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 This study presents a hybrid method, namely the marine predator algorithm 

(MPA) and Aquila optimizer (AO). The proposed algorithm is named MAO. 

AO duplicated the existence of the Aquila bird in nature while hunting for 

prey while MPA was inspired by predators in marine animal life. Although 

AO is widely accepted, it has several disadvantages. This causes various 

weaknesses such as a weak exploitation phase and slow growth of the 

convergence curve. Thus, certain exploitation and exploration in 

conventional AO can be studied to achieve the best balance. The MPA 

demonstrates the capacity to deliver optimal design and statistically efficient 

outcomes. The proposed method used AO as the main algorithm. To 

measure the performance of the proposed method, this study depicted a 

comparison using the AO, MPA, and whale optimization algorithm (WOA) 

methods. This paper was evaluated the performance of MAO on twenty-one 

CEC2017 benchmark functions test and droop control performance on direct 

current (DC) microgrid. From the simulation, MAO shows superior 

convergence ability. The proposed method and its application to droop 

control was successfully implemented and implied a promising performance. 
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1. INTRODUCTION 

 In the early 20th century, the microgrid concept was presented to combine conventional generation, 

distributed generation (DG) and alternating current (AC) utility lines [1]–[4]. Microgrid types are divided 

into two, namely AC, and DC microgrids [5]. The concept of a DC microgrid that connects power converters 

with renewable energy sources such as photovoltaic, wind energy sources, and energy storage systems [6]. In 

recent decades photovoltaic and wind energy sources have been increasingly popular in their applications. 

This is driven by the energy crisis and increasing environmental pollution. So the mindset of implementing 

green energy is getting more intense [7]. The microgrid concept has two connected modes encompassing 

network-connected mode, and isolated modes [8]. 

The AC microgrid concept is initially presented with the aim of reducing the load on the main 

network lines, sorting out power from renewable energy, and as a source of electrical energy in households 

[9]. Problems arise when the DC nature of the renewable energy source is connected to the network or 

converted to an AC system [10]. DC microgrid is able to increase system reliability, minimize multiple 

transformations, and avoid complex control of the system [11]. Problems that often occur in AC systems such 

https://creativecommons.org/licenses/by-sa/4.0/
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as power quality, reactive power, and frequency control can be ignored [12]. The problems that often occur in 

DC microgrids comprise dividing the current per unit between converters and setting the voltage at the load 

with a bus voltage reference [13]. 

In DC microgrid systems, a popular technique applied for current sharing is droop control [14]. This 

control can be used on both AC and DC microgrids [15]. Conventional droop control devices are applied to 

add virtual resistances with the aim of dividing the currents equally in DC microgrid. The problem often 

occurs when the bus voltage increases or decreases [16]. An approach with the conventional droop control 

method on DC microgrids has been widely used because it is simply applied due to the absence of a 

communication line. The conventional method results in inappropriate current distribution, excessive voltage 

fluctuation and regulation of the current circulating between the converters [17], [18]. The droop coefficient 

determines the accuracy of power distribution and voltage stability. More specifically, as the droop 

coefficient increases, the current division accuracy increases too with an intensification in the voltage 

variation and vice versa. 

Technological developments indirectly encourage the discovery of new algorithms in optimization 

concepts such as metaheuristics. A remarkable improvement from the recently discovered algorithm of 

metaheuristics that has better performance for problem complexity. Optimization that applies traditional 

deterministic methods is often constrained in exploration and exploitation. Metaheuristic characteristics that 

are simple and easy to adjust according to the problem being addressed. Several recent metaheuristics have 

been presented by several researchers. A novel coati optimization algorithm (COA) is presented that 

emulates the natural coati's behavior. Simulating two of coati's natural behavior covers attacking and hunting 

iguanas, and escaping from predators which are the fundamental concept behind COA [19]. Based on Clark's 

nutcrackers, the nutcracker optimization algorithm (NOA) has been developed. The two different behaviors 

that the nutcrackers display happen at different times [20]. A copy of the red-tailed hawk is the red-tailed 

hawk algorithm (RTH). From the point of prey detection through the point of swoop, the red-tailed hawk has 

a specific hunting approach [21]. The magnifying power of an optical microscope on the target item serves as 

motivation for the development and application of the optical microscope algorithm (OMA) [22]. 

Tyrannosaurus-rex (T-Rex) optimization algorithm (TROA) is a problem-solving technique that draws 

inspiration from the hunting techniques of the tyrannosaurus-rex (T-Rex) dinosaur [23]. Simulating the 

regulations that govern the game of golf along with strategic considerations that mirror the player tactics in 

the game forms the conceptual basis of the golf optimization algorithm (GOA). The nuances of the GOA 

process are described, afterwards, there is a mathematical illustration that depicts how the two stages work 

together namely the exploratory phase, which is designed for global searches, and the exploitative phase, 

which is geared towards local searches [24]. 

Conventional methods of droop control result in excessive voltage changes, improper current 

distribution, and lack of control over the electrical current transferred between converters. The application of 

the metaheuristics method to droop control has been presented by several researchers and has yielded 

promising simulation results. Tao presents an improved fruit fly algorithm approach to be applied to droop 

control in inverters. The steady-state error rate is decreased by 4.3% and the inverter response speed is 

multiplied by 40 [25]. An improved fruit fly algorithm named the three-partition multi strategy adaptive fruit 

fly optimization algorithm (MSAD-FOA) is also presented by Tao and used in the inverter [26]. For 

frequency regulation, Rehman et al. [27] present an innovative master-slave droop control method. Three 

previous case studies also examine different effects of temperature and radiation on photovoltaic-virtual 

synchronous generator (PV-VSG) systems in specific locations over the course of a year. Concurrently, the 

ideal VSG droop control parameters are effectively optimized and frequency regulation is improved with the 

application of advanced particle swarm optimization (PSO) technique [27]. Improved PSO has been applied 

to the idea of droop control and added a fuzzy inference system (FIS) to support it [28]. The application of 

the PSO method is used to optimize droop reinforcement and voltage references for the purpose of 

minimizing channel impedance effects and can be well accommodated for marine applications [29]. 

During islanding, a metaheuristic technique called the salp swarm inspired algorithm (SSA) is used 

to regulate microgrid droop control [30]. Liang and Zou [31] introduce the Metropolis criterion of simulated 

annealing (SA) algorithm into the adaptive particle swarm algorithm and use a hybrid algorithm to improve 

droop control.  

A hybrid of harmony search and genetic algorithms is applied to regulate droop control for the 

purpose of overcoming the reliability and technical problems of microgrids (MG) [32]. For precise division, 

droop parameter optimization based on the harmony search algorithm is used. Additionally, the current study 

uses beyond a comparative analysis of optimization performed using the harmony search method and particle 

swarm optimization [33]. Harris Hawks optimization (HHO) can be used in microgrid power distribution, 

frequency, and voltage control. According to the simulation results, the HHO droop controller enhances 

microgrid power quality [34]. Although several metaheuristic algorithms have been presented for optimizing 
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droop control, there is still much space that can be explored to obtain optimal droop control performance with 

different problem characteristics. Therefore, this study presents a droop control approach with the AO 

metaheuristic algorithm which is modified and enhanced by adding the MPA algorithm. The study 

contributes to several following traits: i) proposing a combination of methods namely MPA and AO named 

MAO, ii) conducting evaluations of the MAO's effectiveness in resolving optimization issues that have been 

conducted using 21 benchmarks functions, and iii) finding out the performance of the MAO method that is 

simulated and compared with 2 case studies, namely twenty-one CEC2017 benchmark functions test and 

droop control performance with comparison algorithms namely AO, MPA, and WOA. This study contains 

the explanation of AO, MPA, and droop control in literature review section. Section 3 shows the proposed 

control design and section 4 reveals a simulation result and discussion. The conclusion is disclosed in the last 

section. 

 

 

2. METHOD 

2.1.  Aquila optimizer 

Aquila optimizer (AO) is one of the metaheuristic algorithms introduced by Abualigah et al. [35]. 

AO is a duplicate of Aquila behavior in nature in catching prey. There are four Aquila hunting behaviors for 

different types of prey. Aquilas can have flexible hunting strategies for different preys. The legs and claws of 

the Aquilla are integrated with their speed to attack prey. The proposed AO algorithm optimization procedure 

is represented in four methods as follows: 

Step 1: Enlarged exploration (𝑋1): 

At this step, Aquilla flew with a high peak in a vertical arc. Aquila behavior is represented by (1). 

 

𝑋1(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × ( 1 −
𝑡

𝑇
) + (𝑋𝑚(𝑡) − 𝑋𝑏𝑒𝑠𝑡(𝑡) ∗ 𝑟𝑎𝑛𝑑) (1) 

 

𝑋𝑀(𝑡) =
1

𝑁
∑ 𝑋𝑖(𝑡)
𝑁
𝑖=1 , ∀𝑗 = 1,2… . 𝐷𝑖𝑚 (2) 

 

where 𝑋𝑖(𝑡 + 1) is the completion of the next iteration 𝑡, 𝑋𝑏𝑒𝑠𝑡(𝑡) is the optimal solvent till the 𝑡-th iteration. 

The (1 −
𝑡

𝑇
) is to hold exploration. 𝐷𝑖𝑚 is dimension value and 𝑁 is the number of nominees. 

Step 2: Limited exploration (𝑋2) 

In outline flight with low glide attack. Aquila is modeled mathematically in (3). 

 

𝑋2(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝑙𝑒𝑣𝑦(𝐷) + 𝑋𝑅(𝑡) + (𝑦 − 𝑥) ∗ 𝑟𝑎𝑛𝑑 (3) 

 

𝑙𝑒𝑣𝑦(𝐷) = 𝑠 ×
𝑢×𝜎

|𝜐|
1
𝛽

 (4) 

 

𝜎 = (
Γ(1+β)×sine(

𝜋𝛽

2
)

Γ(
1+β

2
)×β×2

(
𝛽−1
2 )
) (5) 

 

𝑦 = 𝑟 × cos (𝜃) (6) 

 

𝑥 = 𝑟 × sin (𝜃) (7) 

 

𝑟 = 𝑟1 + 𝑈 × D1 (8) 

 

𝜃 = −𝜔 × D1 + θ1 (9) 

 

θ1 = 3
𝜋

2
 (10) 

 

where the solvent of the next iteration of 𝑡 is 𝑋2(𝑡 + 1), 𝑙𝑒𝑣𝑦(𝐷) is the allocation aim of the fly 𝑙𝑒𝑣𝑦 and 𝐷 

is the dimension of solution. 𝑋𝑅(𝑡) is a random completion. 𝑣 is a random value. 𝛽 is a constant value. 𝑦 and 

𝑥 are used to represent the spiral shape in the search. 𝑟 1 is a number with range 1 and 20. 𝐷1 is an integer. 𝜔 

and 𝑈 are adjust to 0.005 and 0.00565. 

Step 3: Enlarged exploitation (𝑋3) 

When the prey position has been obtained, Aquila flies low by waiting for the prey's response. This 

step is modeled mathematically in (11). 
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𝑋3(𝑡 + 1) = (𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑀(𝑡)) × 𝛼 − 𝑟𝑎𝑛𝑑 + ((𝑈𝐵 − 𝐿𝐵) × 𝑟𝑎𝑛𝑑 + 𝐿𝐵) × 𝛿 (11) 

 

where 𝑋3(𝑡 + 1) is the completion of the next 𝑡 iteration, 𝑋𝑏𝑒𝑠𝑡(𝑡) points to the reasonable spot of prey until 

the 𝑖𝑡ℎ iteration (optimal completion gained), and 𝑋𝑀(𝑡) refers to mean value. 𝑟𝑎𝑛𝑑 is a random value. 𝛼 and 

𝛿 are the exploitation adjustment parameters set (0.1). 𝐿𝐵 and 𝑈𝐵 are the lower and upper limit. 

Step 4: Limited exploitation (𝑋4) 

In step 4, prey is hunted above the ground while Aquila runs and attacks it. The behavior of step 4 is 

modeled in (12). 

 

𝑋4(𝑡 + 1) = 𝑄𝐹 × 𝑋𝑏𝑒𝑠𝑡(𝑡) − (𝐺1 × 𝑋(𝑡) × 𝑟𝑎𝑛𝑑) − 𝐺2 × 𝐿𝑒𝑣𝑦(𝐷) + 𝑟𝑎𝑛𝑑 × 𝐺1 (12) 
 

𝑄𝐹(𝑡) = 𝑡
2×𝑟𝑎𝑛𝑑−1

(𝑡−𝑇)2  (13) 

 

G1 = 2 × 𝑟𝑎𝑛𝑑 − 1 (14) 
 

G2 = 2 × (1 −
𝑡

𝑇
) (15) 

 

where 𝑋4(𝑡 + 1) is the completion of the next iteration of 𝑡. 𝑄𝐹 refers to the quality purpose applied to 

stability the seek strategy. 

 

2.2.  Marine predator algorithm  

The marine predator algorithm (MPA) is one of the metaheuristic algorithms that adopts the activity 

of marine life between predators and prey [36]. In MPA, the position of the prey becomes a reference in 

updating the position. The MPA has three sessions of updating the prey's position based on speed. 

Step 1: High speed  

The process of finding prey is illustrated with predators and prey occupying the same area.  

 

When <
1

3
×max_𝑖𝑡𝑒𝑟  

 

𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗ = 𝑅𝑏⃗⃗ ⃗⃗  ⊗ (𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 − 𝑅𝑏⃗⃗ ⃗⃗  ⊗ 𝑃𝑟𝑒𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖) 𝑖 = 1,2… . 𝑛  (16) 

 

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 = 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖 + 𝑃 × �⃗� ⊗ 𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗    (17) 

 

The ⊗ is operation of multiplication. 𝑅𝑏⃗⃗ ⃗⃗   is a random value. Random numbers are based on Brownian 

motion. 𝑃 is random value equal to 0.5. 

Stage 2: Equal speed 

The process of searching for prey in this phase illustrates that predators and prey are at the same speed. 

 

When 
1

3
× max_𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟 <

2

3
×max_𝑖𝑡𝑒𝑟.  

 

In the first population, 𝑅𝐿⃗⃗ ⃗⃗  denotes random numbers based on the distribution 

 

𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗ = 𝑅𝐿⃗⃗ ⃗⃗ ⊗ (𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 − 𝑅𝐿⃗⃗ ⃗⃗ ⊗ 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖)  𝑖 = 1,2… . 𝑛/2    (18) 

 

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 = 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖 + 𝑃 × �⃗� ⊗ 𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗    (19) 

 

In the second half of the population, the mathematical equation is drawn as (20)-(22): 

 

𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗ = 𝑅𝑏⃗⃗ ⃗⃗  ⊗ (𝑅𝑏 ⃗⃗ ⃗⃗  ⃗ ⊗ 𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 − 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖) 𝑖 = 𝑛/2,… . 𝑛 (20) 

 

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 = 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖 + 𝑃 × 𝐶𝐹 ⊗ 𝑆𝑠𝑖⃗⃗ ⃗⃗  ⃗  (21) 
 

𝐶𝐹 = (1 −
𝐼𝑡𝑒𝑟

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟
)
(2

𝐼𝑡𝑒𝑟

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟
)
   (22) 

 

where 𝐶𝐹 serves to maintain the movement of predators adaptively 
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Stage 3: Low-speed 

In this last phase, the prey has a speed below the predator. 

 

When 𝑖𝑡𝑒𝑟 >
2

3
×max _𝑖𝑡𝑒𝑟 

 

𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗ = 𝑅𝐿⃗⃗ ⃗⃗ ⊗ (𝑅𝐿⃗⃗ ⃗⃗  ⊗ 𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 − ⊗ 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖)  𝑖 = 1… . 𝑛    (23) 

 

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 = 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖 + 𝑃 × 𝐶𝐹 ⊗ 𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗   (24) 

 

One of the issues that sway the conduct of marine ecosystems is fish aggregating devices (𝐹𝐴𝐷𝑠) which are 

modeled in (25). 

 

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 =

{
 
 

 
 𝑃𝑟𝑒𝑦
⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖 + 𝐶𝐹 × [𝑍0 = 𝑍𝑚𝑖𝑛 + �⃗� ⊗ (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛)] ⊗ 𝐴

𝑖𝑓 𝑟 ≤ 𝐹𝐴𝐷𝑠

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 + [𝐹𝐴𝐷𝑠 (1 − 𝑟) + 𝑟](𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑟1 − 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑟2)

𝑖𝑓 𝑟 > 𝐹𝐴𝐷𝑠

 (25) 

 

where 𝑟 is a random value. The optimization process is affected when the 𝐹𝐴𝐷𝑠 is 0.2. 𝐴 is a binary vector. 

 

2.3.  Droop control 

A DC microgrid system that consists of more than one source will result in a voltage difference. 

This will circulate current between the two DC sources. To reduce the circulating current, we can use 

primary control. The primary control is the initial control consisting of droop control and control loop. This is 

tasked with regulating the voltage and current of the system by adjusting the current that is provided to the 

DC bus. At this level, the load power can be shared among DC generators with communication links using 

distributed control techniques. Figure 1 illustrates the primary control. This control level adjusts the voltage 

reference provided to the internal current and voltage control loop. The output voltage can be expressed as (26): 

 

𝑉∗𝑜 = V𝑟𝑒𝑓 − (R𝑑 ∙ 𝑖0) (26) 

 

where Vref is DC bus voltage reference set point, 𝑅𝑑 is the virtual output impedance, 𝑖0 is the output current.   
 

 

 
 

Figure 1. DC microgrid primary control 

 

 

In addition to enabling the converter to operate in parallel, this control enhances the output voltage 

dynamic performance. Primary control enforces a performance trade-off between voltage regulation and 

power-sharing precision. In recent years, there has been the emergence of a variety of centralized, 

decentralized, and distributed techniques within hierarchical control frameworks to enhance DC microgrid 

reliability, adjust for voltage drift, and enhance power-sharing accuracy. Voltage drift is addressed using a 

secondary control. To determine the output voltage, the voltage level in the microgrid (V𝑀𝐺) is sensed, 

compared to the reference voltage 𝑉𝑟𝑒𝑓 , and the error processed through the compensator is delivered to all 

𝑑𝑣0 units as shown in Figure 2. The following is a statement of the controller: 

 

dv𝑜 = k𝑝(V𝑟𝑒𝑓 − V𝑀𝐺) + k𝑖 ∫(V𝑟𝑒𝑓 − V𝑀𝐺)𝑑𝑡 (27) 
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where 𝑘𝑝 and 𝑘𝑖 are the compensator secondary control control parameters. Keep in mind that 𝑑𝑣𝑜 needs to 

be constrained in order to stay under the maximum voltage deviation. Equation (27) finally becomes 

 

𝑉∗𝑜 = 𝑉𝑟𝑒𝑓 − 𝑅𝑑 ∙ 𝐼𝑜 + 𝑑𝑣𝑜 (28) 

 

The source voltage, which will serve as a secondary control loop reference and can be connected to a DC 

source via a static bypass switch, must first be measured to connect the microgrid to a dc source. 

 

 

 
 

Figure 2. DC microgrid secondary control 

 

 

3. PROPOSED MAO FOR DROOP CONTROL 

The proposed method in this work combined the AO and MAO. The flowchart of the MAO method 

can be seen in Figure 3. The following benefits of the MAO algorithm were drawn as follow: First, by 

including Elite components, the exploration space was diminished. Second, by avoiding initial convergence, 

the MAO algorithm had attractive research and exploitation domains. The suggested approach included a top 

predator. In nature, top predators were better at finding food. As a result, the strongest solution was chosen as 

the top predator to create the Elite matrix, which can be modeled as (29): 

 

𝐸𝑙𝑖𝑡𝑒 =

[
 
 
 
𝐴1.1
𝐼 𝐴1,2

𝐼

𝐴2.1
𝐼 𝐴2.2

𝐼
   
⋯ 𝐴1.𝑑

𝐼

⋯ 𝐴2.𝑑
𝐼

⋮ ⋮
𝐴𝑛.1
𝐼 𝐴𝑛.2

𝐼    
⋮ ⋮
… 𝐴𝑛.𝑑

𝐼 ]
 
 
 

  (29) 

 

 

 
 

Figure 3. The flowchart of MAO 
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The steps of the proposed method are as follows: 

− Add to (3) with (16) so it becomes the (30): 
 

𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗ = 𝑋2 × 𝑅𝑏⃗⃗ ⃗⃗  ⊗ (𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 − 𝑅𝑏⃗⃗ ⃗⃗  × 𝑋2(𝑡)) (30) 

 

− Replace (11) with (18) so it becomes (31): 
 

𝑋3(𝑡 + 1) = 𝑅𝐿⃗⃗ ⃗⃗ ⊗ (𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 − 𝑅𝐿⃗⃗ ⃗⃗ × 𝑋3(𝑡)) (31) 

 

− Modify (12) by adding (23) so it becomes (32). 
 

𝑋4(𝑡 + 1) = 𝑄𝐹 × 𝑅𝐿⃗⃗ ⃗⃗ ⊗ (𝑅𝐿⃗⃗ ⃗⃗  ⊗ 𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 − 𝑋4(𝑡)) × 𝐺1 (32) 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Convergence curve profile 

The benchmark function was used to assess MAO performance. Consideration of 21 literary 

mathematical functions was the initial stage. The mathematical function consisted of 8 fixed-dimensional 

multimodal functions F14-F21, 6 multimodal functions F8-F13, and 7 unimodal functions F1-F7. MATLAB 

Simulink software was used to execute the simulation, and a laptop with an Intel I5-5200 2.19 GHz processor 

and 8 GB RAM was employed. Table 1 shows a list of the MAO parameters used in the simulation.  

The three categories benchmark function had their own characteristics. The unimodal function had 

one global ideal and no local optimal, making it a good candidate for benchmarking algorithm exploitation. 

The multimodal function was particularly useful for assessing exploration and deducting the algorithm local 

optima position since it had many local optimum points.  

Performance evaluation of the MAO used the AO, WOA, and MPA approaches. Convergence graph 

performance assessment was measured based on the lowest value obtained. Figure 4 show that the MAO 

algorithm performed all algorithms on 21 functions. While the lowest convergence value for F8 was the 

WOA algorithm. In the F14, F15, F17, F19 and F20 function, the lowest convergence value was MPA. In 

function 21, MAO and AO had similar and lowest convergence curves. MAO had the lowest convergence 

curve in the functions F1, F1, F3, F4, F5, F6, F7, F9, F10, F11, F12 and F13. 
 

 

Table 1. Parameter of MAO 
No. Parameter Value 
1 Alpha (𝜶) 0.1 
2 Delta (𝜹) 0.1 
3 Omega (𝝎) 0.005 
4 Beta (𝜷) 1.5 
5 𝒓𝟏 10 
6 𝑼 0.00565 

 

 

4.2.  Utilizing MAO to control droop 

The DC microgrid configuration consisted of two sources encompassing a PV and a DC generator 

(DCG), which were both connected to a DC load. a 100 V DC bus voltage low voltage DC microgrid. In 

addition to supplying DC loads, this low voltage was frequently employed in residential setups. Table 2 

shows the details of the system used. A representation of a DC microgrid block as shown in Figure 5. 

Regarding Figure 5, the difference between the reference voltage and the bus voltage produced an 

error. After taking the absolute value multiplied by time it was then converted to ITAE. ITAE results were 

used to repeat the iteration of MAO. The results of the MAO iteration were the parameters of the 

proportional-integral (PI) in the voltage loop, PI in the current loop, PI in the secondary control and the value 

of the droop coefficient in each converter. This was because ITAE, in contrast to its rival’s integral absolute 

error (IAE), integral square error (ISE), and integral time squared error (ITSE), allowed for smoother 

implementation and produced superior results. The harsh criteria ITSE and ISE produced unrealistic 

evaluations because they squared errors. IAE was also an inadequate option compared to ITAE which 

represented a more realistic error index due to the time multiplier error function. Therefore, ITAE was used 

for optimization in this study. The mathematical definition of ITAE can be drawn as follows: 
 

𝐼𝑇𝐴𝐸 = ∫ 𝑡. 𝑒(𝑡). 𝑑𝑡
∞

0
 (33) 
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Figure 4. Convergence curves of algorithms on respective benchmark test 
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Table 2. System parameter 

No. 
Simulation parameters 

Value 
Parameter 

1 Voltage bus 100 V 

2 Capacitance of converter 40,000 µF 

3 Inductance of converter 2e-3 mH 
4 Switching frequency of converter 10 kHz 

5 Line resistance for PVG   0.22 Ω 

6 Line resistance for DCG   0.018 Ω 

 

 

 
 

Figure 5. Block representation of the islanded DCMG 

 

 

To evaluate the proposed control strategy performance. Simulink was used to model and simulate 

the system in accordance with the fundamental ideas of section 2, with the dc bus voltage set to 100 V. 

Tables 3 and 4 show the optimization results with each method used in this study. It was significant to note 

that the overshooting/undershooting levels of microgrid voltage, power sharing, and system responsiveness 

had been used to evaluate the durability of the suggested technique. 

 

 

Table 3. The value of PI control for each algorithm in source 1 
Methods 𝑃𝑣𝑙 𝐼𝑣𝑙 𝑃𝑐𝑙 𝐼𝑐𝑙 𝑃𝑠𝑐 𝐼𝑠𝑐 𝑅𝑑 

WOA 0.2470 0.4196 0.8279 0.2785 0.7103 0.6966 0.5311 
MPA 0.7885 0.6437 0.7857 0.444 0.8594 0.8541 0.7158 

AO 0.2797 0.673 0.1670 0.3614 0.7801 0.8385 0.1678 

MAO 0.9638 0.722 0.0948 0.7736 0.5277 0.2355 0.4578 

 

 

Table 4. The value of PI control for each algorithm in source 2 
Methods 𝑃𝑣𝑙 𝐼𝑣𝑙 𝑃𝑐𝑙 𝐼𝑐𝑙 𝑃𝑠𝑐 𝐼𝑠𝑐 𝑅𝑑 

WOA 0.4818 0.0073 0.4947 0.2645 0.5102 0.0956 0.3976 

MPA 0.189 0.3571 0.1003 0.2978 0.7689 0.8487 0.775 

AO 0.5819 0.5271 0.3857 0.3008 0.578 17.9282 25.9 
MAO 0.9572 0.0048 0.2166 0.7092 0.2289 0.2808 0.2751 
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The system was loaded by 4.2 ohms between seconds 0 and 2. Table 5 shows the details of the 

system response from each method. Figure of voltage and power responses were presented in Figures 6(a) 

and 6(b). At voltage, the ITAE value was 0.3714 and an overshoot of 0.1413 V was obtained from the MAO 

method. The ITAE value of the MAO method was better than the AO method, which was 0.353% and the 

MPA method, which was 24.03%. 

The distribution of current to the load between the two sources is illustrated in Figure 7. Sources 1 

and 2 from each algorithm provide different responses. In Figures 6(a) and 6(b), the comparison of the 

response given by voltage and power to changes in load in each algorithm is very slight. The comparison of 

currents that experience changes in load forms a different character for each algorithm. In Figure 7(a) the 

WOA algorithm response has an overshoot of 18.93A. The AO algorithm response to changes in load has an 

overshoot of 13.4A which can be seen in Figure 7(b). Figures 7(c) and 7(d) are the algorithm responses from 

the MPA and MAO methods which have overshoots of 15.03A and 11.93A. 

 

 

Table 5. Transient response of voltage 
Methods Overshoot Undershoot ITAE 

WOA 0.1500 No Undershoot 0.3728 

AO 0.1418 No Undershoot 0.3737 

MPA 0.1860 No Undershoot 0.3729 
MAO 0.1413 No Undershoot 0.3714 

 

 

  

(a) (b) 
 

Figure 6. Illustration of a transient (a) response of voltage and (b) response of power 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 7. Response of current (a) WOA (b) AO (c) MPA (d) MAO 
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It can be seen in Table 6 that the difference in current values between the two sources which has the 

smallest difference is the MAO method of 0.4433. Meanwhile, the current value from the source that has the 

largest value is MPA of 0.4788. The lowest overshoot value in Table 6 is MAO of 11.93. Meanwhile, the 

highest is WOA of 18.93. The overshoot value of MAO is better at 7% than WOA, 1.47% than AO and 3.1% 

than MPA.  

The next test of the MAO method is to change the load. For the first time, the system is loaded at  

4.2 ohms from seconds 0 to 2. The load was increased by 10 ohms from the 2nd second and continued until 

4th seconds. 8.6 ohms was added to the load once more at 4th second. At 6th seconds, the load was decreased 

by 6 ohms. Figure 8 is an illustration of load changes that occur on the system. An illustration of changes in 

load to system power can be seen in Figure 8(a). At 0 to 2 seconds, the voltage value is 100.1 V. The load 

increases by 10 ohms in the 2nd second. The steady state voltage value is 99.92 V from 2nd to 4th seconds. In 

the 4th second, the load value increases by 8.6 ohms. The steady state voltage value is 99.67 V. At the 6 th 

second, the load value drops by 6 ohms. The steady state voltage value is 100 V. An illustration of load 

changes that affect voltage and current can be seen in Figure 8(b) and Figure 8(c). 

 

 

Table 6. The result of current 
Methods Overshoot Undershoot Error 

WOA 18.93 -12.32 0.4527 
AO 13.4 -7.598 0.4452 

MPA 15.03 -13.25 0.4788 
MAO 11.93 -6.298 0.4433 

 

 

   
(a) (b) (c) 

 

Figure 8. Illustration of load changes (a) response of power, (b) response of voltage,  

and (c) response of current 

 

 

5. CONCLUSION  

The Aquila optimizer is characterized by four distinct methods. These methods include selecting the 

search space through high soaring with vertical stoop, exploring within a divergent search space through 

contour flight with short glide attack, exploiting within a convergent search space through low flight with 

slow descent attack, and finally swooping by walking and grabbing prey. The MPA refers to the often-

observed foraging behavior shown by ocean predators, characterized by a combination of Lévy and 

Brownian motions. This strategy is accompanied by an optimal encounter rate policy, which governs the 

biological interaction between predator and prey. This study proposes a hybrid method, namely aquila 

optimizer and marine predator algorithm called MAO. This study uses CEC2017 benchmark functions 

comparisons and droop control on the DC microgrid system to determine performance. AO, MPA, and WOA 

methods are also employed in the present study. From the CEC2017 benchmark function comparison, the 

MAO method has the lowest convergence curve of 12 compared to the other methods. From the simulation 

on droop control, it is revealed that the MAO method is a better ITAE than, namely 0.4022% compared to 

MPA, 0.3755% compared to WOA, and 0.6155% compared to AO. The control provides a reliable response 

when load changes occur. Based on the results, it was found that the highest voltage drop was 0.38%. 

Therefore, the MAO method has an effective and promising performance. AO and MPA are combined in the 

MAO technique. Reviewing applications for complicated and binary systems is necessary to achieve better 

exploration and exploitation performance outcomes. Aside from that, further study is required on droop 

control, including the use of the most recent control techniques. 
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