consists mainly of localization, classification, and 

feature extraction operations, and that are implemented in the majority of studies. In addition to that, the 

figure also shows the recent and relevant CNN models of the two main end-to-end approaches of deep 

learning-based detectors. 

 

 

 
 

Figure 1. Classification of relevant object detection methods 

 

 

2.1.  Traditional object detection 

Traditional object detection approaches refer to handcrafted methods that operate based on a 

pipeline the three tasks: object localization, feature extraction, and image classification. This sort of detection 

approach was dominant for a long time before the advent of deep learning and CNN-based techniques. In the 

following, we will discuss different components of traditional techniques as well as some relevant traditional-

based works that address the problem of traffic surveillance monitoring. 

 

2.1.1. Object localization 

Object localization, also known as candidate region proposal, is described as a class-agnostic object 

detection task and refers to the process of determining the locations of objects of interest within an image 

using bounding boxes. Several approaches have been proposed for this purpose that generally based on:  
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i) Straightforward exhaustive strategies that explore all possible regions to look for objects such as the sliding 

windows technique. These methods are considered computationally intensive; alternatively, ii) it can be 

based on image segmentation strategies, which consist of partitioning an image into multiple segments or 

blobs by clustering pixels based on appearance features such as colors, textures, or edges to isolate different 

regions; iii) Another popular method is the selective search, which consists of combining the strengths of 

sliding windows and image segmentation approaches. Selective search is done through clustering and 

merging of close similar regions on multiple scales and hierarchical ways based on their similarity. One of 

the advantages of this last approach is providing rapidly a small number of accurate proposals of multiple 

scales and orientations [19]; and iv) Another popular method is motion-based segmentation that extracts the 

motion features of pixels of moving objects. It consists of using a background modeling operation performed 

over multiple frames to differentiate moving objects effectively. In the following, we will discuss in details 

motion-based segmentation since it was one of the most effective and popular approaches to detection the era 

of deep learning. 

Motion-based segmentation is one of the widely used localization approaches that are suitable for 

scenarios where the background is stationary. Its main idea consists of taking advantage of the motion 

characteristic of foreground moving objects compared to the stationary background in a video scene. The 

pipeline of this approach consists typically of two steps: The first one is motion detection which consists of 

computing the optical flow between two or more consecutive frames and that describes the pattern of 

apparent motion of individual pixels. The second one is motion segmentation which occurs once the motion 

has been detected and aims at segmenting moving pixels and separating them from the background. This can 

be achieved by a thresholding operation over the optical flow magnitude, and a clustering algorithm to group 

pixels that belong to the same object. This motion-based detection allows the generating of a set of candidate 

regions or blobs in a video scene that can be refined afterward based on their feature, color, texture, or shape 

to improve the accuracy of the proposals. Some of the relevant motion-based techniques are frame 

differencing, background subtraction, and optical flow. The frame differencing algorithm is the simplest 

approach that operates by calculating the difference between two successive frames on pixel-level. 

Otherwise, background subtraction is a motion segmentation technique that separates foreground objects 

from the background by performing a subtraction between an image and an estimated background model. For 

both previous methods, a thresholding operation step allows ignoring small variation in pixel intensities. This 

approach increases the accuracy by ignoring small variations occurred due to environmental conditions like 

lighting conditions. 

However, despite its effectiveness, motion-based segmentation still has some limitations that affect 

its accuracy in detecting moving objects in specific situations. Some of these limitations include the 

sensitivity of the method to the slightest camera motion, small changes in illumination, or unintended 

background motion, such as the natural motion occurring as a result of tree and leaf movements. Another 

limitation is the accidental false detections of shadows that might be considered as separate moving objects, 

especially when adopting an appropriate threshold, or in some special luminosity conditions. However, the 

most relevant drawback of motion segmentation is the loss of detection when the motion of an object is 

interrupted or if the object of interest has the same color or texture as the background. Motion-based 

segmentation also faces difficulties in handling occlusions that occur when an object is partially or 

completely overlapped by another one. These situations usually yield inaccurate object segmentations and 

consequently cause misinterpretation of scenes that affect detection reliability. Therefore, when using this 

technique in traffic surveillance systems these limitations may affect the ability to detect stationary or 

occluded vehicles or vehicles with the same color or texture as the road. To address these issues, additional 

techniques can be considered and combined with motion-based segmentation to improve its robustness which 

is based on appearance-based information. 

 

2.1.2. Object classification 

Once the localization is done, another important task takes place and consists of recognizing the 

category of each localized candidate. This task is known as object classification and is generally defined as a 

machine learning technique used to assign new instances or entries to a group of previously known instances 

called “class”. In our situation, this task of image classification permits the classification of image crops of 

ROIs based on their appearance features. These features are fed into an already trained classifier to recognize 

different object categories such as vehicles, persons, or animals. Therefore, this classification can be 

described as a combination of feature extraction and feature classification. Different feature extraction 

algorithms have been proposed in the literature and can be distinguished into two main categories: 

handcrafted feature extraction and machine-learned feature extraction. In the following, we will discuss in 

detail the processes of feature extraction and feature classification as the main parts of a traditional object 

classification task. 
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a. Feature extraction 

Feature extraction is a popular topic in computer vision and refers to the process of transforming raw 

image pixels into a compact image representation ready for classification. There exist two main distinguished 

feature extractors: handcrafted features and machine-learned features. Handcrafted features are manually 

designed algorithms that extract representative characteristics from images. These extractors are founded on a 

prior knowledge and understanding of the targeted domain and usually involve techniques such as edge 

detection, corner detection, texture analysis, and color histograms. Performing efficient feature extraction is 

considered an important step in achieving efficient classification. Thus, developing efficient feature 

extraction algorithms has been a real challenge in computer vision for a long time and has been the subject of 

many studies since its earliest days. Feature extractors have evolved through various stages over the past few 

decades. 

The first contributions in this context have focused on using global low-level image features such as 

color histograms or geometric shapes. For a long time, these approaches were considered robust due to their 

effectiveness and low computational complexity. However, despite their effectiveness, low-level images 

cannot be considered as strong distinctive features, especially when dealing with images that lack strong 

texture representation. Therefore, it makes them unable to fully satisfy the accuracy and consistency required 

in most situations [20], [21]. A second generation of extractors appeared as an alternative to previous ones 

which are known as local feature-based extractors. These methods consist of more sophisticated techniques 

to extract local low-level features such as corners and edges from images.  

One of the earliest feature detector methods was proposed by Harris and Stephens [22] and is called 

the Harris corner detector. It is known for its powerful results even in noisy images where corner regions or 

patches are calculated using a shifted window in both directions. Despite its significant performance, the 

Harris detector is not considered invariant to scale and rotation transformations and requires defining specific 

thresholds for each image to operate correctly. In 2006, almost a decade after the Harris detector, a new 

corner detector algorithm called features from accelerated segment test (FAST) was introduced by Rosten 

and Drummond [23], and works by comparing the intensities of surrounding pixels of each candidate point to 

its intensity. This algorithm has the advantage of being computationally efficient and able to work in real-

time applications. However, it is sensitive to noise and can produce false positives in regions with low texture 

[24]. Texture-based detectors represent the third generation of detectors proposed to overcome previous 

limitations. These extractors can extract key information from images even with the absence of well-defined 

edges, patterns, or textures. These detectors can be divided into two categories: local appearance-based 

methods and interest point-based methods. The first category includes methods such as local binary patterns 

(LBP) [25] and histogram of oriented gradient (HOG) [14], which operate by capturing local spatial patterns 

of image blocks based on the values of the pixels’ neighbors. The second category consists of points of 

interest-based detectors that find distinguished key points of interest that are invariant to scaling, translation, 

rotation, and illumination changes. To match and retrieve these key points, several feature descriptors 

provide a compact encoded representation of the key points. This operation allows the encoding of essential 

information for image retrieval and comparison purposes. Many feature detectors and descriptors have been 

proposed in the literature including scale invariant feature transform (SIFT) [12], binary robust independent 

elementary features (BRIEF) [26], speeded-up robust features (SURF) [27], and oriented FAST and rotated 

BRIEF (ORB) [13]. 

b. Feature classification 

One of the early approaches to feature classification was proposed by Csurka et al. [28] in 2004 and 

involved using a concept called a bag of key points to represent the image as a collection of key points, 

before quantizing them into a set of representative visual words. Afterward, a histogram of these words is 

computed to describe the feature vector of the image, which can be passed as input to a classifier for training 

or predicting tasks. Several classifiers might be used along with this approach to classify features such as 

support-vector machine (SVM), random forest, k-nearest neighbor (KNN), naïve Bayes, or AdaBoost, to 

train it. Other simpler approaches of feature classification operate by using low appearance representations 

such as image histograms of colors, and textures, or other feature descriptors such as local LBP or Gabor 

filters, as input for classification models. The effectiveness of these approaches depends on several factors, 

such as the quality and volume of the dataset, the quality and accuracy of detectors and descriptors 

algorithms, and the machine-learning algorithm used for classification. However, one of the main limitations 

of these traditional feature classifiers is the lack of spatial knowledge about processed images, which can lead 

to some information loss that could affect the performance. 

 

2.2.  Deep learning-based object detection 

Due to their rapid growth and remarkable success, DCNNs have received a lot of attention in 

computer vision, especially in the domain of object classification and detection. Thus, since 2012, many 

studies have started adopting CNN models to address the problem of object detection, especially to overcome 
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its persistent issues and limitations related to speed and accuracy in traditional detectors. A deep neural 

network is a system that attempts to mimic the biological neural network of the human brain through a 

combination of data inputs, weights, biases, and outputs [20]. Therefore, a CNN can be described as a 

specific type of deep neural network designed to process image pixels. CNN architectures have gained 

popularity in the computer vision field due to their good performance in terms of accuracy and speed 

compared to traditional approaches. This performance is due to the notable CNN capabilities that allow 

extracting efficiently deep image features at multiple scales and multiple levels. Moreover, the abundance 

and the accessibility to image datasets as well as to faster graphics processing units (GPUs), contributed 

greatly to the success of CNNs. Most CNN object detection models fall into two types: two-stage detectors 

and one-stage detectors [29]. Two-stage detectors refer to models that consist of two stages: i) a stage for 

region proposal generation used to locate candidate regions that could potentially contain objects and ii) and 

a second stage for proposal classification, which inspects and classifies each candidate region. On the other 

hand, single-stage architecture is considered an improved straightforward approach to detection compared to 

the previous one and operates by processing an image with a single pass through the CNN to generate 

bounding boxes and labels. 

In both two-stage and single-stage detectors, the core of the detection process relies on a backbone 

network whose role is to extract image features using a stack of multiple convolutional layers, which are 

trained for this purpose. Since 2012, several backbone architectures have been proposed, among them there is 

AlexNet which is considered the first proposed CNN architecture for image classification in 2012 [30]. It is 

considered as one of the most influential contributions to computer vision due to its considerable accuracy 

compared to other contemporary models, which motivates researchers to switch their attention to CNN 

architectures. AlexNet architecture consists of eight neuron layers, including five convolutional and three 

fully connected layers, with up to 60 million parameters. It is considered the first architecture to use the non-

saturating rectified linear unit (ReLU) activation function instead of tanh or sigmoid, allowing for 

considerable improvement in the training stage. On the other hand, VGG was developed as another powerful 

CNN architecture at the time in 2014 by Simonyan and Zisserman [31] based on AlexNet. VGG was the 1st 

runner-up in the classification task of the ImageNet large scale visual recognition challenge 2014 

(ILSVRC2014) competition and achieved almost 92.7% accuracy on ImageNet [31]. Two variants of VGG 

have been proposed: VGG-16 and VGG-19. The first architecture variant contains a total of 16 layers, 

including 13 convolution layers for feature extraction and 3 fully connected layers for classification, while 

the VGG-19 has 16 convolution layers. The relatively large number of layers makes this network more 

capable with about 138 million parameters. VGG has shown that the capabilities of deep networks could be 

improved by increasing the number of parameters and the depth of network layers [30]. Another well-known 

CNN backbone architecture was residual neural network (ResNet) [32], which was one of the innovative 

approaches in deep learning. This architecture introduced new idea called “identity shortcut connection” 

which allows establishing skips and jumps over one or more layers instead of direct forward connections. 

This idea makes it possible to train and predict with larger and deeper neural networks while keeping a lower 

resource and time complexity. 

 

2.2.1. Two-stage object detection 

Two-stage detector ideas break detection into two tasks: a region proposal task performed by a 

component called a region proposal network (RPN), and a classification task to classify generated regions of 

interest that is usually done by a machine learning (ML) algorithm like SVM or a neural network-classifier. 

This approach represents the first generation of deep learning-based detectors and is known for being 

relatively slow but very accurate. Continuous progress in two-stage detectors has allowed for improving 

relatively the critical computational cost while maintaining good precision. Several two-stage detectors have 

been proposed in the literature, including R-CNN, Fast R-CNN, Faster R-CNN, and Mask R-CNN. R-CNN 

was proposed by Virasova et al. [33] in 2014. It was a pioneering work in deep learning detection that 

significantly improved performances and demonstrated the immense power of CNNs in object detection. As 

a first step, R-CNN uses the Selective Search algorithm instead of sliding windows to generate a set of 

around 2,000 region proposals, also called anchor boxes. In the second step, each proposal is resized to a 

fixed size and transformed into a fixed feature vector using a CNN feature extractor. Afterward, a trained 

SVM classifier is used to classify generated feature vectors to associate each anchor box with a label or class. 

Finally, a bounding box regression is performed by predicting four box coordinates, to refine anchor boxes 

and fit pre-classified objects. As a result of detection, R-CNN on PASCAL visual object classes challenge 

2007 (PASCAL VOC2007) achieved a great score of 66% mAP, showing the huge advantage of this 

approach at the time. Despite this achievement, R-CNN has faced some critical limitations in practical 

applications, due to the heavily redundant computations that affect training and predicting time [34]. To 

accelerate detection, spatial pyramid pooling network (SPP-NET) [35] proposed an improved approach based 
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on R-CNN that instead of applying the CNN feature extractor to each proposal separately, it extracted one 

global feature map from the entire image. Afterward, a fixed-length feature vector is obtained from the 

feature map for each proposal through the spatial pyramid pooling (SPP) layer. This strategy allows  

SPP-NET to achieve better performance compared to R-CNN, however, as it consists of multiple components 

like R-CNN, training an SPP-NET requires a lot of time. 

In 2015, Fast R-CNN was proposed as an improved version of R-CNN by the same researchers 

while introducing some ideas from SPP-NET. To extract features, Fast R-CNN calculates the feature map of 

the image like SPP-NET before extracting feature vectors for each proposal using a region of interest pooling 

layer instead of a spatial pyramid pooling layer. After this step the feature vector layer is connected to two 

separate layers: a SoftMax layer for classification, and a regression layer for bounding box generation. These 

improvements make Fast R-CNN a near end-to-end model, except for the first region proposal stage which 

remains separate. This allows it to reach better training and prediction speed [29]. In the same year, Faster  

R-CNN was proposed by Ren et al. [36] with a main contribution of removing the Selective Search used in 

the first proposal stage that cannot be trained in a data-driven manner. This task is replaced with a novel 

trainable proposal generator called RPN. RPN is a fully convolutional network that generates a set of object 

proposal vectors on each anchor using different-sized sliding windows. These feature vectors allow for 

predicting the class score and locations of objects. In general, two-stage detectors have evolved over several 

years to improve detection performance, however, several major limitations remain challenging for these 

types of architectures, which are mainly related to their complexity and affect the speed of training and 

predicting. 

 

2.2.2. One-stage object detection 

On the other hand, to overcome the intrinsic limitations of two-stage detectors, one-stage detectors 

have been proposed as an end-to-end architecture of detection that can be trained and predicted directly via 

one pass by a single neural network. In general, these detectors predict different object bounding boxes and 

labels using a neural network that takes an image as input, without the need for any separate region proposal 

or feature extractor step. The main idea of one-stage detection usually starts by considering all regions on the 

image as potential objects and then attempting to classify each region as either a background or a target 

object. This straightforward approach is generally faster and more computationally efficient than the previous 

approach. However, despite their remarkable efficiency, the overall accuracy and precision of these detectors 

can be relatively modest, especially in the case of dealing with small or occluded objects. Compared to 

previous approaches to detection, the continuous development in recent years has allowed one-stage detectors 

to meet or even outperform the performance of two-stage detectors in terms of precision and accuracy in the 

majority of challenging detection situations. This enables the possibility of involving robust object detection 

in various real-time applications including autonomous driving, surveillance, and robotics. Among the 

relevant one-stage detectors are YOLO was first introduced by Redmon et al. [37] and SSD [38]. YOLO is 

one of the well-known one-stage detectors, proposed for the first time in 2016 as a real-time detector that can 

predict objects within images via a fully end-to-end CNN. YOLO considers the detection as a simultaneous 

regression and classification problem. The regression task separates the objects spatially via bounding boxes, 

and the classification task evaluates the probability of the associations of these boxes to the predefined 

classes. YOLO first starts by dividing the input image into a grid of N×N cells. For each cell, several 

bounding boxes get predicted with their corresponding confidence scores that range between zero and one, 

which indicate the likelihood of object existence, in addition to a score of similarity confidence between the 

box and each of the predefined classes. In addition to being flexible and easy to train and deploy, the 

continuous improvement in YOLO architecture allows it to become much faster and more accurate over time, 

and become more suitable and popular for real-time applications. However, despite these continuous 

improvements, in general, YOLO detectors still face some limitations regarding object localization tasks, 

which is due essentially to the basic grid-based approach that allows only a specific number of anchors to 

inspect for each bounding box. This causes the detector to struggle with cluttered situations, objects that 

occupy multiple cells, and partially occluded objects. 

 

 

3. DEEP LEARNING DETECTORS FOR TRAFFIC SURVEILLANCE SYSTEMS 

Due to the great success of deep learning in object detection, several studies have adopted deep 

learning detectors into their solutions to address current real-world problems such as traffic surveillance. 

Table 1 presents some of these recent studies that propose solutions for the challenging vehicle detection  

task using convolutional neural network (CNN) approaches. In the following, we present some of these 

approaches. 
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Table 1. Relevant works based on traditional or deep CNN detectors proposed for vehicle detection   
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[40] 2013 × 
             

[8] 2014 
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[1] 2015 
  

× 
           

[2] 2016 
 

× 
   

× 
        

[15] 2017             Optimized YOLO  

[3] 2017 
  

× 
   

× 
    

× 
  

[4] 2018 
  

× 
 

× 
   

× 
     

[41] 2018 
    

× 
     

× × 
  

[5] 2018 × × 
            

[11] 2018 
  

× 
           

[42] 2019             SSD/Mobile SSD  

[16] 2019 
       

× 
    

YOLOv3 
 

[43] 2019 
  

× 
           

[17] 2019 
             

Mask R-CNN 

[9] 2019 
   

× 
    

× 
     

[44] 2019 
             

Faster R-CNN 

[45] 2020             Improved YOLOv3  

[10] 2020 
  

× 
 

× 
   

× 
     

[18] 2021 
      

× 
  

× × × 
  

[46] 2021 
            

YOLOv3 
 

[47] 2021             Improved YOLO  

[48] 2021             Tiny-YOLOv3  

[49] 2022             YOLOv4-Tiny  

[50] 2022             Improved YOLO4  

[51] 2022 
  

× 
         

YOLOv5 
 

[52] 2021 
    

× 
         

 

 

Azimjonov and Özmen [47] proposes an improved YOLO-based vehicle detector intended for traffic 

flow monitoring systems. To further improve YOLO’s classification capability, the authors trained and tested 

several machine learning classifiers on 7,216 annotated images to choose the best among them. Finally, an 

improved YOLO-based detector was developed by combining the YOLO model, used in this case an object 

localizer, with the chosen classifier, which allows achieving an increase in classification precision up to 

95.45% compared to the original 57% of ordinary YOLO. To capture traffic violations, Tajar et al. [48] 

proposed a lightweight real-time vehicle detection model developed for common and low-power systems. 

This model was based on a modified tiny-YOLOv3 model pruned and simplified by training it on a  

BIT-vehicle dataset. Experimental results showed a 95.05% mean average precision (mAP) while detecting 

six different types of vehicles at a speed of 17 fps. To tackle the problem of missing vehicles, Mao et al. [45] 

proposed an improved detector based on YOLOv3. This detector involved adding three spatial pyramid 

pooling layers (SPP) before each network layer to obtain enhanced multi-scale information, in addition to 

adopting soft-NMS instead of non-maximal suppression (NMS) to reduce missing bounding boxes. Results 

showed that this approach significantly reduces missed detection caused by overlapping vehicles in traffic 

scenes. Song et al. [16] proposes an improved system for vehicle counting based on YOLOv3 that involves 

dividing the highway road surface into a remote and a proximal area before introducing them to the detector. 

This approach allows for better vehicle localization, especially for small ones located in the remote area. 

After detection, ORB feature extraction is applied to vehicle regions to keep track of them over time using 

feature matching. In studies [15], an optimized YOLO is proposed to improve detections by replacing the last 

two fully-connected layers of the YOLO network with an average pool layer. This modification is motivated 

by the fact that fully-connected layers of CNNs that play the role of classifier require heavy computations. A 

combination of OYOLO with R-FCN [53] is proposed to avoid location errors in vehicle detection, allowing 

the mAP of OYOLO+R-FCN to increase by around 3.3% compared to YOLO. Chen et al. [42] proposes a 

real-time traffic density estimator that works by counting passing vehicles based on a MobileNet-SSD 

detector. The proposed detector was based on an SSD architecture trained on a handcrafted dataset of 
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vehicles collected from traffic videos. Experiments showed that the proposed model was capable of handling 

vehicles with different scales and from different points of view, appearing in challenging lighting and 

weather conditions. The approach achieves an average detection accuracy of 79.30% and a detection speed 

between 15-18 fps, compared to the original SSD detector that achieved a higher accuracy of 92.97% but 

with a much slower rate that remains between 5-7 fps. Despite the notable efficiency achieved by the 

previous propositions, another kind of approach that has been around since the first appearance of CNN 

architectures until today has been used to enhance the detection performance of vehicles in traffic scenes. 

This involves adopting hybrid approaches that combine traditional computer vision algorithms and deep 

learning models. In this regard, Wang et al. [10] combines a mixture of the Gaussian background subtraction 

model (MOG2) with a tiny classification model called H-SqueezeNet to create a robust object detector for 

traffic surveillance systems. H-SqueezeNet is a lightweight architecture created by concatenating some 

SqueezeNet layers and trained on vehicle images from the ImageNet dataset. The idea behind this approach 

is to exploit MOG2 as a lightweight candidate proposal before classifying its results using H-SqueezeNet. 

Experiments showed that this approach can easily achieve real-time detection with a speed of 39.1 fps. 

Likewise, [51] proposes a vehicle detector system that operates based on a combination of background 

subtraction (BS) and YOLOv5. The Gaussian mixture model (GMM) is the core of the BS used as a 

preprocessing step to locate moving objects. The YOLOv5 detector is applied afterward to these regions 

separately to detect these moving regions. The result shows that this approach can efficiently handle vehicle 

overlapping problems. Different versions of YOLOv5 have been tested with this configuration. The smallest 

version, YOLOv5s, achieved a precision of 38.03% mAP with an inference speed of 52 ms per image, 

equivalent to 19 fps for almost real-time detection. The larger model, YOLOv5x, achieved a precision of 

40.79% mAP with a speed of 263 ms or 3.8 fps. Numerous approaches have been proposed for vehicle 

detection, utilizing both traditional and deep convolutional neural network (CNN) detectors. Table 1 

summarizes relevant works in this area, highlighting the different methods and techniques used to address 

traffic surveillance problem. This table provides a comprehensive comparison of various techniques, 

highlighting the increasing tendency to adopt deep learning techniques in recent works, particularly one-stage 

detectors, in contemporary traffic surveillance applications. 

 

 

4. EXPERIMENTAL AND RESULTS 

In general, comparing the CNN detectors can be a challenging task due to the variety of factors that 

may influence their performance and evaluation. These factors include the dataset quality and the evaluation 

metric, in addition to the hardware performance used for this evaluation. Several open image datasets have 

been proposed to facilitate the tasks and enable meaningful evaluation. These datasets include PASCAL 

VOC2007/2012, ImageNet, ILSVRC, and Microsoft COCO datasets. Recently common objects in context 

(COCO) have been considered as a popular large-scale image dataset, intended to evaluate classification, 

detection, and segmentation tasks. It provides over 330k images containing more than 1.5 million object 

instances across over 80 object categories. COCO is widely used in object detection due to its large and 

diverse collection of accurately annotated real-world images. Its evaluation metrics are based on Mean 

average precision (mAP), which measures the precision and accuracy of object detections at multiple 

intersection over union (IoU) thresholds. 

 

4.1.  Experimental conditions and results 

In our experiments, we have compared some of the recent well-known one-stage detectors, in terms 

of detection speed and precision as shown in Figure 2. In recent years, two-stage detectors have been largely 

outperformed by one-stage detectors in terms of processing speed due to their straightforward architectures. 

For this reason, we have decided our experiment to focus only on evaluating one-stage detectors due to their 

popularity and their remarkable performances. Hence, the chosen detectors are YOLO models from version 3 

to the recent version to date which is 8, and with different model sizes that vary from small to X large 

models. In general, to evaluate the computational efficiency of CNN-based models, traditional methods such 

as big-O notation for computational complexity become not useful. Instead, inference speed is considered a 

popular metric to indicate computational efficiency. Another popular metric for efficiency evaluation is the 

processing rate revealed by the number of frames per second (FPS). Hence, to evaluate our detectors 

regarding processing speed, we measure and represent the FPS achieved by each model in detecting objects 

within the frames of an experimental traffic sequence as shown in the x-axis of Figure 2. The FPS in our 

experiment represents the number of frames in the sequence that a detector can process in one second, 

bearing in mind that the higher the FPS, the more efficient the detector is. The experimental sequence is a 

highway traffic video of about five minutes with a total of 6,720 frames that have a resolution of 1280×720. 

The FPS calculation was performed for each one of the compared detectors using a local machine with  

32 GB RAM, an Intel Xeon Silver 4,110-2.10 GHz processor, and no integrated graphics card. The models in 
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our experiment were trained on the default COCO dataset, and all detections were performed using a network 

input size of 416×416. On the other hand, concerning precision performances shown in the Y-axes of  

Figure 2, the MAP scores of our evaluated detectors are collected from the table of performances published 

in their original papers as in Table 2. 

 

 

 
 

Figure 2. A comparison between evaluated object detectors in terms of FPS and accuracy  

 

 

Table 2. The performance of evaluated detectors 
Model (with 416 input) Processing time (ms) FPS AP 

YOLOv3 1020,83 0,98 36,2 

YOLOv3-tiny 176,28 5,67 29,3 

YOLOv4 633,07 1,58 41,2 

YOLOv4-tiny 166,67 6,00 31,2 

YOLOv5n 76,36 13,10 36,0 

YOLOv5s 107,47 9,31 44,8 

YOLOv5m 172,29 5,80 51,3 

YOLOv5l 276,58 3,62 53,7 

YOLOv5x 417,48 2,40 55,0 

YOLOv6n 137,99 7,25 37,5 

YOLOv6s 227,49 4,40 45,0 

YOLOv6m 343,50 2,91 50,0 

YOLOv7-tiny 133,54 7,49 39,8 

YOLOv7 587,01 1,70 51,4 

YOLOv8n 77,53 12,90 37,7 

YOLOv8s 115,27 8,68 45,9 

YOLOv8m 175,38 5,70 50,2 

YOLOv8l 352,56 2,84 52,9 

YOLOv8x 467,13 2,14 53,9 

 

 

The overall results show that the precision of compared models generally varies according to the 

size of the models, where the precision falls between 30 and 55 mAP, and their speed varies between 1 and 

13 fps. In general, by looking at the relation between model sizes and their performances, we observe that by 

going larger, the detector becomes more accurate but at the same time its speed becomes much slower, and 

vice versa. Moreover, regarding the version of models and their performances, the continuous development 

and optimization of YOLO architectures over time allows them to become faster and more accurate 

according to the same results. Another important feature of recent versions of YOLO is the tendency to 

release multiple model versions with different network sizes that enable multiple accuracy/speed detection 

ratios. This variety allows developers to choose the optimal model regarding the targeted use case, and also 

the targeted physical resource of deployment. For Instance, recent larger networks such as models X and L of 

yolov3

yolov3-tiny

yolov4

yolov4-tiny
yolov5n

yolov5s

yolov5m

yolov5l
yolov5x

yolov6n

yolov6s
yolov6m

yolov7-tiny

yolov7

yolov8n

yolov8syolov8m

yolov8l

yolov8x

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

m
A

P
 o

f 
d
et

ec
to

rs
 f

o
r 

a 
n
et

w
o
rk

 i
n
p
u
t 

si
ze

 o
f 

4
1
6

Average FPS on CPU  



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 A review of object detection approaches for traffic surveillance systems (Ayoub El-Alami) 

5231 

YOLOv5 and YOLOv8 in addition to YOLOv7 tend to be more precise with an AP of more than 50%, 

compared to early, medium, and small detectors. However, the achieved speed of these precise detectors is 

considerably slow with a rate below 4 fps on CPU as shown in the result of our experiment, which means that 

these models are far from being effective for real-time applications, especially while operating in CPU 

machines or low-resource devices. On the other hand, in terms of speed, results show a large advantage of 

recent nano versions of YOLO models, such as YOLOv8 nano and YOLOv5 nano. These models achieve the 

best speed performance in the CPU, with near real-time detection with more than 13 fps. However, despite 

their remarkable speed, their reduced size affects largely their detecting capability, which is due especially to 

the lack of the ability to detect small and occluded objects. Whereas small recent models of YOLOv8 and 

YOLOv5 have around 3 times the number of parameters of Nano versions, they achieve around 9 fps for both 

of them, with more remarkable detecting capability compared to previous ones. 

 

 

5. CONCLUSION 

In this paper, we conducted a literature review of recent vision-based studies that address the 

problem of vehicle detection in traffic surveillance systems. We began with an overall review of object 

detection approaches including relevant handcrafted-based and deep learning-based approaches. We also 

highlighted some relevant studies proposed to address the problem of vehicle detection. In the last section, 

we provide a comparative analysis of various well-known one-stage detectors based on their speed and 

accuracy performances while dealing with real-world traffic surveillance footage. The results showed that 

one-stage detectors, particularly recently reduced YOLO networks, have become more efficient with an 

acceptable accuracy/speed ratio. In particular, as shown in Table 1 the small and nano models of YOLOv5 

and YOLOv8 demonstrate superior performance among the evaluated models, with small models excelling in 

precision and nano models in speed. This dual advantage offers the possibility to develop hybrid approaches 

that adaptively employs both models, dynamically switching between them based on the specific demands of 

the traffic surveillance task, thereby optimizing both accuracy and real-time processing capabilities. 
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