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 Many real-world optimization problems can be solved by various algorithms 

that are not fast in convergence or gain enough accuracy. Meta-heuristic 

algorithms are used to solve optimization problems and have achieved  
their effectiveness in solving several real-world optimization problems. 

Meta-heuristic algorithms try to find the best solution out of all available 

solutions in the possible shortest time. A good meta-heuristic algorithm is 

characterized by its accuracy, convergence speed, and ability to solve high 
dimensions’ problems. Giza Pyramids construction (GPC) has recently been 

introduced as a physics-inspired optimization method. This paper suggests 

an enhanced Giza Pyramids construction (EGPC) by adding a new parameter 

based on the step length of each individual and iteratively revises the 
individual’ position. The EGPC algorithm is suggested for improving the 

GPC exploitation and exploration. Experiments were performed on 23 

benchmark functions and four IEEE CEC 2019 benchmarks to test the 

performance of the proposed EGPC algorithm. The experimental results 

show the high competitiveness of the EGPC algorithm compared to the basic 

GPC algorithm and another four well known optimizers in terms of 

improved exploration, exploitation, convergence’ rate, and the avoidance of 

local optima. 
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1. INTRODUCTION 

Many problems in the real world are classified as optimization problems, also many difficult 

problems in technology and science can be expressed as optimization problems. These problems can help you 

save money, risk and time while also improving efficiency, quality, and profit. Many optimization problems 

are difficult to solve so different optimization algorithms are being developed to deal with these difficult 

problems. Approximation algorithms are presented as novel techniques to solve these problems due to the 

absence of good accurate optimization methods [1], [2]. There are two types of approximate algorithms: 

heuristic and Meta-heuristic algorithms. Because Heuristic algorithms are usually designed and used for 

specific problems, it is less used. Meta-heuristic algorithms have lately been widely employed to process the 

most complex real-world optimization [2]. Meta-heuristic algorithms are stronger, more flexible, and easier 

to design and implement. They are faster to solve problems and solve bigger problems.  

The meta-heuristics are classified as optimization in computer science and applied mathematics. It 

can deal with algorithms and complicated computation theory. There are many areas that can be covered by 

meta-heuristics such as mathematical programming, artificial intelligence, computational intelligence, 

operations research, and soft computing. In real-world meta-heuristics are very effective in solving 

https://creativecommons.org/licenses/by-sa/4.0/
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complicated issues and have also taken an important role in lowering costs, time and expanding widely in 

different fields [3]. 

Meta-heuristics can be classified into three categories: evolutionary-based, trajectory-based, nature-

inspired methods, and recently ancient-inspired. Some techniques of algorithms can be classified into various 

categories. Evolutionary-based is based on the concept of competition and the evolution of the population. It 

simulates evolution of species. Usually, populations are generated at random, and each population is a 

solution. The appropriate solution is selected by an objective function. The population selected has better 

suitability with a higher probability, then is reproduced by different operators such as mutation and crossover 

to generate a new generation of children. Finally, the parents and children are decided to use. The popular 

Examples of it are differential evolution (DE) [4], memetic algorithm (MA) [5], genetic algorithm (GA) [6], 

and harmony search (HS) [7]. Trajectory-based are techniques that work on a solution. Usually, their 

characteristics are dictated by the nature of the problem. They make one solution better. These are repeated 

processes through which they go from one solution to another. It has proven to be effective in different 

problems. popular examples of it are tabu search (TS) [8], simulated annealing (SA) [9], guided local search 

(GLS) [10], iterated local search (ILS) [11]. Nature-inspired are techniques which follow nature rules which 

are understandable and simple. Most species behave collectively as a searcher in the issue space, leading 

them to the target and the solution [12]. It includes bio-inspired such as crow search algorithm (CSA) [13], 

grey wolf optimizer (GWO), [14] and ant lion optimizer (ALO) [15], swarm-based such as particle swarm 

optimization (PSO) [16], artificial bee colony (ABC) [17], and ant colony optimization (ACO) [18], Human-

based such as imperialist competitive algorithm (ICA) [19], cultural algorithm (CA) [20], and recently 

published political optimizer (PO) [21], physics/chemistry-based such as chemical reaction optimization 

(CRO) [22], black hole (BH) [23], multi-verse optimizer (MVO) [24], and plant-based techniques such as 

invasive weed optimization (IWO) [25], and artificial root foraging algorithm (ARFA) [26]. The technique of 

Meta-heuristic algorithms to search and generate optimal solutions for an optimization problem depends on 

two major concepts: exploration and exploitation [27]. The meta-heuristic algorithm works well when it 

strikes a balance between exploitation and exploration. At the generation stage they use exploration to create 

new solutions and decrease exploration as the optimization process progresses, the exploitation process 

progressively rises while the exploration process is lowered [2]. 

The Giza Pyramids construction (GPC) algorithm, which was presented in [1], is the first meta-

heuristic algorithm with an ancient feel. The Giza Pyramids complex consists of three huge pyramids that 

were constructed in ancient Egypt during the fourth dynasty [28]. The Khufu Pyramid, sometimes referred to 

as the seven wonders, is the biggest pyramid. Menkaure and Khafre are the names of the other two pyramids 

[29]. The researchers demonstrated how the building methods for pyramids have evolved over time and are 

now distinct from one another. This work proposes an enhanced Giza Pyramids construction (EGPC) that 

adds a new parameter that depends on the step length of each person while rewriting the individual position, 

hence improving the optimization efficiency and accuracy of GPC. The results of experiments show that the 

EGPC algorithm compared to the original GPC algorithm and other state-of-the-art algorithms has better 

exploitation and exploration capability compared to other algorithms. 

The rest of this paper structure is as follows: section 2 explores the materials and methods. Section 3 

presents experimental results and discussion. Finally, section 4 represents conclusions. 

 

 

2. MATERIALS AND METHODS 

2.1.  Giza Pyramids construction 

2.1.1. The construction method 

The Pyramids of Giza are the largest and most famous pyramid construction in the world. Regarding 

the building techniques of the pyramid, numerous theories have been put forth, but none of them have gained 

complete acceptance. There is a common belief that these pyramids’ stones had been removed from mines, 

moved, and then assembled. Ramps have been installed at higher elevations by workers. The Greeks believed 

the unfair usage of slaves to build the pyramids, but recent studies suggest that the builders were highly 

talented. Managing the labor force was the main issue encountered throughout the construction of the 

pyramids. Notwithstanding the scarcity of hardware stores, the quantity of stone blocks needed in 

construction, and the very short construction period, pyramid construction has been optimized. It took ten to 

twenty years to build. A maximum of forty thousand persons were involved in the construction of the 

pyramids, with an average of fourteen thousand. Two million stones were used in the construction of the 

greatest pyramid. Slaves, masons, coolies, carpenters, metalworkers, and foremen were among the laborers 

[1]. 
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2.1.2. The motivation 

The workmen, who included slaves, masons, metalworkers, carpenters, and coolies, were supervised 

by a skilled agent known as Pharaoh's special agent, who served as a foreman. With the highest rank in the 

group, the Pharaoh's agent oversees the laborers while toting a stone block. Every employee at the 

construction site has a rank or position. Because there is competition for sublime rank, employees perform 

better in order to be rewarded with sublime rank. Every employee can also acquire new knowledge and 

abilities as a source of further motivation. Additionally, the laborers become exhausted during the stone 

block transportation stage and must take a short break, failing which they will be replaced by invigorated and 

youthful laborers.  

Stone blocks are gathered daily from the surrounding area of the construction site and transported to 

the pyramid by workers like miners. The pyramid was constructed using ramps. They have to go the distance 

from where the stone block is installed in the pyramid to where it is located. The workers' ability determines 

the distance traveled. If there are sufficient laborers available, more stone blocks are gathered during the 

workday for the pyramid's installation location. The stone block moves in response to changes in initial 

velocity, friction force, and ramp gradient [1]. 

 

2.2.  The proposed algorithm 

The pseudocode of the EGPC algorithm is: 

 

Algorithm 1. EGPC algorithm 
step 1: 

Create the starting population (population size) as an array of stone blocks or 

individuals; 

Create cost and location of individual or stone block;  

Dictate the best individual; 

  step 2: for first iteration to max iteration do 

    step3: for i=1: n do (every n stone blocks or individuals) 

               Determine the value of stone block's displacement in (1); 

               Determine the value of individual movement in (2); 

               Examine new location in (3); 

               Investigate the possibility of substituting individual in (4); 

               Update location of each individual  

               Calculate a new parameter, each individual' step length determines this 

parameter. 

               Calculate the new cost of the new location; 

              if new cost < individual cost then 

                  Set new cost as individual cost; 

              end if  

    end step 3 

          sort solutions to the following iteration; 

  end step 2 

end step 1 

 

The algorithm describes the EGPC algorithm which is used (1) to determine a stone block's displacement on 

the ramp: 

 

𝑑 =
𝑣0

2𝑔(𝑠𝑖𝑛𝜃+𝜇𝑘𝑐𝑜𝑠𝜃)
 (1) 

 

where 𝜃 is the angle the ramp makes with the horizon. 𝑑 is the amount of stone block's displacement. g is the 

earth's gravity which is 9.8. 𝑣0 is the stone block's starting velocity and is calculated by a uniformly 

distributed random number between 0 and 1 in every iteration. 𝜇𝑘  is the kinetic friction coefficient equal to 

𝑟𝑎𝑛𝑑[𝑚𝑖𝑛𝜇𝑘 ,𝑚𝑎𝑥𝜇𝑘] the min 𝜇𝑘  and the max 𝜇𝑘  are pre-decided, and every iteration assumes between these 

two values random number. The new location of the worker pushing the stone block is found from (2): 

 

𝑥 =
𝑣0
2

2𝑔 𝑠𝑖𝑛𝜃
 (2) 

 

where x is the worker movement value. A new location can be calculated from the result of the two (1) and 

(2). So, from the algorithm in (3), to get a new location (a new solution). 

 

P⃗⃗ = (Pi
⃗⃗ + d) × x ϵi⃗⃗  ⃗ (3) 
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where Pi
⃗⃗  is the current location, and ϵi⃗⃗  is a random vector which uses the Levy, Normal, or Uniform 

distribution. The primary solutions of the problem are ∅= (∅1, ∅2, …, ∅n), and the generated solutions using 

(3) are 𝜔 =( 𝜔 1, 𝜔 2, …, 𝜔 n), with a fifty percent probability. We will have new solutions since some of the 

created solutions will replace some of the original ones, Z =( 𝜉1, ξ2, …, ξn), equation (4) is used for 

substitution. 

 

𝜉𝑘 = {
𝜔𝑘  , 𝑖𝑓 𝑟𝑎𝑛𝑑[0,1] ≤ 0.5      

∅𝑘  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
 (4) 

 

To improve the basic GPC performance, the EGPC algorithm is suggested. A new parameter is 

added to accomplish the enhancement. Each individual's step length determines this parameter. During the 

exploitation phase, the search space's upper, lower, and parameter Mu are used to adjust each individual for 

iterations and improve the ratio of exploration to exploitation of the search’ space. 

 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

Every experiment was carried out on a 64 bit Windows 10 system that had an Intel (R) Core (TM) i7 

processor, 2.4 GHz CPU, 16 GB RAM, and MATLAB R2018a. For every method, the maximum iterations’ 

number (Max-Iteration) was selected to be 1000. On each benchmark function, each algorithm was executed 

30 times independently, and the average of the most optimal solution was given. Table 1 displays the 

remaining variables. 

 

3.1.  Benchmark functions description and parameter settings 

To test the effectiveness of the suggested EGPC algorithm, 23 benchmark functions were used in 

experiments, these functions were classified into three groups: 

− (F1 - F7) Unimodal functions, which have a single global optimum and are capable of assessing an 

algorithm's exploitation potential and convergence. 

− (F8 - F13) Multimodal functions, which can assess an algorithm's capacity for exploration and avoidance 

of local optima and have a large number of local optima. 

− (F14 - F23) Fixed dimensional multimodal functions, which are useful for evaluating how well an 

algorithm finds a global optimum. These functions' specifics are provided in [30]. 

 

 

Table 1. Setting of parameters for algorithms 
Algorithm Setting of parameters 

PSO Max-inertia weight of 0.9, and min-weight of 0.2 

cognitive coeff. (c1) equals cognitive coeff. (c2)=2 

WOA 𝑎  decreases in linear from 2 to 0 

b=1, 𝑎 2 decreases in linear from -1 to -2 
GWO 𝑎  decreases in linear from 2 to 0 
ALO a constant called 𝑊 has ranges between 2 and 6 depending on the iteration. 
GPC the earth's gravity =9.8, ramp's angle =14, initial velocity =rand(0,1) 

Substitution probability=0.9. max- friction= min-friction=-100 

EGPC the earth's gravity =9.8, ramp's angle =14, initial velocity =rand(0,1) 

Substitution probability=0.9. max-friction= min-friction=-100 

 

 

3.2.  Results and discussion  

 The original GPC algorithm and four recent popular algorithms: ALO [15], GWO [14], WOA [31], 

and PSO [16] are used in a comparison with the proposed EGPC algorithm. Table 2 compares the 

performance of these four algorithms with the proposed algorithm on 23 benchmark functions and four IEEE 

CEC 2019 benchmarks [32]. It demonstrates the high competitiveness of the EGPC algorithm in comparison 

with ALO, GWO, WOA, PSO, and the original GPC algorithm. It achieves exact optimum results for 

functions F9 and F11 and the best optimal solutions for functions F5, F7, F8, F10, F14, F15, and F18 in 

terms of average. In the case of function F16, F17, F21, F22, CEC1, and CEC3, EGPC algorithm achieves 

the 2-nd best average optimal’ value. The following results demonstrate that the EGPC algorithm has the best 

exploitation and exploration capabilities. comparing with other algorithms. Figure 1 demonstrates a 2-Dview 

of some benchmark functions. The proposed EGPC achieves a higher convergence’ rate from the first 

iterations’ steps for the functions F5, F7, F10, and F18 and CEC3 as shown in Figure 2. 
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Table 2. The results of five algorithms and proposed algorithm on benchmark functions and IEEE CEC 2019 

benchmark results 
Fn GPC EGPC ALO GWO WOA PSO 

F1 1.25E-26 5.58E-09 2.40E-98 3.04E-142 3.04E-142 7.30E-35 

F2 4.38E-17 6.27E-15 0.4641 3.08E-56 1.08E-101 6.73E-20 

F3 6.95E-33 6.30E-31 1.08E-04 6.12E-46 56.8676 4.59E-11 

F4 3.63E-18 2.26E-15 1.21E-04 8.58E-31 1.9959 8.41E-08 

F5 7.6978 0.5445 35.5666 7.1541 6.7318 3.8044 

F6 1.2004 0.0109 3.47E-09 1.22E-06 0.001 1.36E-32 

F7 7.69E-05 3.32E-05 0.0203 5.59E-04 9.56E-04 0.0029 

F8 -2.22E+03 -9.86E+03 -2.58E+03 -2.71E+03 -2.96E+03 -2.28E+03 

F9 0 0 25.4709 0.1992 0 6.5667 

F10 8.88E-16 8.88E-16 3.29E-01 4.44E-15 3.73E-15 7.28E-15 

F11 0 0 0.1758 0.0128 0.0823 0.2228 

F12 2.89E-01 4.60E-03 2.10E+00 6.97E-07 1.70E-02 3.52E-30 

F13 7.74E-01 2.36E-02 4.20E-03 2.11E-06 2.47E-02 6.40E-32 

F14 12.6705 1.0109 1.7924 2.5845 4.5375 3.9597 

F15 0.0021 5.59E-04 0.0048 0.0043 7.06E-04 7.96E-04 

F16 -0.9274 -1.023 -1.0316 -1.0316 -1.0316 -1.0316 

F17 1.2154 0.4043 0.3979 0.3979 0.3979 0.3979 

F18 23.09 3 3 3 3.0001 3 

F19 -3.1681 -3.4066 -3.8628 -3.8599 -3.8592 -3.8628 

F20 -1.2924 -2.5921 -3.2506 -3.2382 -3.2406 -3.2269 

F21 -1.2131 -9.4601 -5.65 -10.1526 -8.1124 -7.1546 

F22 -1.3064 -9.9296 -8.6899 -10.4024 -8.0544 -9.3481 

F23 -2.6332 -9.9163 -6.7839 -10.5354 -6.7977 -10.5364 

CEC1 6.1627e+04 7.8246e+04 1.3120e+10 3.1639e+08 6.2856e+10 1.8340e+12 

CEC2 17.8701 17.8326 17.3456 17.3437 17.3534 1.4204e+04 

CEC3 12.7026 12.7025 12.7024 12.7024 12.7024 12.7024 

CEC4 7.1647e+03 1.4316e+04 30.4459 276.6082 478.6463 18.9045 

 

 

 
 

Figure 1. 2-D view of some benchmark functions 
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(a) (b) 

  

  
(c) (d) 

  

 
(e) 

 

Figure 2. Convergence curves of algorithms for some benchmark functions and IEEE CEC 2019 benchmarks 

 

 

For more validation to our results, we used the non-parametric Wilcoxon rank-sum test (WRS) [33] 

to compare the EGPC algorithm with other optimization algorithms. Table 3 displays the pairwise p-values of 

this test, with “NaN” indicating “Not a Number”. Symbols “∨”, “∧”, and “≈” denote significant inferiority, 

superiority, or similarity of EGPC to other algorithms. Results in Table 3 reveal EGPC's superiority over 

GPC in 16 functions, inferiority in 3 functions, and similarity in 5 functions. EGPC also outperforms PSO in 

15 functions, is inferior in 11 functions, and similar in 1 function. Additionally, EGPC surpasses WOA in  

13 functions, lags behind in 9 functions, and matches in 5 functions. Compared to ALO and GWO, EGPC 

excels in 12 functions but falls short in 10 and 12 functions respectively while being similar in others. These 

p-values demonstrate EGPC's significant performance over other algorithms. 
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Table 3. Pairwise WRS p-values of EGPC vs the used algorithms 
Fn GPC ALO GWO WOA PSO 

F1 1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

4.27E-01 

≈ 

1.83E-04 

˄ 

F2 1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

8.90E-02 

≈ 

1.83E-04 

˄ 

F3 1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

F4 1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

F5 1.83E-04 

˄ 

2.83E-03 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

2.20E-03 

˄ 

F6 1.83E-04 

˄ 

1.83E-04 

˅ 

2.83E-03 

˅ 

3.76E-02 

˄ 

1.83E-04 

˅ 

F7 5.21E-01 

≈ 

1.83E-04 

˄ 

4.40E-04 

˄ 

1.01E-03 

˄ 

1.83E-04 

˄ 

F8 1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

F9 NaN 6.39E-05 

˄ 

5.97E-03 

˄ 

1.49E-02 

˄ 

6.39E-05 

˄ 

F10 NaN 6.39E-05 

˄ 

3.29E-05 

˄ 

4.04E-05 

˄ 

6.39E-05 

˄ 

F11 NaN 6.39E-05 

˄ 

7.51E-04 

˄ 

5.97E-03 

˄ 

6.39E-05 

˄ 

F12 1.83E-04 

˄ 

1.40E-01 

≈ 

3.61E-03 

˅ 

1.01E-03 

˄ 

1.83E-04 

˅ 

F13 1.83E-04 

˄ 

2.57E-02 

˅ 

6.40E-02 

≈ 

1.83E-04 

˄ 

1.83E-04 

˅ 

F14 1.01E-03 

˄ 

1.40E-01 

≈ 

1.83E-04 

˄ 

7.91E-01 

≈ 

2.56E-02 

˄ 

F15 2.12E-01 

≈ 

1.71E-03 

˄ 

4.73E-01 

≈ 

2.11E-02 

˅ 

5.80E-03 

˄ 

F16 1.40E-02 

˅ 

1.83E-04 

˅ 

1.83E-04 

˅ 

1.83E-04 

˅ 

8.74E-05 

˅ 

F17 2.83E-03 

˅ 

1.83E-04 

˅ 

1.83E-04 

˅ 

1.83E-04 

˅ 

6.39E-05 

˅ 

F18 2.20E-03 

˄ 

1.83E-04 

˅ 

3.76E-02 

˅ 

3.76E-02 

˅ 

1.74E-04 

˅ 

F19 6.23E-01 

≈ 

1.83E-04 

˅ 

1.83E-04 

˅ 

1.83E-04 

˅ 

1.29E-04 

˅ 

F20 1.01E-03 

˄ 

1.83E-04 

˅ 

1.83E-04 

˅ 

1.83E-04 

˅ 

1.41E-04 

˅ 

F21 1.83E-04 

˄ 

1.40E-01 

≈ 

3.12E-02 

˅ 

7.28E-03 

˄ 

4.71E-01 

≈ 

F22 1.83E-04 

˄ 

1.40E-01 

≈ 

1.62E-01 

≈ 

3.45E-01 

≈ 

2.27E-03 

˅ 

F23 1.83E-04 

˄ 

1.40E-01 

≈ 

1.73E-02 

˅ 

3.07E-01 

≈ 

2.44E-02 

˅ 

CEC1 1.83E-04 

˅ 

1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

1.83E-04 

˄ 

CEC2 3.85E-01 

≈ 

1.83E-04 

˅ 

1.83E-04 

˅ 

1.83E-04 

˅ 

1.83E-04 

˄ 

CEC3 3.85E-01 

≈ 

1.83E-04 

˅ 

1.83E-04 

˅ 

1.83E-04 

˅ 

1.83E-04 

˄ 

CEC4 1.01E-03 

˄ 

1.46E-04 

˅ 

1.83E-04 

˅ 

1.83E-04 

˅ 

6.39E-05 

˅ 

 

 

4. CONCLUSION 

The GPC algorithm has been improved in this paper using the EGPC algorithm, which adds a new 

parameter based on the step length of each individual and iteratively revises the individual’ position to 

improve the fundamental GPC performance. To better balance the processes of exploration and exploitation, 

this new parameter, upper, and lower bounds of search’ space were used. The EGPC algorithm's performance 

was compared to four recent popular optimizers and tested using 23 benchmark functions and four IEEE 

CEC 2019 benchmarks. The results demonstrated that the EGPC algorithm has higher exploitation 

capabilities for the unimodal functions, and high exploration capabilities for the multimodal, and the fixed 

dimensional multimodal functions. In addition, the proposed EGPC algorithm has ability to escape from the 

local optima in addition to achieving a higher convergence’ rate than the original GPC and the other recent 

optimizers. Moreover, the WRT was used, showing that the proposed EGPC outperforms other optimization 

algorithms significantly in terms of performance. 
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