
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 14, No. 5, October 2024, pp. 5381~5389 

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i5.pp5381-5389      5381  

 

Journal homepage: http://ijece.iaescore.com 

Relationship between features volatility and bug occurrence 

rate to support software evolution 
 

 

Tiara Rahmania Hadiningrum, Bella Dwi Mardiana, Siti Rochimah 
Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember, 

Surabaya, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Dec 26, 2023 

Revised Jun 10, 2024 

Accepted Jun 16, 2024 

 

 Software evolution is an essential foundation in delivering technology that 

adapts to user needs and industry dynamics. In an era of rapid technological 

development, software evolution is not just a necessity, but a must to ensure 

long-term relevance. Developers are faced with major challenges in 

maintaining and improving software quality over time. This research aims to 

investigate the correlation between feature volatility and bug occurrence rate 

in software evolution, to understand the impact of dynamic feature changes 
on software quality and development process. The research method uses 

commit analysis on the dataset as a marker of bug presence, studying the 

complex relationship between feature volatility and bug occurrence rate to 

reveal the interplay in software development. Validated datasets are 
measured by metrics and correlations are measured by Pearson-product-

moment analysis. This research found a strong relationship between feature 

volatility and bug occurrence rate, suggesting that an increase in feature 

changes correlates with an increase in bugs that impact software stability and 
quality. This research provides important insights into the correlation 

between feature volatility and bug occurrence rates, guiding developers and 

quality practitioners to develop more effective testing strategies in dynamic 

development environments. 

Keywords: 

Bug occurrence rate 

Correlation coefficient 

Features volatility 

Quality 

Software evolution 

Software stability 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Siti Rochimah 

Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi 

Sepuluh Nopember 

Surabaya, Indonesia 

Email: siti@its.ac.id 

 

 

1. INTRODUCTION 

Software evolution is a critical aspect in building a technological foundation that can adapt to the 

development of user needs and industry dynamics [1]–[3]. In an era where the speed of technological change 

is accelerating, software evolution is not just a necessity, but a necessity to ensure that the applications 

developed can continue to be relevant and provide added value [4], [5]. Software developers are faced with 

significant challenges in maintaining and improving software quality over time [6], [7]. These challenges 

include demands to quickly respond to changing user needs, maintain compatibility with evolving technology 

environments, and still ensure security and optimal performance [8]–[11]. Thus, a deep understanding of the 

importance of software evolution and the difficulties faced by developers in the face of continuous change is 

a crucial basis for designing adaptive and sustainable development strategies. 

Feature volatility, which indicates to what extent and how often changes are made to certain features 

in a software application over time, reflects the dynamic nature of software development [12], [13]. 

Understanding the constant evolution of such features is crucial, as this directly affects the adaptability and 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5381-5389 

5382 

robustness of software applications [14]–[17]. Understanding the nuances of feature changes throughout the 

development cycle is key for developers, as it empowers them to foresee and respond effectively to changing 

user needs and evolving industry trends [9], [10], [18], [19]. In the context of software evolution, where 

staying abreast of user demands is crucial, feature volatility emerges as a critical factor [20], [21]. The 

inherent dynamics of the feature set not only reflect the software system's response to user needs but also 

pose challenges that require careful attention [7], [22]. Thus, a careful understanding of feature volatility 

becomes a crucial point in navigating the complexities of software development and is integral to ensuring 

the sustainability and relevance of software applications in an ever-changing technological landscape. 

The bug occurrence rate plays a crucial role as an important indicator to measure in the software 

development process [23], [24]. The bug occurrence rate, often expressed as a percentage or number of 

specific defects per test cycle, provides valuable insights into the stability of a software application [25], [26]. 

This indicator not only provides an overview of the quality of the application but can also be used as an 

important parameter in evaluating and measuring the overall stability level of a software application [27], 

[28]. This is because the bug incidence rate is a mirror of the overall quality of the developed software. The 

existence of bugs not only affects application performance but also has a direct impact on user experience 

[29]. A low bug occurrence rate indicates that the software is relatively stable and error-free and a high bug 

occurrence rate indicates that the software may have serious quality issues [30], [31]. 

Wang et al. [30] introduced an automated static analysis tool to identify critical configuration 

positions in complex source code, revealing a positive correlation between feature volatility and software 

error rates. Their study underscores the importance of understanding how feature volatility impacts software 

development. In a separate endeavor, Pilliang et al. [31] highlighted the advantages of automation in saving 

time and costs, particularly evident in their creation of automated regression suites using open-source tools 

for healthcare solutions. Their research, focusing on Kanggle.com's repository platform, demonstrated an 

86% accuracy rate in a risk matrix model, showcasing the effectiveness of automation in improving software 

development processes. Furthermore, Handani et al. [20] quantitatively explored the relationship between 

feature volatility and software architecture design stability in object-oriented software. By utilizing 

Constantinou metrics, they analyzed architecture design stability alongside feature volatility across 

consecutive versions, providing valuable insights validated by expert evaluators. Additionally, Ruohonen  

et al. [32] investigated volatility modelling in time series within software development contexts, employing 

FreeBSD as a case study. Their research delved into volatility properties in bug tracking, development 

activities, and communication interactions, shedding light on challenges and empirical studies related to 

software evolution and time series volatility. 

While previous studies offer insights into software development, none directly address the 

correlation between feature volatility and bug occurrence. Identifying this gap, our research explores this 

relationship to enhance understanding and mitigation of software errors, particularly within evolving systems. 

Uncovering this amidst the complexities of software evolution poses a significant challenge. Feature 

volatility can negatively impact software quality by making software more error-prone, harder to test, and 

more expensive to maintain [33], [34]. While it is known that feature volatility can introduce complexity and 

uncertainty in the development process, the exact relationship and mechanisms that affect bug occurrence 

rates still require further investigation [35]. By using commit as an indicator of bug presence, this study aims 

to fill this knowledge gap and provide deeper insights into how feature volatility affects software 

development quality. The results of this study are expected to provide valuable guidance to software 

developers and quality assurance practitioners in developing more effective testing strategies for dynamic 

development environments. 

 

 

2. METHOD 

In the research process, analysis methodology plays a central role in ensuring the success and 

accuracy of the findings. Through four structured stages, namely i) research design, ii) data collection,  

iii) measurement elements, and iv) quantitative analysis. Researchers are guided to carry out research with 

precise and directed steps. 

 

2.1.  Phase 1: Research design 

This study uses an empirical research approach to investigate the impact of feature volatility on 

software quality. The research design includes a comprehensive analysis of the software development process 

in relation to feature volatility. To conduct this analysis, five different real projects were selected for 

simulation: 'Nelayanku', 'RajaGula', 'Loak.In', 'ServiceTrip', and 'SwapGoodFabric'. Developed between 

2021 and 2023, each project offers four different versions, reflecting different stages of development and 

refinement. Notably, all projects are built using the Laravel framework, with PHP as the primary 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Relationship between features volatility and bug occurrence rate to … (Tiara Rahmania Hadiningrum) 

5383 

programming language. This selection of projects and their respective characteristics provides a solid 

foundation for evaluating the effects of feature volatility on software quality. 

 

2.2.  Phase 2: Data collection 

At this stage, it is explained how the data is modelled to fit the desired metrics. The data used comes 

from historical lists published on the official website of the project. The data features, as shown in Table 1 

with five different data sets, include a wide range of modified features. In addition, the methods described 

also consider data customization techniques to ensure conformity with the desired metrics. 

It is important to note that the selection of data from historical sources provides a solid basis for 

modelling. This historical data reflects the evolution of the project over time and provides the context 

necessary to understand the impact of feature changes on the metrics being measured. Each data set is 

described in detail to provide context for the feature variations that occur. This analysis includes significant 

feature changes, specific changes at certain levels, and other aspects that affect relevant metrics. 

The next step after data modelling is to apply metrics to each data set. Thus, it can be evaluated 

whether the feature variations recorded in the data have a significant impact on the measured metrics. 

Overall, this stage provides an important foundation for understanding the relationship between feature 

changes and outcome metrics in this project. Advanced statistical analysis was used to evaluate these 

relationships, providing a deeper understanding of the dynamics of this project.  

 

 

Table 1. Five datasets used 
Loak.In application 

Version Features Description 

LK01 General system modifications 

LK02 Add a product filter feature 

LK03 Add login option using google 

LK04 Add product search feature 

  

RajaGula application 

Version Features Description 

RJ01 General system modifications 

RJ02 Add product search feature in the favorite menu 

RJ03 Add product filter feature by category 

RJ04 Add login option using google 

  

Nelayanku application 

Version Features Description 

NL01 General system modifications 

NL02 Add login option using google 

NL03 Add product pre-order feature 

NL04 Add user address change feature 

  

ServiceTrip application 

Version Features Description 

ST01 General system modifications 

ST02 Added search feature in all menus (city data, employee data, official travel data) 

ST03 Add login option using google 

ST04 Add generate pdf in business trip details 

  

SwapGoodFabric application 

Version Features Description 

SG01 General system modifications 

SG02 Add login option using google 

SG03 Add print member transaction role feature 

SG04 Add delete complaint-member role feature 

 

 

2.3.  Phase 3: Measurement 

This measurement starts from the initial version to the final version of each project. Volatility results 

depend on the number of features modified and the total number of features commits from successive 

versions. The process of iterating commits for feature volatility involves creating repeated commits for 

different features, allowing for a thorough evaluation of the degree of fluctuation of those features over 

successive iterations. During these iterations, each feature modification is recorded and collected to form a 

history of the evolution of the project from the initial version to the final version. Measuring feature volatility 

not only looks at the frequency of feature changes but also considers the total commits involved in the 

process. This provides a more holistic perspective on feature changes that occur during project development. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5381-5389 

5384 

Table 2 is a table recording changes and the number of commits in a dataset. This table provides 

details of changes that occurred during project development, including information about each commit made, 

including the type of change made and total number of commits. This logging forms the basis for further 

analysis of feature volatility, enabling a deep understanding of the project's evolution over time. By detailing 

each change and commit to this dataset, stakeholders can track and evaluate the dynamics of feature changes 

that may impact the overall volatility of the project. This iterative process allows for a deeper understanding 

of how each feature change contributes to overall volatility. By creating iterative commits for different 

features, the analysis can cover various contexts and dynamics that may influence feature fluctuations from 

version to version. 

 

 

Table 2. Example of commits on Loak.In dataset 
Commit Table Version 

Version 4 

 Filter Authentication Authentication 

Commit 1 - - v  

Commit 2 v v - 

Commit 3 v v - 

Commit 4 - - v 

Commit 5 - v - 

Commit 6 v v - 

Commit 7 v v v 

 

 

2.4.  Phase 4: Quantitative analysis 

In statistical analysis, we have used the volatility metric to measure how much data changes. In the 

context of requirements, we use a requirements volatility metric called functional specification stability. As 

described in (1), this metric depends on the number of features that change. This metric can also be used to 

calculate the volatility of features. Volatility equal to zero indicates that all features change significantly. 

Conversely, volatility equal to one means that all features do not change. 

 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 (𝑖, 𝑖 + 1) = 1 −  
𝐹(𝑖+1)

𝑡𝑜𝑡𝐹(𝑖)
   (1) 

 

In addition, we also use the Pearson product moment method to determine the dependency between 

two variables. This method, as shown in (2), is mainly used to model ratio data. To evaluate these results, we 

calculate the t value of the correlation coefficient or compare the r value with the r table. We also conducted 

a model fit test to ensure that the method used was appropriate for the characteristics of the observed data, 

thus strengthening the reliability of the analysis performed. 

 

𝑟𝑥𝑦 =  
𝑛 ∑ 𝑥𝑖 𝑦𝑖− ∑ 𝑥𝑖  ∑ 𝑦𝑖  

√𝑛 ∑ 𝑥2𝑖−(∑ 𝑥𝑖)2 √𝑛 ∑ 𝑦2𝑖−(∑ 𝑦𝑖)2   (2) 

 

To conduct further quantitative analysis, we adopted the least squares regression method. Using data 

obtained from relevant software development sets, we built a regression model relating the independent 

variable (feature volatility) to the dependent variable (bug rate). Rigorous statistical measures, including 

significance and validity tests, were implemented to ensure the reliability of the results. This regression 

analysis, shown in (3), provides an in-depth understanding of the patterns of interconnectedness between the 

variables, enabling the identification of critical factors that could potentially affect bug occurrence rates. 

Where a is the slope of the line and b is the y-intercept of the line with the y-axis shown in (4) and (5). This 

quantitative approach provides a solid foundation for a rigorous and thorough empirical evaluation of the 

impact of feature volatility on software quality in the development lifecycle. 

 

𝑦 = 𝑎𝑥 + 𝑏  (3)  

 

𝑎 =
∑(𝑥𝑖−�̅�)(𝑦𝑖 − �̅�)

∑(𝑥𝑖−�̅�)2  (4) 

 

𝑏 = �̅� − 𝑎�̅� (5) 

 

 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Relationship between features volatility and bug occurrence rate to … (Tiara Rahmania Hadiningrum) 

5385 

3. RESULTS AND DISCUSSION 

We applied the evaluation mechanism to open-source projects built using the Laravel framework. 

We use 5 open-source projects that represent 5 datasets projects because we wanted to see if this mechanism 

could be applied in object-oriented projects. This was done to evaluate whether the mechanism could be 

applied to object-oriented projects. In addition, the selection of open-source projects that represent different 

aspects of software development in an object-oriented environment also aims to ensure the validity and 

generality of the findings obtained from the evaluation of these mechanisms. 

 

3.1.  Result 

Based on the results of volatility measurement and bug analysis on five different datasets, there is a 

correlation between the level of change in application features and the occurrence of bugs. The higher the 

level of modifications or changes made to an application feature, the greater the probability of bugs or 

malfunctions in the feature. This finding suggests that app developers should pay close attention to the 

volatility aspect of features and conduct rigorous testing whenever making changes to app features. Thus, the 

occurrence of bugs can be minimized and the quality of the application can be maintained.  

In Table 3, it can be seen that the rate of change of application features in the RajaGula, Loak.In, 

ServiceTrip, SwapGoodFabric, and Nelayanku datasets are 2, 3, 2, 2, and 2, respectively. Meanwhile, the rate 

of occurrence of feature bugs in these datasets is 5, 8, 4, 9, and 7, respectively. From the data, it can be 

concluded that the higher the rate of change in application features, the greater the possibility of feature bugs. 

This is because changes to application features can cause changes to the program code, which can lead to 

errors or bugs. Through the execution of the least squares regression method on the corresponding graphs, we 

were able to construct a comprehensive calculation to determine the significant relationship between the 

number of bugs and feature volatility which can be seen in Figure 1.  

 

 

Table 3. Result of measurement 
Version Dataset Volatility Bug 

1 – 4 

RajaGula Dataset 2 5 

2 8 

4 16 

Loak.In Dataset 3 8 

3 10 

3 11 

ServiceTrip Dataset 2 4 

2 8 

4 16 

SwapGoodFabric Dataset 2 9 

2 11 

4 15 

Nelayanku Dataset 2 7 

3 12 

4 13 

 

 

As illustrated by the results on the RajaGula dataset, it was found that every one-unit increase in the 

number of bugs correlated with a two-unit increase in feature volatility. As such, this finding indicates a 

strong positive correlation between the two variables, reflecting that the more feature volatility there is, the 

higher the bug rate. After controlling for other variables such as code size or release time, additional analysis 

also confirmed the continued significance of the relationship between feature volatility and the number of 

bugs, strengthening the validity of the previous findings. This additional analysis provides additional support 

to the findings, confirming that the relationship between feature volatility and the number of bugs remains 

consistent and strong 

In exploring the implications of this finding, its relevance in the context of software development 

becomes clear. An increase in the number of bugs not only reflects a quantitative problem but also provides 

clues to the complexity and variety of possible impacts. For example, more and varied bugs may lead to 

increased complexity in software repair and management. Therefore, an in-depth understanding of the 

positive relationship between bug count and feature volatility can equip development teams with better 

insights, enabling a more proactive response to emerging issues. By basing these findings on concrete 

calculation results from the dataset, we can establish that bug volatility can be measured in more detail and 

estimated with more precision based on the number of bugs detected. This computer data is not only tangible 

evidence of the observed relationship but also an important tool in providing a solid foundation for more 

informed decision-making in software management and repair.  



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5381-5389 

5386 

From the results of the previous graph analysis, it can be seen that there is a significant relationship 

between the number of bugs and feature volatility. In line with these findings, we also calculated Pearson-

product moment correlation values to evaluate each of our datasets, to identify potential anomalous datasets. 

The high correlation, reaching a value of 0.85, is a strong indication that an increase in the number of bugs 

consistently correlates with an increase in bug volatility. While we were involved in this calculation to 

investigate each dataset, the findings provide additional confirmation of the close relationship between bug 

count and feature volatility, enriching our understanding of this dynamic in the context of software 

development. 

In Table 4, datasets with high correlation values have important relevance in bug management, 

especially regarding the relationship between bug count and feature volatility. When the correlation value 

reaches 0, indicating no significant relationship between the two variables, attention to the effect of bug 

volatility due to an increase in the number of bugs may not be needed. On the contrary, a high correlation 

value, as in this case, is a warning against the potential risk of higher bug volatility as the number of bugs 

increases. In this context, it is emphasized that datasets that show a correlation value of 0 can be considered 

anomalies. Thus, the Loak.In dataset, which shows the lowest correlation among the five datasets, can be 

identified as an anomaly or data that does not follow the general pattern of the relationship between the 

number of bugs and feature volatility. 

 

 

 
 

Figure 1. Feature volatility trends 

 

 

3.2.  Analysis and discussion 

The overall aim of this research is to explore the correlation between requirements volatility and bug 

occurrence rate in the context of software development. Our approach focuses on the volatility of functional 

requirements in the requirements aspect and the bug occurrence rate in the architecture aspect. The analysis 

method we chose was Pearson-product moment correlation to provide clarity and objectivity. This approach 

strengthens the understanding of how changes in functional requirements can affect the occurrence of bugs in 

the software structure, providing valuable insights for software development practitioners.  

Case studies on four datasets, RajaGula, ServiceTrip, SwapGoodFabric, and Nelayanku revealed a 

significant correlation between variables, suggesting that changes in functional requirements can affect 

system architecture, and vice versa. However, the Loak.In dataset showed a correlation coefficient of 0, 

indicating no correlation between requirements volatility and bug occurrence rate in the architecture. This 

confirms that changes in requirements in this dataset do not necessarily have a direct impact on system 

architecture. By incorporating the least squares regression method, the results reaffirmed the previous 

correlation findings, showing that the higher the level of feature volatility, the greater the number of bugs. 

However, it is important to note that the emergence of requirement changes that are considered anomalies 

does not always directly impact the architecture. The conclusion that can be drawn is that while the rate of 

change of application features can increase the likelihood of bugs, ideal software should be able to respond 

robustly to changing requirements, while still maintaining the stability of its architecture. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Relationship between features volatility and bug occurrence rate to … (Tiara Rahmania Hadiningrum) 

5387 

This analysis not only highlights the finding of a significant correlation between requirements 

volatility and bug occurrence rates but also emphasizes the importance of understanding the dynamics of 

requirements volatility in the context of software. This indicates that changing requirements can be a trigger 

for bug occurrence, which needs to be carefully considered in the software development lifecycle. While 

requirements volatility can contribute to an increase in the number of bugs, responses to requirements 

changes that are considered anomalous do not necessarily create a similar impact on the architecture. The 

practical implications of these findings can be directed towards the development of a more careful risk 

management strategy, where requirements changes can be identified, assessed and managed proportionally. 

As such, project management can be more effective in mitigating bug risks without excessively sacrificing 

architectural stability. 

Previous research emphasizes that changes in architecture are a response to volatility features, which 

implies that the higher the level of volatility, the greater the likelihood of changes in architecture. However, 

recent research has found direct evidence that the more volatility there is, the higher the rate of bugs in 

software. These findings change the previous paradigm and highlight the strong correlation between feature 

volatility and bug rates, highlighting the importance of understanding and managing volatility effectively in 

software development. Overall, the findings provide a basis for a more holistic approach to software project 

management, emphasizing the complexity of the dynamics between requirements volatility, bug occurrence 

rate, and architectural stability. A deeper understanding of these relationships can make a positive 

contribution towards the development of software that is adaptive and responsive to inevitable environmental 

changes. 

 

 

Table 4. Result of correlation analysis 
Dataset Re Volatility (Xi) Bug (Yi) Xi2 Yi2 XY 

RajaGula Dataset 2 5 4 25 100 

2 8 4 64 256 

4 16 16 256 4.096 

Sum 8 29 24 345 4.452 

 Correlation Coefficient 0.96 

Loak.In Dataset 3 8 9 64 576 

3 10 9 100 900 

3 11 9 121 1.089 

Sum 9 29 27 285 2.565 

 Correlation Coefficient 0 

   

ServiceTrip Dataset 2 4 4 16 64 

2 8 4 64 256 

4 16 16 256 4.096 

Sum 8 28 24 336 4.416 

 Correlation Coefficient 0.94 

SwapGoodFabric Dataset 2 9 4 81 324 

2 11 4 121 484 

4 15 16 225 3.600 

Sum 8 35 24 427 4.408 

 Correlation Coefficient 0.94 

Nelayanku Dataset 2 7 4 49 196 

3 12 9 144 1.296 

4 13 16 169 2.074 

Sum 9 32 29 362 3.566 

 Correlation Coefficient 0.49 

 

 

4. CONCLUSION 

This study highlights the significant relationship between feature volatility and the number of bugs 

in software applications. A thorough analysis shows that the higher the rate of change in application features, 

the greater the likelihood of bugs appearing. This finding suggests that feature volatility can be considered as 

a factor comparable to the bug occurrence rate in the software development cycle. In addition, from this 

study, it can be concluded that the coefficient values are correlated, as in the RajaGula Dataset with a value 

of 0.96, ServiceTrip with a value of 0.94, SwapGoodFabric with a value of 0.94, and Nelayanku 0.49. 

However, the results are slightly different in the case of volatility anomalies, resulting in uncorrelated 

coefficient values as in the Loak.In Dataset. The implications of this conclusion are significant for software 

developers and organizations looking to improve the quality and stability of their applications. By 

understanding the correlation between feature volatility and the number of bugs, developers can take 

preventative and proactive measures, such as improving testing on frequently changing features or 

strengthening change management strategies. This can help reduce the negative impact of bugs on user 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5381-5389 

5388 

experience and improve overall application reliability. In facing the challenges of software evolution, this 

research provides a strong foundation for software development practices that are more adaptive and 

responsive to change. By paying attention to and managing feature volatility, developers can optimize their 

efforts to design applications that are not only innovative but also stable and reliable over time. In addition, 

this research can also improve software quality by enabling more detailed measurements of development 

planning, thereby strengthening effectiveness and efficiency in dealing with constantly changing dynamics in 

the software development environment. 

 

 

REFERENCES 
[1] A. M. Ferrari, L. Volpi, D. Settembre-Blundo, and F. E. García-Muiña, “Dynamic life cycle assessment (LCA) integrating life 

cycle inventory (LCI) and Enterprise resource planning (ERP) in an industry 4.0 environment,” Journal of Cleaner Production, 

vol. 286, p. 125314, Mar. 2021, doi: 10.1016/j.jclepro.2020.125314. 

[2] D. Budgen and P. Brereton, “Short communication: Evolution of secondary studies in software engineering,” Information and 

Software Technology, vol. 145, p. 106840, May 2022, doi: 10.1016/j.infsof.2022.106840. 

[3] F. Gurcan, G. G. M. Dalveren, N. E. Cagiltay, D. Roman, and A. Soylu, “Evolution of software testing strategies and trends: 

semantic content analysis of software research corpus of the last 40 years,” IEEE Access, vol. 10, pp. 106093–106109, 2022, doi: 

10.1109/ACCESS.2022.3211949. 

[4] K. Bennett, “Software evolution: past, present and future,” Information and Software Technology, vol. 38, no. 11, pp. 673–680, 

Nov. 1996, doi: 10.1016/0950-5849(96)01116-0. 

[5] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Studying software evolution using topic models,” Science of Computer 

Programming, vol. 80, pp. 457–479, Feb. 2014, doi: 10.1016/j.scico.2012.08.003. 

[6] A. Almogahed, H. Mahdin, M. Omar, N. H. Zakaria, G. Muhammad, and Z. Ali, “Optimized refactoring mechanisms to improve 

quality characteristics in object-oriented systems,” IEEE Access, vol. 11, pp. 99143–99158, 2023, doi: 

10.1109/ACCESS.2023.3313186. 

[7] F. N. Colakoglu, A. Yazici, and A. Mishra, “Software product quality metrics: a systematic mapping study,” IEEE Access, vol. 9, 

pp. 44647–44670, 2021, doi: 10.1109/ACCESS.2021.3054730. 

[8] R. R. Althar and D. Samanta, “The realist approach for evaluation of computational intelligence in software engineering,” 

Innovations in Systems and Software Engineering, vol. 17, no. 1, pp. 17–27, Mar. 2021, doi: 10.1007/s11334-020-00383-2. 

[9] T. Mens, S. Demeyer, M. Wermelinger, R. Hirschfeld, S. Ducasse, and M. Jazayeri, “Challenges in software evolution,” in 

International Workshop on Principles of Software Evolution (IWPSE), 2005, vol. 2005, pp. 13–22, doi: 10.1109/IWPSE.2005.7. 

[10] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of software in automated production systems: Challenges and 

research directions,” Journal of Systems and Software, vol. 110, pp. 54–84, Dec. 2015, doi: 10.1016/j.jss.2015.08.026. 

[11] A. Salahirad, G. Gay, and E. Mohammadi, “Mapping the structure and evolution of software testing research over the past three  

decades,” Journal of Systems and Software, vol. 195, Art. no. 111518, Jan. 2023, doi: 10.1016/j.jss.2022.111518. 

[12] G. Islam and T. Storer, “A case study of agile software development for safety-Critical systems projects,” Reliability Engineering 

& System Safety, vol. 200, p. 106954, Aug. 2020, doi: 10.1016/j.ress.2020.106954. 

[13] E. Siakas, H. Rahanu, E. Georgiadou, and K. Siakas, “Requirements volatility in multicultural situational contexts,” in 

Communications in Computer and Information Science, vol. 1646 CCIS, 2022, pp. 633–655, doi: 10.1007/978-3-031-15559-

8_45. 

[14] S. M. A. Shah, D. Sundmark, B. Lindström, and S. F. Andler, “Robustness testing of embedded software systems: An industrial 

interview study,” IEEE Access, vol. 4, pp. 1859–1871, 2016, doi: 10.1109/ACCESS.2016.2544951. 

[15] N. Luo and L. Zhang, “Chaos driven development for software robustness enhancement,” in Proceedings - 2022 9th International 

Conference on Dependable Systems and Their Applications, DSA 2022, Aug. 2022, pp. 1029–1034, doi: 

10.1109/DSA56465.2022.00154. 

[16] F.-C. Chang and H.-C. Huang, “A design approach for software robustness,” in 2021 IEEE 3rd Global Conference on Life 

Sciences and Technologies (LifeTech), Mar. 2021, pp. 428–431, doi: 10.1109/LifeTech52111.2021.9391977. 

[17] M. Salama, R. Bahsoon, and P. Lago, “Stability in software engineering: survey of the state-of-the-art and research directions,” 

IEEE Transactions on Software Engineering, vol. 47, no. 7, pp. 1468–1510, Jul. 2021, doi: 10.1109/TSE.2019.2925616. 

[18] A. S. Nyamawe, H. Liu, N. Niu, Q. Umer, and Z. Niu, “Feature requests-based recommendation of software refactorings,” 

Empirical Software Engineering, vol. 25, no. 5, pp. 4315–4347, Sep. 2020, doi: 10.1007/s10664-020-09871-2. 

[19] D. Kavitha and A. Sheshasaayee, “Requirements volatility in software maintenance,” in Lecture Notes of the Institute for 

Computer Sciences, Social-Informatics and Telecommunications Engineering, vol. 86, 2012, pp. 142–150, doi: 10.1007/978-3-

642-27317-9_15. 

[20] F. Handani and S. Rochimah, “Relationship between features volatility and software architecture design stability in object-

oriented software: Preliminary analysis,” in 2015 International Conference on Information Technology Systems and Innovation 

(ICITSI), Nov. 2015, pp. 1–5, doi: 10.1109/ICITSI.2015.7437736. 

[21] E. Cibir and T. E. Ayyildiz, “An empirical study on software test effort estimation for defense projects,” IEEE Access, vol. 10,  

pp. 48082–48087, 2022, doi: 10.1109/ACCESS.2022.3172326. 

[22] G. Taentzer, M. Goedicke, B. Paech, K. Schneider, A. Schürr, and B. Vogel-Heuser, “The nature of software evolution,” in 

Managed Software Evolution, Cham: Springer International Publishing, 2019, pp. 9–20, doi: 10.1007/978-3-030-13499-0_2. 

[23] N. Almusharraf and H. Alotaibi, “An error-analysis study from an EFL writing context: Human and automated essay scoring 

approaches,” Technology, Knowledge and Learning, vol. 28, no. 3, pp. 1015–1031, Sep. 2023, doi: 10.1007/s10758-022-09592-z. 

[24] H. Mahfoodh and Q. Obediat, “Software risk estimation through bug reports analysis and bug-fix time predictions,” in 2020 

International Conference on Innovation and Intelligence for Informatics, Computing and Technologies, 3ICT 2020, Dec. 2020, 

pp. 1–6, doi: 10.1109/3ICT51146.2020.9312003. 

[25] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault incidence using software change history,” IEEE Transactions 

on Software Engineering, vol. 26, no. 7, pp. 653–661, Jul. 2000, doi: 10.1109/32.859533. 

[26] G. Hubert, S. Aubry, and J. A. Clemente, “Impact of ground-level enhancement (GLE) solar events on soft error rate for 

avionics,” IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 5, pp. 3674–3984, Oct. 2020, doi: 

10.1109/TAES.2020.2977792. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Relationship between features volatility and bug occurrence rate to … (Tiara Rahmania Hadiningrum) 

5389 

[27] C. Kin Keong, K. Tieng Wei, A. A. Abd. Ghani, and K. Y. Sharif, “Toward using software metrics as indicator to measure power 

consumption of mobile application: A case study,” in 2015 9th Malaysian Software Engineering Conference (MySEC), Dec. 

2015, pp. 172–177, doi: 10.1109/MySEC.2015.7475216. 

[28] E. Ismail, N. Utelieva, A. Balmaganbetova, and S. Tursynbayeva, “The choice of measures reliability of the software for space 

applications,” in 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Jun. 2020, 

pp. 1–5, doi: 10.1109/ICECCE49384.2020.9179411. 

[29] Q. U. Ain, T. Rana, and Aamana, “A study on identifying, categorizing and reporting usability bugs and challenges,” in 2023 

International Conference on Communication Technologies (ComTech), Mar. 2023, pp. 53–68, doi: 

10.1109/ComTech57708.2023.10165169. 

[30] J. Wang, T. Baker, Y. Zhou, A. I. Awad, B. Wang, and Y. Zhu, “Automatic mapping of configuration options in software using 

static analysis,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 10, pp. 10044–10055, Nov. 

2022, doi: 10.1016/j.jksuci.2022.10.004. 

[31] M. Pilliang, Munawar, M. A. Hadi, G. Firmansyah, and B. Tjahjono, “Predicting risk matrix in software development projects 

using BERT and K-Means,” in 2022 9th International Conference on Electrical Engineering, Computer Science and Informatics 

(EECSI), Oct. 2022, pp. 137–142, doi: 10.23919/EECSI56542.2022.9946637. 

[32] J. Ruohonen, S. Hyrynsalmi, and V. Leppänen, “Software evolution and time series volatility: an empirical exploration,” in 

Proceedings of the 14th International Workshop on Principles of Software Evolution, Aug. 2015, pp. 56–65, doi: 

10.1145/2804360.2804367. 

[33] Y. Zhao, Y. Hu, and J. Gong, “Research on international standardization of software quality and software testing,” in 2021 

IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall), Oct. 2021, pp. 56–62, doi: 

10.1109/ICISFall51598.2021.9627426. 

[34] A. Almogahed, M. Omar, N. H. Zakaria, G. Muhammad, and S. A. AlQahtani, “Revisiting scenarios of using refactoring 

techniques to improve software systems quality,” IEEE Access, vol. 11, pp. 28800–28819, 2023, doi: 

10.1109/ACCESS.2022.3218007. 

[35] K. Juhnke, M. Tichy, and F. Houdek, “Challenges concerning test case specifications in automotive software testing: assessment 

of frequency and criticality,” Software Quality Journal, vol. 29, no. 1, pp. 39–100, Mar. 2021, doi: 10.1007/s11219-020-09523-0. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Tiara Rahmania Hadiningrum     successfully earned a bachelor's degree (S.Kom) 
in information systems from Telkom University in 2023. She is currently studying for a 

master's degree at the Department of Information Engineering, Institut Teknologi Sepuluh 

Nopember. Her research interests include aspects of software quality, traceability, and testing. 

Further information or contact can be obtained via email at 6025231079@student.its.ac.id. 

  

 

Bella Dwi Mardiana     successfully earned a bachelor's degree (S.Kom) in 

informatics from Universitas Muhammadiyah Malang in 2023. She is currently studying  
for a master's degree at the Department of Information Engineering, Institut Teknologi 

Sepuluh Nopember, Surabaya. Her research interests include aspects of software development, 

testing, and traceability. Further information or contact can be obtained via email at 

6025231032@student.its.ac.id. 

  

 

Siti Rochimah     successfully earned a doctoral degree (PhD) in software 

engineering from Universiti Teknologi Malaysia in 2010. Currently, she serves as the head of 
the Software Engineering laboratory at the Department of Informatics Engineering, Institut 

Teknologi Sepuluh Nopember. His work involves writing more than 80 articles related to 

software engineering. Her research interests include aspects of software quality, traceability, 

and testing. Further information or contact can be obtained via email at siti@its.ac.id. 

 

 

https://orcid.org/0009-0007-1562-6646
https://scholar.google.com/citations?hl=id&user=KatZk0kAAAAJ
https://www.webofscience.com/wos/author/record/KPY-7140-2024
https://orcid.org/0009-0005-3704-3893
https://scholar.google.com/citations?hl=id&user=WkVbutsAAAAJ&view_op=list_works&gmla=AILGF5XePGBjp_IfmRWSJ4-mlrleUBE4PHWfz1oDTIQZMAQb1avEx_vfm1xbWoBh0BaVe-BqFvR8dxziep0FqzeU
https://www.webofscience.com/wos/author/record/KPY-7129-2024
https://orcid.org/0000-0002-5603-749X
https://scholar.google.co.id/citations?user=ZihT82EAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=24476646200
https://www.webofscience.com/wos/author/record/X-3638-2019

