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 Imbalanced datasets pose a significant challenge in credit card fraud 

detection, hindering the training effectiveness of models due to the scarcity 

of fraudulent cases. This study addresses the critical problem of data 

imbalance through an in-depth exploration of techniques, including  

cross-entropy loss minimization, weighted optimization, and synthetic 

minority oversampling technique-based resampling, coupled with deep 

neural networks (DNNs). The urgent need to combat class imbalances in 
credit card fraud datasets is underscored, emphasizing the creation of 

reliable detection models. The research method delves into the application of 

DNNs, strategically optimizing and resampling the dataset to enhance model 

performance. The study employs a dataset from October 2018, containing 
284,807 transactions, with a mere 492 classified as fraudulent. Various 

resampling techniques, such as undersampling and SMOTE oversampling, 

are evaluated alongside weighted optimization. The results showcase the 

effectiveness of SMOTE oversampling, achieving an accuracy of 99.83% 
without any false negatives. The study concludes by advocating for flexible 

strategies, integrating cutting-edge machine learning methods, and 

developing adaptive defenses to safeguard against emerging financial risks 

in credit card fraud detection. 
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1. INTRODUCTION 

The issue of credit card fraud presents a persistent obstacle within the realm of finance, encompassing 

both legitimate and illegitimate transactions. The successful identification of these unlawful acts relies on the 

implementation of robust automated systems. The foundation of supervised credit card fraud detection is 

rooted in the complex construction of machine learning models. These models utilize historical transactional 

data to discern the subtle differences between authentic and fraudulent transactions, serving as a crucial 

method for promptly and accurately identifying fraud in real-time situations. However, imbalanced datasets 

are a pervasive and significant barrier that hinders the efficacy of machine learning algorithms in this field. In 

the realm of credit card fraud detection, there exists a notable contrast between genuine transactions and 

fraudulent ones, with the former greatly surpassing the latter in terms of quantity. The existence of this 

imbalance is a significant obstacle to attaining the level of precision required for the effective identification of 

fraudulent activities. Addressing the issue of class imbalance requires the development of novel approaches 

aimed at enhancing the algorithms' effectiveness in detecting fraud consistently and reliably. 

https://creativecommons.org/licenses/by-sa/4.0/
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To tackle this difficulty, a comprehensive solution that incorporates diverse data-level 

methodologies is necessary. The approaches discussed in this study involve a range of strategies, which 

include oversampling, undersampling, and the incorporation of customized loss functions [1]–[5]. The 

primary objective of these strategies is to readjust the distribution of the dataset, aiming to alleviate the 

negative effects of class imbalance on the learning processes of algorithms. This work aims to critically 

evaluate the efficacy of complex data-level approaches. The evaluation criteria encompass fundamental 

measurements such as precision, recall, and F1-score. This study seeks to investigate the complexities 

associated with imbalanced datasets in the context of credit card fraud detection, utilizing artificial neural 

networks as the major analytical tool. The primary goal is to enhance the dependability and efficacy of the 

model, thus establishing a more resilient and precise system for mitigating fraudulent behavior in financial 

transactions. 

 

 

2. LITERATURE REVIEW 

Numerous studies have focused on detecting credit card fraud and addressing the class imbalance 

within datasets. Researchers and practitioners have sought innovative strategies to address the skewed 

distribution of fraudulent versus legitimate transactions. The goal is to develop effective mechanisms to 

mitigate this imbalance, aiming to create more accurate, reliable, and resilient fraud detection systems in 

financial transactions. 

In their study, Warghade et al. [6] highlight the pressing need for strong fraud detection systems in 

light of increasing financial losses. They investigated different machine learning algorithms to address the 

issue of imbalanced datasets in credit card fraud detection. Their objective was to improve the precision of 

fraud detection by avoiding the misclassification of legitimate transactions, with the goal of enhancing the 

efficiency of fraud detection algorithms in the financial industry. 

In their study, Mrozek et al. [7] explore the field of credit card fraud detection while acknowledging 

the challenge that imbalanced datasets present. Their study examines the efficacy of machine learning 

algorithms in dealing with this type of data, demonstrating the advantage of combining random forest with 

random undersampling, resulting in a recall score of 100%. This highlights the importance of combining 

effective machine learning with appropriate resampling methods to identify fraud in imbalanced datasets. 

The paper by Ebiaredoh-Mienye [8] introduces a stacked sparse autoencoder (SSAE) method to 

enhance credit card default prediction, which is crucial for financial institutions. Traditional methods face 

challenges with the dynamic and imbalanced nature of credit card data. The SSAE, an unsupervised feature 

learning approach, improves classifier performance by generating superior feature representations. The study 

demonstrates the SSAE's effectiveness, outperforming raw data-driven methods and previous works. This 

presents a promising solution for financial institutions seeking robust models for predicting credit card 

defaulters. 

Adityasundar et al. [9] conducted a study on credit card fraud detection using machine learning. 

Their main objective was to differentiate between fraudulent and non-fraudulent transactions. Their study 

employed algorithms such as logistic regression, specifically emphasizing the significance of these models in 

efficiently detecting fraud. 

The study conducted by Makki et al. [10] focused on detecting credit card fraud in datasets with a 

significant imbalance. Their research emphasized the shortcomings of current methods in addressing data 

imbalance. The resulting in a significant number of false alarms and presenting difficulties in achieving 

precise fraud detection. 

In their study, Singh et al. [11] investigated credit card fraud detection in datasets with severe 

imbalances. They focused on the efficacy of using a combination of oversampling and undersampling 

techniques. Their thorough examination of several performance measures provided insights into the most 

effective ways for addressing skewed data in fraud detection algorithms. 

Islam et al. [12] introduce a rule-based model (RBM) to combat financial fraud without employing 

resampling techniques. Addressing the challenge of imbalanced datasets in distinguishing fraudulent 

transactions, this study evaluates RBM against various established machine learning models. The RBM 

showcases superior performance, boasting remarkable accuracy and precision of 0.99, promising significant 

advancements in enhancing financial fraud detection systems. 

Baesens et al. [13] tackled the problem of identifying fraud in datasets that have a significant 

imbalance between the number of fraudulent and non-fraudulent instances. They proposed an approach called 

RobROSE, which is specifically designed to handle imbalanced data and outliers. Their investigation 

demonstrated the effectiveness of robROSE in enhancing fraud detection by overlooking anomalies, 

highlighting its potential in comprehending intricate data structures. In addition, they provided open access to 

the source code of the RobROSE algorithm without charge. 
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3. RESEARCH METHOD 

The research method section plays an essential role in presenting a well-constructed framework and 

procedural approaches aimed at addressing the ongoing issue of class imbalance in credit card fraud detection 

datasets. This chapter provides a comprehensive description of the dataset used, including the application of 

stringent preprocessing techniques that are necessary for enhancing the usability of the data for classifying 

fraudulent and non-fraudulent transactions. Deep neural networks are used on purpose as the basic model 

architecture in this method. This makes it possible to fully understand and effectively handle the complex 

dynamics that arise from imbalanced datasets when spotting fraudulent behavior. 

Furthermore, this section provides a detailed description of the strategic optimization and 

resampling techniques that have been carefully incorporated to address and align the imbalanced data 

distribution. These approaches provide a full grasp of the methodological changes necessary for creating 

effective credit card fraud detection mechanisms. In addition, Figure 1 visually demonstrates the proposed 

framework architecture for addressing imbalanced datasets in credit card fraud detection. 

 

 

 
 

Figure 1. Proposed framework architecture for handling imbalanced dataset in credit card fraud detection 

 

 

3.1.  Dataset description and preprocessing 

The dataset utilized in this study encapsulates credit card transactions made by European 

cardholders in October 2018, comprising a total of 284,807 transactions [14]. This dataset presents a 

formidable challenge due to its highly imbalanced nature, with a majority of legitimate transactions vastly 

outnumbering instances of fraudulent activities. Within this extensive dataset, a mere 492 transactions are 

classified as fraudulent, while the remaining transactions represent legitimate activities. The dataset has 31 

columns and includes different features, such as information about time, features marked as V1–V28 (which 

are anonymized numerical features derived from PCA), transaction amounts, and class labels that show 

which transactions are fraudulent and which are not. Addressing the profound class imbalance prevalent in 

this dataset is crucial due to the inherent complexity caused by the disproportion between the limited 

occurrences of fraudulent transactions and the overwhelming majority of legitimate ones. Table 1 provides a 

comprehensive breakdown of the dataset's columnar structure, detailing the attributes encapsulated within 

each column. The highly skewed distribution between fraudulent and non-fraudulent transactions poses a 

significant challenge in training accurate and reliable machine learning models, necessitating careful 

preprocessing and specialized methodologies to address this severe class imbalance. 

 

 

Table 1. Data description 
Features Description 

Time Time in seconds representing the duration between the current transaction and the first transaction 

V1, V2, V3, …, V27, V28 Numerical features resulting from PCA transformation, ensuring user privacy 

Amount Transaction amount 

Class Label Binary classification labels: 1 denotes non-fraudulent transactions, 0 denotes fraudulent transactions 

 

 

Following the presentation of the table describing the characteristics of the dataset and their 

corresponding explanations, a sequence of thorough preprocessing procedures was undertaken to enhance the 

dataset's suitability for analysis. The 'Amount' column was initially subjected to normalization, wherein its 

values were standardized to a range of [-1,1] using the StandardScaler function from the Scikit-Learn library. 
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In order to improve the efficiency of the dataset's attributes, the initial 'Amount' column and the subsequent 

'Time' column were both removed from the dataset. In order to maintain the integrity of the data, any 

instances of duplicate entries present within the dataset were methodically removed. The preprocessing 

operations undertaken in this study played a crucial role in enhancing the dataset, hence facilitating further 

analyses and model creation inside the credit card fraud detection framework. 

 

3.2.  Class imbalance problem 

The issue of class imbalance has a significant impact on the efficacy of predictive models in the 

field of credit card fraud detection. The imbalanced distribution of non-fraudulent and fraudulent transactions 

introduces a bias in machine learning models, leading to a tendency to reliably forecast the majority class 

while encountering difficulties in accurately identifying the minority class. As a result, these models 

demonstrate a notable level of accuracy in classifying the majority class, although they encounter challenges 

in achieving satisfactory precision and recall rates for detecting fraudulent transactions. 

In order to rectify this disparity, many approaches are implemented. Resampling strategies, such as 

oversampling the minority class, undersampling the majority class, or employing a hybrid approach, 

specifically address this difficulty. Additionally, by lowering the classification threshold, the optimization of 

the decision threshold increases the accuracy of predicting the minority class. The evaluation of models using 

measures such as accuracy, recall, and F1-score provides a more comprehensive assessment that takes into 

account both groups. In machine learning, class imbalance risks biasing models and impacting their 

reliability. Traditional algorithms favor accuracy, leading to bias towards the majority class and hindering 

understanding when datasets are imbalanced [15], [16]. In credit card fraud detection, relying solely on 

accuracy is misleading due to an imbalance. Metrics like recall and F1-score offer better insights and  

prevent the accuracy paradox, where high accuracy masks poor performance in crucial areas like false 

negatives [17], [18]. Using diverse metrics helps evaluate models comprehensively, identifying areas needing 

improvement. 

 

3.3.  Deep neural network as core model 

The study utilizes a deep neural network (DNN) as the fundamental component for detecting credit 

card fraud. The DNN, built using the Keras Sequential API, incorporates a complex structure designed to 

understand nuanced patterns present in transactional data. The first layer, consisting of 64 units, processes  

the input data, which includes 29 features. Every neuron in this tightly linked layer calculates the weighted 

total of its inputs, which is then sent through a rectified linear unit (ReLU) activation function [19]. 

Mathematically, this can be expressed as (1): 

 

ℎ1 = 𝑅𝑒𝐿𝑈(𝑊1 ⋅ 𝑋 + 𝑏1)  (1) 

 

The output of the first layer ℎ1 serves as the input for subsequent layers, denoted as (2). 

  

ℎ2 = 𝑅𝑒𝐿𝑈(𝑊2 ⋅ ℎ1 + 𝑏2)  (2) 

 

where 𝑊1 and 𝑊2 represent the weights, 𝑋 denotes the input data, 𝑏1 and 𝑏2 represent the bias terms, and 

ℎ1 and ℎ2 are the outputs of the respective hidden layers. Following the same pattern, there are additional 

hidden layers with 32 and 16 units, respectively. In order to address the issue of overfitting, dropout layers 

are incorporated after every hidden layer, where 30% of the units are randomly deactivated during the 

training process. In addition, an L2 regularization technique is employed to regulate the complexity of the 

model and prevent overfitting [20]. This regularization involves applying a penalty of 0.001 to the weights of 

each layer, as described mathematically. The term is represented by (3). 

 

𝜆 ∑ 𝑛(𝑖=1) 𝑊𝑖
2  (3) 

 

The regularization term is defined as the sum of the squared individual weights multiplied by the 

regularization coefficient 𝜆, where 𝜆 represents the regularization coefficient, indicating the strength of 

regularization. n is the total number of weights in the model, and Wi denotes the 𝑖𝑡ℎ weight in the model. A 

sigmoid function drives the final layer, which calculates the likelihood of fraud for each transaction. During 

the training process, the model goes through 10 epochs, where it iterates over the dataset in batches of 64 

samples. It adjusts its internal parameters using the Adam optimizer to minimize the binary cross-entropy 

loss function and optimize the performance of classification [21]. Figure 2 provides a clear explanation of the 

intricacies of our deep neural network structure. In this visual representation, the many layers and design 

ideas of our approach are shown, offering a clear and easily understandable summary. 
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Figure 2. Our deep neural network architecture 

 

 

3.4.  Tackling imbalance-optimization and resampling 

This section focuses on techniques aimed at rectifying the imbalance within datasets, particularly in 

credit card fraud detection. It explores how optimization and resampling methodologies are utilized to 

enhance model performance. Ensuring more accurate identification of fraudulent transactions despite the 

inherent imbalance between classes. 

 

3.5.  Binary cross-entropy loss 

Binary cross-entropy loss is a basic function in machine learning, particularly in tasks that include 

binary classification, such as detecting the legality of credit card transactions. Within the field of fraud 

detection, the goal is to predict whether a transaction is fraudulent or not, which is a typical scenario of 

binary classification [22]. This loss function calculates the difference between projected probabilities and 

actual labels, which is crucial for adjusting the neural network's parameters (weights and biases) to improve 

predictive accuracy [23]. Examine a dataset of credit card transactions that is distinguished by several 

attributes, such as transaction amount, location, and time. Using binary cross-entropy loss helps train a neural 

network to sort these transactions into groups based on their features, telling the difference between 

transactions that are fraudulent and those that are not. The binary cross-entropy loss function is defined as (4). 

 

𝐿 (𝑦,  �̂�) =  −  (𝑦 ∗  𝑙𝑜𝑔(�̂�) +  (1 −  𝑦) ∗  𝑙𝑜𝑔 (1 −  �̂�))    (4) 

 

where 𝑦 is the true label (either 0 or 1), and ŷ is the predicted probability of the positive class (i.e., the 

probability that the transaction is fraudulent). 

To illustrate this concept practically, consider a dataset with credit card transactions. Our goal is to 

train a neural network to predict the probability of each transaction being fraudulent. Input attributes like 

amount, location, and time represent each transaction. We also have binary labels (0 or 1) indicating 

fraudulence. Training the network involves utilizing binary cross-entropy loss, where the network processes 

input features per transaction to predict the likelihood of fraud. The loss function measures the difference 

between predicted probabilities and actual labels. Based on this disparity, the network adjusts its weights and 

biases during training [24]. 
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For instance, let's consider a transaction that includes input features such as an amount of  

150.00 USD, a location of “Chicago”, a time of “11am”, and a true label indicating fraudulence with a value 

of 1. The binary cross-entropy loss for this transaction would be calculated based on the network's prediction 

probability of 0.8.  
 

𝐿 (𝑦 = 1,  �̂� = 0.8) = − (
1 ∗  𝑙𝑜𝑔 (0.8) 

+ (1 −  1) ∗  𝑙𝑜𝑔 (1 −  0.8)
)  = − 𝑙𝑜𝑔 (0.8) ≈  0.223  (5) 

 

This loss value indicates how well the network is doing at predicting the true labels for the dataset. During 

the training process, the network adjusts its weights and biases in order to minimize the overall binary cross-

entropy loss over all transactions in the dataset. This helps to enhance its capability to forecast whether a 

certain transaction is fraudulent or not [25]. 

In summary, plain binary cross-entropy loss minimization is a technique often used in credit card 

fraud detection to train neural networks to identify transactions as fraudulent or not, depending on a set of 

input features. The loss function quantifies the disparity between the projected probabilities and the actual 

labels, and the network's weights and biases are adjusted accordingly using this disparity. The network 

enhances its predictive accuracy for identifying fraudulent transactions by minimizing the overall binary 

cross-entropy loss over the entire dataset. 

 

3.6.  Minimization using class weights 

The challenge of class imbalance in machine learning demands effective strategies like weight 

minimization to address this issue. This method involves assigning weights to samples based on their class 

frequency in the dataset, emphasizing the significance of the minority class during model training [26], [27]. 

In credit card fraud detection, prioritizing accurate identification of fraud, despite its rarity, is critical. Using 

modified loss functions during training helps the model focus on correctly recognizing fraudulent 

transactions, minimizing imbalanced dataset effects, and potentially improving performance. Implementing 

class weights in logistic regression involves understanding data imbalance, choosing suitable weights, 

integrating them into the loss function, training the model, and evaluating its performance. For instance, 

modifying the binary cross-entropy loss function includes class weights to penalize misclassifications in the 

less common but important class, determined through techniques like inverse class frequency, which elevates 

the significance of the minority class during training [28]. 

Let's take an example of a dataset containing 1,000 samples, out of which 100 are classified as 

belonging to the minority class, representing fraudulent transactions. The determination of class weights can 

be achieved in the following manner: Let's denote the class weights for the majority class as 𝑤0 and for the 

minority class as 𝑤1. The class weights can be determined as (6), (7): 

 

𝑤0 =
𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

1000

900
≈ 1.11 (6) 

 

𝑤1 =
𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

1000

100
= 10 (7) 

 

During the training process, these class weights can be used to adjust the contribution of each class 

to the overall loss function [29]. Specifically, they are applied in the calculation of the loss for each training 

example. This way, the model gives higher importance to the minority class, helping it learn from the 

relatively fewer instances of fraudulent transactions. 

 

3.8.  Undersampling techniques 

Undersampling techniques are essential in addressing class imbalances in datasets, particularly in 

credit card fraud detection scenarios. Within these datasets, the vast majority of transactions are non-

fraudulent, greatly surpassing the minor portion of fraudulent transactions. The presence of this imbalance 

frequently distorts machine learning models, causing them to prioritize accuracy in the dominant class. As a 

result, their capacity to accurately identify the minority class, namely fraudulent transactions in this case, is 

compromised. To tackle this imbalance, undersampling reduces instances in the majority class, aiming for a 

more equitable distribution between classes in the dataset [30], [31]. For instance, in a dataset where 99.83% 

are non-fraudulent and 0.17% are fraudulent, random undersampling selects a subset of non-fraudulent 

transactions equal to the fraudulent ones. This rebalancing creates a new dataset, allowing models to train 

more fairly on both classes. This adjustment minimizes bias toward the larger class, notably refining the 

model's ability to detect fraudulent transactions in credit card fraud detection [32], [33]. However, while 

opting for random undersampling, there's a risk of losing crucial information from excluded majority 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 4, August 2024: 4802-4814 

4808 

instances. Despite this limitation, it is a valuable method for our fraud detection issue, fostering a balanced 

dataset that enhances model training and comprehension of both class characteristics. Experimentation will 

gauge its effectiveness in rectifying class imbalances and improving overall model performance. 

 

3.9.  Oversampling techniques 

Oversampling techniques are instrumental in addressing the issue of class imbalance within machine 

learning datasets, especially in scenarios where one class is significantly underrepresented compared to the 

other. This method primarily focuses on amplifying the minority class by either replicating existing samples 

or generating synthetic instances to level the class distribution [34]. Among the assortment of oversampling 

methods available, synthetic minority oversampling technique (SMOTE) stands out as a well-regarded 

algorithm for combating class imbalance. SMOTE operates by creating synthetic samples for the minority 

class through an interpolation process, thus diversifying the representation of this class. The procedure 

involves selecting an instance from the minority class and identifying its k nearest neighbors in the feature 

space. Subsequently, new synthetic instances are produced by interpolating between the chosen instance and 

its neighboring samples [35]. 

Mathematically, let's consider a scenario where 𝑋 represents the feature space and 𝑋𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 denotes 

the instances from the minority class. For each 𝑥𝑖 ∈ 𝑋minority, SMOTE identifies its k nearest neighbors. A 

synthetic sample 𝑥𝑛𝑒𝑤 is then generated by combining 𝑥𝑖 with a randomly chosen neighbor 𝑥𝑗 using (8): 

 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆 × (𝑥𝑗 − 𝑥𝑖) (8) 

 

Here, 𝑥𝑖 and 𝑥𝑗 represent two feature vectors from the minority class, and 𝜆 (0 < 𝜆 < 1) signifies a random 

value determining the extent of interpolation between 𝑥𝑖 and 𝑥𝑗 the synthetic sample 𝑥𝑛𝑒𝑤 is then added to 

the dataset, effectively augmenting the representation of the minority class. 

The benefit of SMOTE is that it can produce synthetic instances that not only replicate existing data 

but also add brand-new observations in areas of the feature space where the minority class is 

underrepresented. This process aims to rectify the imbalance, enabling machine learning models to glean a 

more comprehensive understanding of the minority class, subsequently improving their discriminatory 

abilities between classes [36]. However, it is essential to note that while SMOTE and oversampling 

techniques in general contribute to rectifying class imbalance, their indiscriminate application might lead to 

overfitting issues and potentially inflate the model's performance on the training data, thus impacting its 

generalization capabilities on unseen data [37]. Therefore, judicious utilization of oversampling methods, 

considering the specific nuances of the dataset and the machine learning problem, is crucial. 

 

 

4. EVALUATION 

4.1.  DNN–plain binary cross-entropy loss 

In order to improve the performance of our model, we utilized the Adam optimizer in conjunction 

with the binary cross-entropy loss function. The Adam optimizer is a method for optimizing the learning rate 

that combines the advantages of the AdaGrad and RMSProp algorithms. Adam, a widely recognized 

algorithm in the field of deep learning, has shown faster convergence rates when compared to other 

optimization strategies. Consequently, we selected the binary cross-entropy loss function for our work, as it is 

commonly used in binary classification tasks similar to ours. This function works by minimizing the 

discrepancy between anticipated and actual class labels, fitting well with our goal to improve model accuracy 

in distinguishing between two separate classes. Figure 3 is a depiction of the confusion matrix associated 

with the DNN trained using the plain binary cross-entropy loss. 

The deep neural network, evaluated using the binary cross-entropy loss function, demonstrated 

strong performance in accurately predicting non-fraudulent transactions (true negatives: 82,548) with 

remarkable accuracy. However, when identifying fraudulent transactions (true positives: 97), the model 

encountered a slight challenge. While the count of (false negatives: 32) was relatively low, indicating 

instances where fraudulent activities went undetected, there were notable (false positives: 22), misclassifying 

legitimate transactions as fraudulent. This points to a need for further enhancement to minimize both false 

negatives and especially false positives, which are pivotal in fraud detection scenarios. The model's reliance 

on the binary cross-entropy loss function facilitated a focused optimization toward reducing the difference 

between predicted and actual class labels, although fine-tuning remains necessary to enhance its accuracy in 

identifying fraudulent transactions. 
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Figure 3. DNN–plain binary cross-entropy loss confusion matrix 

 

 

4.2.  DNN–minimization using class weights 

The credit card fraud detection model, using a DNN, effectively addresses class imbalances by using 

a weighted loss technique. The 'class_weight' function in scikit-learn is used to assign greater weight to the 

loss incurred by misclassifying fraudulent transactions. This improves the model's capability to reliably 

recognize minority classes, which is vital in the context of fraud detection. The function produced a 

dictionary containing class weights for two classes: 0 (non-fraudulent) and 1 (fraudulent). The calculated 

class weight for class 0 was 0.5008929498494445, but for class 1, it was 280.47093023255815. As a result, 

the model assigned greater importance to errors related to fraudulent transactions, hence improving its 

capacity to reliably identify such instances. Figure 4 is imperative to introduce as a depiction of the confusion 

matrix linked to the DNN trained using the minimization using weights technique. 

The confusion matrix for our model evaluation demonstrates a notable performance: accurately 

classifying a substantial number of non-fraudulent transactions (true negatives: 81,022). However, it is 

accompanied by a discernible count of (false positives: 1,548), where legitimate transactions were 

misclassified as fraudulent. Although the model exhibited a remarkable reduction in missed fraudulent cases 

(false negatives: 14), correctly identifying 115 cases of fraudulent transactions (true positives), it also 

overlooked a few instances. This analysis underscores the model's strength in minimizing missed fraudulent 

activities while highlighting the necessity to further refine its precision in flagging legitimate transactions. 

Achieving a balanced approach between precision and recall remains imperative to enhance the model's fraud 

detection capabilities. 

 

 

 
 

Figure 4. DNN–minimization using weights confusion matrix 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 4, August 2024: 4802-4814 

4810 

4.3.  DNN–random undersampling 

Undersampling is an important approach used to tackle class imbalances in datasets, especially in 

situations such as credit card transaction analysis. Our study employed random undersampling as a strategy 

to address the substantial imbalance between fraudulent and non-fraudulent transactions. The study aimed to 

improve machine learning models by creating a more equitable dataset by randomly selecting non-fraudulent 

transactions and fraudulent transactions. This approach ensured a fair representation of both classes, 

improving classification accuracy. Random undersampling can improve classification accuracy but may lead 

to knowledge loss from discarded data. Despite this, it remains beneficial in situations where accurate 

minority class categorization is crucial. Table 2 provides a snapshot of the class distribution resulting from 

the application of random undersampling. This adjustment is instrumental in enhancing the model's training 

process and improving its accuracy in identifying both non-fraudulent and fraudulent transactions. 

Figure 5 illustrates the confusion matrix related to the DNN trained using the random undersampling 

technique. The confusion matrix visually represents the classification performance of the model after 

employing random undersampling. After applying random undersampling to our DNN evaluation, the 

confusion matrix shows encouraging results. The model correctly classified 142 transactions as non-

fraudulent (true negatives) and incorrectly classified 5 legitimate transactions as fraudulent (false positives). 

However, it demonstrated remarkable accuracy in detecting fraudulent transactions, properly identifying 128 

cases as (true positives). Nevertheless, there were 9 instances of fraudulent transactions that were not 

detected (false negatives), suggesting situations where the model did not successfully recognize them as 

fraudulent. The results demonstrate the effectiveness of the DNN's random undersampling technique in 

accurately classifying non-fraudulent transactions and its ability to identify a significant number of fraudulent 

cases. However, additional improvement is necessary to decrease the occurrence of undetected fraudulent 

transactions and minimize the misidentification of valid ones. 

 

 

Table 2. Class distribution after applying random undersampling 
Technique Class 0 Class 1 

Random undersampling 492 492 

 

 

 
 

Figure 5. DNN–random undersampling confusion matrix 

 

 

4.4.  DNN–oversampling using SMOTE 

During our investigation into credit card fraud detection, we implemented SMOTE, a widely 

renowned method specifically intended to handle such imbalances in datasets. SMOTE is a technique that 

creates new instances within the minority class, specifically fraudulent transactions, to improve the 

representation of these instances. This technique enhances class balance in the dataset by increasing the 

number of occurrences in the minority class. The goal is to enhance the model's fraud detection capabilities, 

minimizing the chance of missing true fraudulent activity. Table 3 illustrates the class distribution resulting 

from the application of SMOTE. The numerical values in the table delineate the count of instances for each 
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class, emphasizing the effectiveness of SMOTE in augmenting the minority class and rectifying the initial 

imbalance.  

In Figure 6, you can see the confusion matrix that is associated with the DNN that was trained using 

SMOTE. The result matrix showcases a highly promising outcome, especially in terms of classifying non-

fraudulent transactions, with 82036 instances accurately predicted (true negatives). However, it seems that 

the model has not categorized any fraudulent transactions as False Negatives, showcasing a considerable 

improvement in detecting fraudulent cases (true positives: 82804). While the model displays exceptional 

capability in flagging non-fraudulent cases, it may require further analysis to confirm the absence of (false 

positives: 274) or misclassifications of genuine transactions as fraudulent. This result reflects a notably 

robust performance in identifying fraudulent activities, suggesting that the SMOTE technique has 

significantly contributed to enhancing the model's sensitivity to detecting such cases without any false 

negatives. 

 

 

Table 3. Class distribution after applying SMOTE 
Technique Class 0 Class 1 

SMOTE 284315 284315 

 

 

 
 

Figure 6. DNN–SMOTE confusion matrix 

 

 

5. RESULTS AND DISCUSSION 

The results from evaluating four different models: the plain binary cross-entropy loss deep neural 

network, weighted deep neural network, random undersampled deep neural network, and SMOTE deep 

neural network are detailed in Table 4. Highlighting various evaluation metrics: accuracy, false negative rate, 

recall, precision, and F1-score. The plain binary cross-entropy loss DNN exhibited an outstanding accuracy 

of 99.93%. However, it demonstrated a relatively higher false negative rate of 24.81%, implying an inability 

to identify approximately 25% of the fraudulent transactions. Despite this, its recall value of 75.19% 

indicates its capacity to recognize actual positive instances, and a Precision of 81.51% demonstrates its 

ability to label accurate positive predictions. The model's F1-score of 78.23% reflects a balanced 

performance between precision and recall. The weighted DNN achieved a slightly lower accuracy of 98.11% 

but significantly reduced the false negative rate to 10.85%, enhancing its capability to identify fraudulent 

transactions. However, the model's precision of 6.92% was notably low, resulting in a higher rate of false 

positives. 

The random UnderSampled DNN achieved an accuracy of 95.07% and notably minimized the false 

negative rate to 6.57%, indicating its adeptness in identifying fraudulent transactions. Its high recall of 

93.43% and precision of 96.24% underscore its ability to accurately identify true positives while maintaining 

a strong precision rate. The SMOTE DNN achieved an impressive accuracy of 99.83% and exhibited zero 

false negatives, signifying its ability to detect all fraudulent transactions. With a perfect recall of 100.00%, it 

excelled in identifying all positive instances. The model's precision of 99.67% and F1-score of 99.83% 

suggest a minute number of false positives. 
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In short, the Random UnderSampled and SMOTE DNNs demonstrated superior performance 

compared to plain and weighted models in the detection of fraud. Although the undersampled model reduced 

the occurrence of false negatives, the SMOTE model produced a flawless recall, albeit with a slightly higher 

number of false positives. Both techniques are highly efficient in detecting fraudulent activities, each with 

distinct advantages. 

Table 5 presents a comparative analysis of crucial performance metrics, highlighting the supremacy 

of our model over its existing machine learning counterparts: logistic regression-sag, artificial neural network 

(ANN), and RFC undersampling. Our model attains an exceptional accuracy of 99.83%, surpassing others, 

including RFC undersampling (97.43%), logistic regression-sag (99.73%), and ANN (96.00%) [7], [9], [10]. 

Boasting a perfect recall of 1.0000, our model excels in identifying all instances of fraudulent transactions, 

outperforming alternative models. The notable precision of 99.67% and F1-score of 99.83% further 

emphasize its efficacy in achieving both accuracy and sensitivity. In conclusion, the amalgamation of deep 

neural networks with the SMOTE oversampling technique proves to be a robust approach for handling 

imbalanced datasets in credit card fraud detection, showcasing the potential for more accurate and reliable 

fraud detection systems in real-world applications. 

 

 

Table 4. Comparison of key performance metrics across different approaches 
Model Accuracy FalseNegRate Recall Precision F1-score 

PLAIN BINARY CROSS-ENTROPY LOSS 0.999347 0.248062 0.751938 0.815126 0.782258 

MINIMIZATION USING CLASS WEIGHTS 0.981112 0.108527 0.891473 0.069152 0.128348 

RANDOM UNDERSAMPLING 0.950704 0.065693 0.934307 0.962406 0.948148 

OVERSAMPLING USING SMOTE 0.998341 0.00000 1.00000 0.996702 0.998348 

 

 

Table 5. Comparison of key performance metrics with existing ML models 
Model RFC undersampling [7] Logistic regression-sag [9] ANN [10] Our DNN-SMOTE 

Accuracy 0.9743 0.9973 0.9600 0.9983 

Recall 1.0000 0.8252 0.4700 1.0000 

Precision 0.0060 0.3755 - 0.9967 

F1-score 0.1182 - - 0.9983 

 

 

6. CONCLUSION 

As we strive to enhance credit card fraud detection, we face the difficulty of dealing with 

imbalanced datasets. Using a range of techniques, such as optimization and resampling procedures, our main 

objective is to correct the inherent imbalance in credit card transaction data. The inherent bias towards non-

fraudulent transactions presents a challenging obstacle for models to effectively identify fraudulent activities. 

The objective of our mission is to rebalance this disparity by enabling algorithms to accurately identify 

infrequent fraudulent transactions within a large volume of genuine activity. Our commitment to enhancing 

fraud detection capabilities is demonstrated by our use of advanced approaches like weighted optimization, 

undersampling, and SMOTE oversampling to handle the complexities of the dataset. Our findings 

demonstrate that SMOTE oversampling achieves an impressive accuracy of 99.83% without any false 

negatives. Although alternate techniques such as undersampling resulted in a reduction of false positives, the 

problem of false negatives continued to persist. In general, oversampling was found to be the most efficient 

approach. As we advance, promising breakthroughs such as ensemble models and sophisticated neural 

networks continue to shape progress in credit card fraud detection. In considering future perspectives, it is 

imperative to embark on exploring alternative datasets and rigorously evaluating the proposed model's 

robustness and generalizability. Recognizing the integral role of continuous evolution in effective fraud 

prevention, a flexible strategy becomes crucial, necessitating regular updates to models and the 

implementation of adaptive defenses. The integration of state-of-the-art machine learning methods with 

proactive measures empowers organizations to safeguard customers and enterprises against evolving 

financial risks. Concurrently, our current focus involves identifying the most significant features contributing 

to credit card fraud, a pivotal step in fortifying the resilience of our model against emerging threats. 
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