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 Precisely characterizing Li-ion batteries is essential for optimizing their 

performance, enhancing safety, and prolonging their lifespan across various 

applications, such as electric vehicles and renewable energy systems. This 

article introduces an innovative nonlinear methodology for system 

identification of a Li-ion battery, employing a nonlinear autoregressive with 

exogenous inputs (NARX) model. The proposed approach integrates the 

benefits of nonlinear modeling with the adaptability of the NARX structure, 

facilitating a more comprehensive representation of the intricate 

electrochemical processes within the battery. Experimental data collected 

from a Li-ion battery operating under diverse scenarios are employed to 

validate the effectiveness of the proposed methodology. The identified 

NARX model exhibits superior accuracy in predicting the battery's behavior 

compared to traditional linear models. This study underscores the 

importance of accounting for nonlinearities in battery modeling, providing 

insights into the intricate relationships between state-of-charge, voltage, and 

current under dynamic conditions. 
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1. INTRODUCTION 

In response to the growing concern over fossil fuel scarcity and climate change, there has been a 

rapid shift from internal combustion engine (ICE) vehicles to electric vehicles (EVs) [1]. This transition 

hinges on two pivotal objectives: augmenting and customizing battery capacity, preferably on-board, and 

developing high-speed battery chargers [2]. EV batteries and on-board chargers are also emerging as 

potential solutions to the mass-energy storage challenges faced by the electric power sector. Integrating EVs 

into the smart grid capitalizes on their predominantly parked status, enabling them to accumulate grid energy 

during periods of low demand and supply energy to the grid during peak demand [3]. Various battery 

technologies, such as those employing lead, nickel, and lithium, are integral to this transition, albeit 

characterized by instability and sensitivity to reaction conditions [4]. Consequently, meticulous monitoring 

and control of chemical reactions within cells are imperative to safeguard batteries from a spectrum of 

damages, ranging from irreversible capacity loss to catastrophic explosions. Particularly, lithium-ion batteries 

demand specialized handling to prevent performance deterioration and mitigate scenarios that could lead to 

severe damage or explosions [4]. 

Ensuring the simplicity of the model identification process aligns with specific requirements. In the 

context of electric vehicles, an accurate representation and simulation of battery behavior are crucial for 
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assessing storage system performance. A model serves as a streamlined mathematical depiction of a battery, 

enabling the prediction of its behavior and the observation of phenomena that are often challenging to 

measure under real-world electric vehicle usage [5]. For instance, a model facilitates the simulation of several 

years of a storage system's life cycle in a matter of minutes, eliminating the need for recurrent construction of 

physical prototypes and costly experiments. Effective predictive engineering entails the development of a 

model that closely mirrors reality, addressing pertinent engineering inquiries [6]. 

The study and control of electric vehicles heavily depend on modeling lithium-ion batteries, a task 

that numerous researchers are actively engaged in [7]. Their efforts are directed towards enhancing the 

accuracy, robustness, and speed of lithium-ion battery models, considering the myriad factors and 

uncertainties that influence the complex electrochemical reactions within batteries. Establishing 

mathematical battery models is a multifaceted problem, posing challenges in both academic and industrial 

realms. Measurable quantities in battery management systems (BMS) include current input, output 

observation, terminal voltage, and temperature [8], [9]. BMS, functioning as an electronic guardian, monitors 

battery operation, shielding it from damage during charging and discharging. It ensures that the voltage, 

temperature, current, and state of charge of each cell remain within safe parameters, thereby enhancing the 

battery's lifespan and autonomy [10]. Consequently, BMS research has been pivotal in fostering innovation, 

leading to various types with diverse functions and solutions for improving battery operation [11]. 

One primary task of BMS is to determine the state of charge, representing the residual potential of 

the battery. Given that the state of charge is typically not immediately measured, various estimation strategies 

based on battery models have been developed [12]. Electrochemical models, describing battery performance 

through chemical processes, offer high accuracy but are often deemed impractical due to their complexity. 

Alternatively, circuit modeling, demonstrated by the Thevenin battery model and other variations, has proven 

effective [13]. However, limitations persist, such as constant parameter values concerning the state of charge 

and temperature. Innovative models, including those incorporating high-frequency cycling effects and battery 

self-discharge, offer potential improvements [14]. 

The application of artificial neural networks (ANNs) emerges as a highly efficacious strategy for 

modeling intricate and dynamic systems, transcending the constraints imposed by battery models or 

mathematical correlations [15]. Nevertheless, the computational intricacies inherent in the ANN algorithm 

pose significant challenges, manifesting as slow convergence, susceptibility to overfitting, and vulnerability 

to local minima. Mitigating these challenges necessitates a meticulous selection of the learning algorithm, 

activation function, number of hidden layers, neuron count, learning rate, spread value, and input and output 

specifications [16]. 

To enhance the computational efficiency of ANN, careful consideration and optimization of these 

parameters become imperative. Various sophisticated ANN methodologies have been advanced for the 

estimation of state of charge (SOC), encompassing backpropagation neural network (BPNN) [17], radial 

basis function neural network (RBFNN) [18], and recurrent neural network (RNN) [19]. Nevertheless, it is 

noteworthy that existing ANN approaches often lean on a laborious trial-and-error paradigm for the 

identification of optimal parameter values. This approach, unfortunately, proves inefficient and obstructs the 

realization of an optimal solution within a reasonable timeframe. Hence, a more strategic and efficient 

exploration of parameter spaces is imperative for advancing the effectiveness of ANN applications in this 

domain [20]. 

The Shepherd equation, presenting a generic model with a controlled voltage source in series with a 

fixed internal resistance, is a notable advancement. Although literature elaborates on this model by 

incorporating temperature and lifecycle effects, it lacks integration of the state of charge effect. Meanwhile, 

ANN have gained widespread application as intelligent mathematical tools for data-driven modeling [21]. 

Their suitability for handling nonlinear and intricate frameworks makes ANN a compelling choice. In this 

study, a neural network (NN) approach is employed to assess the parameters of a Li-ion battery. The 

selection of this methodology is motivated by its exceptional ability to address intricate problems. 

Specifically, recurrent neural networks of the nonlinear autoregressive models with exogenous inputs 

(NARX) type are employed for the estimation process. This approach relies not only on the input data but 

also takes into account the feedback from the outputs. This paper employs a well-organized structure, 

providing a comprehensive understanding of the neural network model's theory and features in section 2. The 

experimental setup is thoroughly explained in this section, laying the foundation for the subsequent 

discussions. Section 3 delves into the test results, presenting simulations and engaging in a detailed analysis 

of the obtained outcomes. The concluding remarks, encapsulating key insights and potential avenues for 

future research, are presented in section 4. This structured approach enhances the clarity and coherence of the 

paper, ensuring a systematic and logical flow of information. 
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2. RESEARCH METHOD 

With the swift progress in computer processing capabilities and the ongoing refinement of learning 

techniques, the prevalence of neural networks is undergoing significant expansion, particularly in fields like 

image processing and automatic translation [22]. The ANN serves as a cornerstone model for information 

processing, drawing inspiration from the intricacies of the human brain. Consequently, the fundamental 

structure of an ANN comprises a network of interconnected computing nodes, intricately linked by directed 

and weighted connections. These nodes, akin to neurons, symbolize information-processing units, while the 

weighted connections signify the strength of synaptic links between neurons. In this model, a neuron can be 

envisioned as the accumulation of potentials derived from incoming synaptic signals. This cumulative sum, 

in turn, conveys information through a non-linear transfer function [12]. 

The activation of an ANN occurs by inputting data into some or all of its nodes and subsequently 

propagating this information through the weighted links. Following information propagation, the activation 

levels of some or all nodes can be collected and employed for system control, prediction, or classification 

purposes [23]. ANNs possess the capability to model variations in real data by continuously adjusting the 

weights between nodes based on the information flow during the learning phase. They are well-suited for 

capturing intricate relationships between inputs and outputs, demonstrating the ability to adapt and refine 

their understanding, making them a potent tool for modeling nonlinear statistical data. The foundational 

mathematical model of ANNs is depicted in Figure 1. The mathematical expression for a neuron is 

formulated as (1): 

 

𝑌 = 𝐹(∑(𝑋𝑖 ∗ 𝑊𝑖 + 𝐵𝑖)) (1) 

 

where 𝑋𝑖 represents the input of the neuron, 𝑊𝑖 is the weight of the interconnection between input 𝑋𝑖 and the 

neuron, and 𝐵𝑖 is the bais of the neuron. The determination of all weights and baises take place during the 

training phase. 

 

 

 
 

Figure 1. The basic mathematical model of ANN 

 

 

Artificial neural networks have demonstrated effectiveness in various tasks related to the prediction 

and modeling of time-series data, including applications in financial time series prediction [3] and the 

forecasting of communication network traffic. Particularly in scenarios characterized by noisy time series and 

nonlinear underlying dynamical systems, ANNs consistently outperform traditional linear techniques, such as 

the well-known Box-Jenkins models [5]. The enhanced predictive capabilities of ANN models in these 

situations can be attributed to their inherent nonlinearity and heightened resilience to noise. Within the domain 

of recurrent neural architectures, NARX represent a distinctive class with limited feedback architectures 

stemming exclusively from the output neuron rather than hidden neurons [24]. The NARX constitutes a 

significant class of discrete-time nonlinear systems, and its mathematical representation is articulated as (2): 

 

𝑦(𝑛 + 1) = 𝑓[𝑦(𝑛), … , 𝑦(𝑛 − 𝑑𝑦 + 1); 𝑢(𝑛 − 𝑘), 𝑢(𝑛 − 𝑘 − 1), … , 𝑢(𝑛 − 𝑘 − 𝑑𝑢 + 1)] (2) 

 

In this context, 𝑢(𝑛) ∈ 𝑅 and 𝑦(𝑛) ∈ 𝑅 represent, respectively, the input and output of the model at discrete 

time step 𝑛. The parameters 𝑑𝑢 ≥ 1 and 𝑑𝑦 ≥ 1, with the condition 𝑑𝑢 ≤ 𝑑𝑦, denote the input memory and 

output memory orders respectively. The parameter 𝑘(𝑘 ≥ 0) represents a delay term referred to as the 

process dead time. For the sake of generality, we consistently assume 𝑘 = 0 throughout this study, resulting 

in the following NARX model: 
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𝑦(𝑛 + 1) = 𝑓[𝑦(𝑛), … , 𝑦(𝑛 − 𝑑𝑦 + 1); 𝑢(𝑛), 𝑢(𝑛 − 1), … , 𝑢(𝑛 − 𝑑𝑢 + 1)] (3) 

 

𝑦(𝑛 + 1) = 𝑓[𝑦(𝑛); 𝑢(𝑛)] (4) 

 

In this context, the vectors 𝑦(𝑛) and 𝑢(𝑛) represent the output and input regressors, respectively. 

Identifying nonlinear relationships poses frequent challenges and can be approximated through 

conventional means, exemplified by a standard multilayer perceptron (MLP). This feed-forward neural 

network (FFNN) comprises an input layer, one or more hidden layers, and an output layer, with 

interconnections established between nodes within each layer and those of the preceding layer [25]. The 

resultant interconnected structure is termed the NARX network, representing a robust class of dynamic 

models reminiscent of Turing machines in the realm of computer science. The NARX topology employed in 

this manuscript is depicted in Figures 2 and 3. 

To conduct the experiments, the setup necessitates the utilization of two power supplies and an 

active load, specifically the EA Power Control. The EL9000B, functioning as an active load, boasts a 

formidable power capacity of 2,400 W and a current rating of 170 A. Complementing this, the PS9000 3 U 

power supply, with an impressive power capacity of 10 kW and a current output of 340 A, is employed. 

Furthermore, a constant voltage supply is integrated for relay power, maintaining the ambient temperature at 

a controlled 23 °C, Figure 4. The EA Power Control plays a pivotal role in the experimentation process, 

serving to record current, voltage, and power profiles. MATLAB takes charge of the subsequent data 

processing, while LabView acts as the interface for efficient data acquisition. This comprehensive setup 

ensures meticulous control and monitoring of the experimental conditions. 

 

 

  
 

Figure 2. Prediction results of the NARX method 

 

Figure 3. NARX model 

 

 

 
 

Figure 4. Experimental data 
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It is noteworthy that the EL9000B and PS9000 3 U are selected for their substantial power 

capabilities, ensuring a robust and versatile platform for experimentation. The constant voltage supply and 

controlled ambient temperature contribute to the stability of the experimental setup. Following data 

acquisition, MATLAB simulations are conducted, and the results are meticulously compared with the 

experimental data, leading to a thorough performance analysis. This meticulous integration of cutting-edge 

equipment and sophisticated software underscores the precision and reliability of the experimental 

procedures, facilitating a comprehensive evaluation of the proposed model [12]. 

 

 

3. RESULTS AND DISCUSSION 

The battery underwent a complete charging cycle from 0% to 100% and discharging from 100% to 

0%, resulting in negligible integration errors due to the precise calibration of the current sensor. The 

subsequent figures depict a comparison among the proposed models, the measured voltage, and the standard 

model. Figures 5 and 6 specifically illustrate this comparison using the training database. As evident in 

Figures 5 and 6, a notable similarity is observed between the proposed and measured voltages in contrast to 

the voltage derived from the standard model. The uniqueness of our approach lies in the dynamic nature of 

the battery model, which accounts for the influence of temperature and state of charge (SOC) on the battery 

models. 

While the maximum error of the proposed model is limited to 10%, it is crucial to note that certain 

error peaks are discernible, particularly during instances of high battery discharge. These peaks, far from 

being shortcomings, actually serve as indicators of the robustness of our model. The ability of our model to 

quickly converge to the experimental curve, even in the presence of these error peaks, highlights its resilience 

and adaptability under challenging conditions. These occasional peaks in error, associated with intense 

battery discharge, underscore the realistic and dynamic nature of the proposed model. The fact that our model 

effectively captures and responds to such discharge-induced fluctuations reinforces its reliability and 

suitability for real-world applications. In essence, these error peaks contribute to validating the robustness of 

our model, showcasing its capacity to navigate and accurately represent the complex dynamics inherent in 

various battery operating scenarios. 

The DST data at 10C serves as a crucial component in validating the proposed model. Figures 5 to 7 

vividly present the simulation results during the validation phase. Notably, the rapid convergence of the 

proposed model curve to the measured voltage is evident in the figures. Furthermore, a strikingly low error is 

observed between the curves of the proposed model and the measured voltage, underscoring its efficacy in 

comparison to the standard model. This robust validation process reaffirms the accuracy and reliability of our 

proposed model in capturing the intricate dynamics of the battery system under consideration. 

 

 

 
 

Figure 5. Contrast between a conventional battery model and the proposed battery model 
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Figure 6. Contrast between a conventional battery model and the proposed battery model 

 

 

 
 

Figure 7. Contrast between a conventional battery model and the proposed battery model 

 

 

4. CONCLUSION  

In conclusion, this study presented a battery model founded on ANN. The ANN underwent thorough 

offline training to ascertain the necessary battery model, utilizing experimental data sourced from The 

CALCE battery group website. The simulation results demonstrated not only a remarkable accuracy but also 

swift convergence to experimental outcomes, irrespective of the charging and discharging conditions. The 

adaptability of the proposed model extends its applicability to a wide array of rechargeable batteries. 

Nevertheless, certain challenges associated with the model necessitate careful consideration. For the 

implementation of this model in a battery pack, the calculation of the SOC for each cell is imperative. 

Considering the varied environmental conditions in which batteries operate, the database used for designing 

the model should encompass all potential operational scenarios. 
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Looking ahead, future endeavors will revolve around leveraging the state space of this model to 

estimate SOC through a robust algorithm. This holistic approach will not only enhance the model's predictive 

capabilities but also contribute to addressing the challenges inherent in applying such models to real-world 

battery systems. Overall, the findings underscore the potential and significance of the proposed ANN-based 

battery model in advancing the understanding and practical application of rechargeable batteries. 

 

 

REFERENCES 
[1] N. O. Kapustin and D. A. Grushevenko, “Long-term electric vehicles outlook and their potential impact on electric grid,” Energy 

Policy, vol. 137, Feb. 2020, doi: 10.1016/j.enpol.2019.111103. 

[2] J. A. Sanguesa, V. Torres-Sanz, P. Garrido, F. J. Martinez, and J. M. Marquez-Barja, “A review on electric vehicles: technologies 
and challenges,” Smart Cities, vol. 4, no. 1, pp. 372–404, Mar. 2021, doi: 10.3390/smartcities4010022. 

[3] W. Liu, T. Placke, and K. T. Chau, “Overview of batteries and battery management for electric vehicles,” Energy Reports, vol. 8, 

pp. 4058–4084, Nov. 2022, doi: 10.1016/j.egyr.2022.03.016. 
[4] X. Lai et al., “Critical review of life cycle assessment of Lithium-ion batteries for electric vehicles: a lifespan perspective,” 

eTransportation, vol. 12, May 2022, doi: 10.1016/j.etran.2022.100169. 

[5] J. Khalfi, N. Boumaaz, A. Soulmani, and E. M. Laadissi, “An electric circuit model for a Lithium-ion battery cell based on 
automotive drive cycles measurements,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 4, 

pp. 2798–2810, Aug. 2021, doi: 10.11591/ijece.v11i4.pp2798-2810. 

[6] W. Chen, J. Liang, Z. Yang, and G. Li, “A review of Lithium-ion battery for electric vehicle applications and beyond,” Energy 
Procedia, vol. 158, pp. 4363–4368, Feb. 2019, doi: 10.1016/j.egypro.2019.01.783. 

[7] V. Selvaraj and I. Vairavasundaram, “A comprehensive review of state of charge estimation in Lithium-ion batteries used in 

electric vehicles,” Journal of Energy Storage, vol. 72, Nov. 2023, doi: 10.1016/j.est.2023.108777. 
[8] M. S. Hossain Lipu et al., “Intelligent algorithms and control strategies for battery management system in electric vehicles: 

progress, challenges and future outlook,” Journal of Cleaner Production, vol. 292, Apr. 2021, doi: 

10.1016/j.jclepro.2021.126044. 
[9] G. T and D. C, “A review on different state of battery charge estimation techniques and management systems for EV 

applications,” Electronics, vol. 11, no. 11, Jun. 2022, doi: 10.3390/electronics11111795. 

[10] M. S. Ramkumar et al., “Review on Li-Ion battery with battery management system in electrical vehicle,” Advances in Materials 
Science and Engineering, vol. 2022, pp. 1–8, May 2022, doi: 10.1155/2022/3379574. 

[11] V. Vaideeswaran, S. Bhuvanesh, and M. Devasena, “Battery management systems for electric vehicles using Lithium ion 

batteries,” in 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), Mar. 2019, pp. 1–9, doi: 10.1109/i-
PACT44901.2019.8959965. 

[12] S. Bouzaid, E. M. Laadissi, C. Ennawaoui, E. Mehdi Loualid, M. Mossaddek, and A. El Ballouti, “Lithium-ion battery modeling 

using dynamic models,” Materials Today: Proceedings, vol. 66, pp. 5–10, 2022, doi: 10.1016/j.matpr.2022.02.042. 
[13] M. Mossaddek et al., “Nonlinear modeling of Lithium-ion battery,” Materials Today: Proceedings, vol. 66, pp. 80–84, 2022, doi: 

10.1016/j.matpr.2022.03.302. 

[14] E. M. Laadissi, E. M. Loualid, C. Ennawaoui, and M. El Jouad, “Real time SoC monitoring of a Li-Ion battery for robotic 
applications,” Materials Today: Proceedings, vol. 66, pp. 282–288, 2022, doi: 10.1016/j.matpr.2022.05.060. 

[15] S. R. Mohandes, X. Zhang, and A. Mahdiyar, “A comprehensive review on the application of artificial neural networks in 

building energy analysis,” Neurocomputing, vol. 340, pp. 55–75, May 2019, doi: 10.1016/j.neucom.2019.02.040. 
[16] L. Jin, S. Li, B. Hu, M. Liu, and J. Yu, “A noise-suppressing neural algorithm for solving the time-varying system of linear 

equations: a control-based approach,” IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 236–246, Jan. 2019, doi: 

10.1109/TII.2018.2798642. 
[17] S. Qin, D. Qin, H. Wu, T. Wang, J. Chen, and P. Wang, “State of Charge estimation of Lithium-ion power battery based on online 

parameter identification method and BP neural network,” International Journal of Electrochemical Science, vol. 17, no. 1, Jan. 
2022, doi: 10.20964/2022.01.05. 

[18] C. She, Z. Wang, F. Sun, P. Liu, and L. Zhang, “Battery aging assessment for real-world electric buses based on incremental 

capacity analysis and radial basis function neural network,” IEEE Transactions on Industrial Informatics, vol. 16, no. 5, pp. 
3345–3354, May 2020, doi: 10.1109/TII.2019.2951843. 

[19] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network,” Physica D: 

Nonlinear Phenomena, vol. 404, Mar. 2020, doi: 10.1016/j.physd.2019.132306. 

[20] J. Kim, H. Chun, J. Baek, and S. Han, “Parameter identification of lithium-ion battery pseudo-2-dimensional models using genetic 

algorithm and neural network cooperative optimization,” Journal of Energy Storage, vol. 45, Jan. 2022, doi: 

10.1016/j.est.2021.103571. 
[21] J. Khalfi, N. Boumaaz, A. Soulmani, S. Laafar, A. Maali, and E. M. Laadissi, “NARX black-box modeling of a Lithium-Ion 

battery cell based on automotive drive cycles measurements,” International Conference on Electronic Engineering and 

Renewable Energy Systems, pp. 541–549, 2023, doi: 10.1007/978-981-19-6223-3_57. 
[22] J. Naranjo-Torres, M. Mora, R. Hernández-García, R. J. Barrientos, C. Fredes, and A. Valenzuela, “A review of convolutional 

neural network applied to fruit image processing,” Applied Sciences, vol. 10, no. 10, May 2020, 

doi: 10.3390/app10103443. 
[23] Y. Zou, Z. Lin, D. Li, and Z. Liu, “Advancements in artificial neural networks for health management of energy storage Lithium-

ion batteries: a comprehensive review,” Journal of Energy Storage, vol. 73, Dec. 2023, doi: 10.1016/j.est.2023.109069. 

[24] T. Guillod, P. Papamanolis, and J. W. Kolar, “Artificial neural network (ANN) based fast and accurate inductor modeling and 
design,” IEEE Open Journal of Power Electronics, vol. 1, pp. 284–299, 2020, doi: 10.1109/OJPEL.2020.3012777. 

[25] A. Nazari, S. Kavian, and A. Nazari, “Lithium-ion batteries’ energy efficiency prediction using physics-based and state-of-the-art 

artificial neural network-based models,” Journal of Energy Resources Technology, vol. 142, no. 10, Oct. 2020, doi: 
10.1115/1.4047313. 

 

 

 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 2449-2456 

2456 

BIOGRAPHIES OF AUTHORS 

 

 

Meriem Mossaddek     is a Ph.D. student at the Laboratory of Engineering Sciences 

for Energy (LabSIPE), National School of Applied Sciences, Chouaib Doukkali University, El 

Jadida, Morocco. She obtained her master’s degree in electronics, electrical engineering, 

automation, and industrial computing from the Faculty of Sciences Ain Chock of Casablanca 

(FSAC), Morocco, in 2020. Her research interests encompass battery modeling, battery 

management systems (BMS), and electric vehicle fast charging. She can be contacted at email: 

mossaddekmeryem@gmail.com. 

  

 

El Mehdi Laadissi     is a professor at the National School of Applied Sciences, 

Chouaib Doukkali University, El Jadida, Morocco, and a member of the Laboratory of 

Engineering Sciences for Energy (LabSIPE). He received his master degree and his Ph.D in 

electrical engineering from the Normal School for Technical Education in Rabat (ENSET), 

Mohammed V University, Rabat, Morocco, respectively in 2014 and 2017. His research 

interests include renewable energies, battery management system (BMS) and battery 

modeling. He can be contacted at email: laadissi.e@ucd.ac.ma. 

  

 

Chouaib Ennawaoui     is a professor at the National School of Applied Sciences, 

Chouaib Doukkali University, El Jadida, Morocco, and a member of the Laboratory of 

Engineering Sciences for Energy (LabSIPE). He received his PhD in mechanics and energy 

and from the National School of Applied Sciences of El Jadida (ENSA), Chouaib Doukkali 

University, El Jadida, Morocco, in 2014 and 2019 respectively.  His research interests include 

industrial engineering, mechanical engineering and materials engineering. He can be contacted 

at email: chouaib.enna@gmail.com. 

  

 

Sohaib Bouzaid     received the B.Eng. degree in electronic and automatic systems 

engineering from National School of Applied Sciences of Tangier, from Abdelmalek Essaadi 

University, Morocco, in 2019. Currently, he is a PhD student at the Laboratory of Engineering 

Sciences for Energy, Chouaib Doukkali University. His currently working on battery 

management systems for electric vehicles applications. His research interests include battery 

management systems, battery fast charge, battery protection algorithms and methods, battery 

data acquisition. He can be contacted at email: bouzaid.s@ucd.ac.ma. 

  

 

Abdelowahed Hajjaji     is the director of National School of Applied Sciences, 

Chouaib Doukkali University, El Jadida, Morocco, and director of the Laboratory of 

Engineering Sciences for Energy (LabSIPE) is a prolific researcher with a broad range of 

interests. His work spans across several disciplines, including engineering, materials science, 

chemistry, piezoelectricity, polymers, and ferroelectric materials. He can be contacted at 

email: hajjaji.a@ucd.ac.ma. 

  

 

 

https://orcid.org/0000-0002-1784-4889
https://scholar.google.com/citations?user=7Kojc8sAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=57568248500
https://orcid.org/0000-0003-4461-7208
https://scholar.google.com/citations?user=DBJg9_wAAAAJ&hl=fr&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57190435915
https://orcid.org/0000-0003-0418-5922
https://scholar.google.fr/citations?user=d_iZObgAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=57189319893
https://orcid.org/0000-0001-7160-423X
https://scholar.google.fr/citations?hl=fr&user=MJWUAkgAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57568052900
https://orcid.org/0000-0002-4863-4753
https://scholar.google.fr/citations?hl=fr&user=pb-l21IAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=23392457600

