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 Deep neural network (DNN) comprises multiple stages of data processing 

sub-systems with one of the primary sub-systems is a fully connected neural 

network (FCNN) model. This fully connected neural network model has 

multiple layers of neurons that need to be implemented using arithmetic 

units with suitable number representation to optimize area, power, and 

speed. In this work, the network parameters are analyzed, and redundancy in 

weights is eliminated. A pipelined and parallel structure is designed for the 
fully connected network information. The proposed FCNN structure has 16 

inputs, 3 hidden layers, and an output layer. Each hidden layer consists of 4 

neurons and describes how the inputs are connected to hidden layer neurons 

to process the raw data. A hardware description language (HDL) model is 
developed for the proposed structure and the verified model is implemented 

on Xilinx field-programmable gate array (FPGA). The modified structure 

comprises registers, demultiplexers, weight registers, multipliers, adders, 

and read-only memory lookup table (ROM/LUT). The modified architecture 
implemented on FPGA is estimated to reduce area by 87.5% and improve 

timing by 3x compared with direct implementation methods. 
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1. INTRODUCTION 

Deep learning systems have been used successfully in the past few years for industrial applications 

including image processing, speech processing, language translation, and object recognition. Deep neural 

networks (DNN) are trained to identify raw inputs from input data and accelerate feature identification. 

Training of DNN models with large data sets and the use of trained models for inferences need to be efficient 

with higher accuracy. Computing platforms such as central processing units (CPUs), graphics processing 

units (GPUs) and field-programmable gate arrays (FPGAs) for the implementation of DNN models are 

becoming popular for real-time use of DNN models. Edge computing is a key driving factor for DNN models 

to achieve real-time data processing. To speed up data processing in DNNs, parallelization, batch processing, 

sub-processing, and partitioning are used to make the best use of hardware resources more quickly. Several 

methods have been reported in the literature for reducing computation complexity in convolutional neural 

networks and DNNs. Techniques such as pruning [1], quantization [2], and decomposition [3] have been 

demonstrated to reduce complexity. Hardware accelerators that reduce computation complexity and are 

efficient for hardware implementation have also been reported in the literature [4], [5]. The convolutional 

layer that performs feature extraction is the most complex sub-system in convolutional neural network 
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(CNN) and it is required to have a trade-off of complexity, accuracy, and resource utilization. The last stage 

of the CNN model is the fully connected model that achieves the end objective of CNN by processing 

extracted features from the convolutional layers. The fully connected (FC) layer comprises matrix 

multiplication operations and the number of weights required for multiplication is based on the network 

configuration, input, and accuracy. The FC layer requires a large number of multiply and accumulate (MAC) 

operations and storage units for weights and biases. Storing and accessing the FC model parameters for 

computation is a challenge when used for edge computing. Several techniques are reported in the literature 

for efficient hardware implementation of the FC structure and CNN model. Intermediate internal storage 

units are incorporated to achieve parallelism and improve throughput [6]. Winograd algorithm is used to 

reduce the number of computations leading to a reduction in the use of DSP blocks for hardware 

implementation [7]. 

Fast Fourier transform (FFT)-based approaches have also been used to carry out computation in the 

frequency domain demonstrating improvement in computing performance but are observed to be suitable for 

large kernel logic [8]. Resource multiplexing algorithm is another method that is developed to optimize 

complexity in the number of arithmetic operations and use of lookup tables (LUTs) for CNN architecture 

implementation. Traditional structures for CNN implementation use cores for computing convolutional layers 

and the core sizes are set according to different stages. The use of CNN cores increases power dissipation and 

hardware resources [9]. Xiaokang [10] has reported the design of the CNN model considering XOR 

operations for multiplications, pipeline structure, parallelism, and intermediate storage for reducing delay in 

data access. The model is implemented on Artix-7 xc7z020clg400-1 FPGA and is found to operate at a 

maximum frequency of 150 MHz. Binfeng [11] has developed a CNN accelerator by developing the 

algorithm on Zynq FPGA for hardware configuration and ARM CORTEX-A9 for software processing. The 

operating frequency of the CNN model is 100 MHz with an improvement of 25 units compared with software 

implementation and power dissipation of less than 1.59 W. From the literature studies it is observed that the 

convolutional layer is complex for implementation, and to reduce the complexity, several methods are being 

used such as parallelism, intermediate storage, dedicated cores, and multiplier-less operations. The methods 

proposed have advantages for hardware implementation but have poor regularity and are not flexible for 

hardware implementation. The fully connected layer that is the last stage of CNN is also a complex structure 

when it has more no. of hidden layers. Hardware design optimization considering area and power is required 

for the implementation of the DNN model. In this work, parallelism and intermediate storage logic are used 

to improve latency and throughput for the implementation of a fully connected network of the DNN model. 

CNN model combined with the advanced encryption standard (AES) algorithm is used for data encryption. In 

this work, the AES algorithm that encodes and decodes the data requires an encryption key which is 

generated using the CNN model. To accelerate the computation process, the complexity in the CNN model 

has been optimized by suitable training methods [12]. Video encoding methods such as high-efficiency video 

coding (HEVC) require high-speed accelerators for the processing of sub-modules. Coding units are used in 

parallel and each of these units is pipelined to improve throughput and latency. The techniques proposed in 

this work are utilized for the local processing of CNN module computation [13]. 

Orthogonal frequency division multiplexing (OFDM) architecture using a wavelet-based approach 

provides faster processing time and increases the number of sub-bands, avoiding overlapping. wavelet 

architecture, which is a complex model implemented using sub-band modules that require arithmetic units for 

low-power operation, integer arithmetic, and resource-sharing methods, has been proposed in this work [14]. 

The optimum implementation of arithmetic units is suitable for CNN architecture implementation. 

Proportional–integral–derivative (PID) controllers are developed with self-tuning capability, and the 

neural network model is used for self-tuning purposes. The artificial neural network (ANN) and long-short-

term-memory (LSTM) models are developed considering 11 or 21 sampling data points to evaluate PID 

controller performance. The model developed by studies [15] and [16] reports a 92.9% improvement in the 

performance of PID controller tuning. Hardware implementation of the NN controller module is not carried 

out. In their work, they have developed a PID controller module for the X-Y table using a self-tuning algorithm 

and implemented it on FPGA [17], [18]. The radial basis function neural network (RBF NN) model is used for 

adjusting the PID controller performances and is demonstrated to be implemented on NIOS II FPGA. 

The neural engineering framework (NEF) is adopted for neuromorphic computing with a spiking 

neural network model implemented using the large model network. PID controller is designed using the 

neuromorphic model and 6 degrees of freedom are analyzed for control of the robotic arm. The work reports 

software simulation results and has limitations for hardware performance [19]. 

A fully connected DNN architecture is implemented on FPGA, considering the stochastic bit stream 

and synchronization techniques. The proposed architecture in their work was implemented on vertex FPGA 

with an 82% area reduction [20]. Vaziri and Jahanrid [21] have presented a CNN accelerator based on 

stochastic computing with parallel processing, accelerating CNN computation. The proposed architecture in 
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their work is reconfigurable with a low-power method and reduces area by 4.36%. The model is evaluated 

with the VGG 16 structure and CIFAR dataset [21]. From the studies carried out, it was identified that most 

of the CNN and DNN architectures are focused on area reduction for FPGA implementation. Considering 

hardware implementation metrics such as processing time, throughput, and latency, there is a need for high-

speed architectures. 

A fully connected neural network model comprises a large no. of neurons and each neuron has 

multiplier modules for multiplying parameters with weight vectors. The input and weight vectors are stored 

in memories get frequently accessed to perform arithmetic operations. Performing parallel arithmetic 

operations occupies more area on the FPGA platform. Parallel processing reduces latency with huge area 

requirements. To have a trade-off between delay and area utilization, there is a need to develop an optimum 

architecture that addresses area requirements and also meets the delay requirement for real-time processing. 

The number of redundancies among weight vectors can be estimated to minimize the no. of multiplication 

operations. Pipelining methods can be incorporated to improve throughput at the cost of latency. In this work, 

a fully connected neural network architecture with two layers is designed to optimize the arithmetic 

operations with trade-offs with delay. The fully connected network model is presented in this work, 

considering a 16:4:16 network, and can be extended to complex models. 

 

 

2. FULLY CONNECTED NEURAL NETWORK 

Figure 1 presents the structure of a fully connected neural network that has an input layer, hidden 

layers, and an output layer. The size of the input layer and output layer depends upon the features or 

attributes in the data set and the expected output respectively. The number of hidden layers can be varied 

based on the requirement [22], and the selection of the number of hidden layers is a challenging task [23]. 

The number of hidden layers is a trade-off between complexity and lack of learning capability by the fully 

connected model. A simple mathematical expression for the selection of the number of hidden layers ‘𝑛’ is 

given as 𝑛 =\𝑠𝑞𝑟𝑡{(𝑚 + 𝑛)} + 1 [24]. Where m is the number of input nodes, 𝑘 is the output nodes and 𝑙 is 

a constant from 1 to 10. The total number of neurons ‘𝑁’ in a given fully connected network is computed as 

𝑁 = 𝑚 + 𝑛 + 𝑘. The total number of weights ‘𝐷’ that are required for a fully connected neural network with 

N nodes is 𝐷 = 𝑚𝑛 + 𝑛𝑘 + 𝑛 + 𝑘. 

 

 

 
 

Figure 1. Fully connected neural network model 

 

 

Figure 2 presents the structure of a fully connected layer that has an input layer, hidden layer, and 

output layer. The functionality of the FC layer is to extract the features from the feature map generated from 

convolutional layers and map these features to a known set of data spaces. Hardware implementation of FC 

structure requires input data, corresponding weights, and biases of the neurons to be stored in the memory 

and use of these parameters for multiply and accumulation operations. The complexity of computation 

depends upon the weight vector and the number of weights. If the weight vector is less than 0.1 then the 

multiplication will lead to a product term of smaller magnitude. Observing the weight magnitude 

multiplication operation can be controlled to reduce computation complexities. 

With a large number of weights vectors the multiplication operations are also large in number 

increasing the number of arithmetic operations, storage elements, and resource utilization. Serial architecture 

implementation of the FC model reduces resources by reusing the arithmetic operations but increases delay. 
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It is required to develop hybrid methods with a trade-off between delay and area utilization. In this work, a 

fully connected neural network model with three layers is designed to demonstrate hardware performance 

optimization. 

 

 

 
 

Figure 2. Architecture of FC network 

 

 

3.  PROPOSED STRUCTURE FOR FULLY CONNECTED MODEL 

Figure 3 shows the building blocks of the generic feed-forward neural network (FFNN) architecture 

with 16 input vectors, represented by X1–X16 with four neurons in the hidden layer, with each neuron 

processing 16 inputs. Each of the neurons in the hidden layer has an array of multipliers, adders, and 

activation functions. The input X (16 elements) is multiplied by neuron weights represented by 𝑊𝑛,𝑚 and is 

accumulated in the adder along with the bias bn. The output of the adder after multiplication and addition is 

represented by 𝐶𝑛. 

 

 

 
 

Figure 3. Two-layered (4 hidden layers and 16 output layers) FCNN architecture 
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The network activation function ‘tansig’ processes the intermediate output Cn to obtain the hidden 

layer output an. The output layer has 16 neurons that process the four hidden layer outputs to produce the 

output of the FFNN network, represented by X’. Each neuron in the output layer multiplies four inputs with 

four corresponding weight elements. The multiplied partial products are accumulated in the adder unit to 

generate intermediate output. The activation function purelin is used as the network function and the final 

output is generated. The input from the input layer consisting of 16 elements is provided as input for all four 

neurons, each input is multiplied with corresponding weights as given below, and the multiplied products are 

accumulated and stored in a register. C1 to C4 are the intermediate outputs generated by the hidden layer 

network and are expressed as in (1). The network activation function further processes the intermediate 

outputs represented by C1 to C4 to generate the final output an [a1 = tansig (C1), a2 = tansig (C2), a3 = 

tansig (C3), a4 = tansig (C4)]. The hidden layer outputs are stored in registers R1 to R4 and are represented 

as Y1 to Y4. 

 

𝐶1 = 𝑊1,1 𝑋1 + 𝑊1,2 𝑋2 + 𝑊1,3 𝑋3 +  … … … … … … . . . . . . . + 𝑊1,16 𝑋16 + 𝑏1 (1a)  

 

𝐶2 = 𝑊2,1 𝑋1 + 𝑊2,2 𝑋2 + 𝑊2,3 𝑋3 +  … … … … … … . . . . … +  𝑊2,16 𝑋16 + 𝑏2 (1b)   

 

𝐶3 = 𝑊3,1 𝑋1 + 𝑊3,2 𝑋2 + 𝑊3,3 𝑋3 +  … … … … … … … … . . + 𝑊3,16 𝑋16 + 𝑏3 (1c)  

 

𝐶4 = 𝑊4,1 𝑋1 + 𝑊4,2 𝑋2 + 𝑊4,3 𝑋3 +  … … … … … … … … . . + 𝑊4,16 𝑋16 + 𝑏4 (1d)   

 

Figure 4 presents the structure of four neurons with each neuron processing 16 inputs and generating 

one output represented by 𝑌. Each neuron requires 16 multipliers, an adder array to add 17 inputs (16 

products generated by a multiplier and one bias, adder array consists of 16 adders), and one activation 

function. For a hidden layer consisting of 4 neurons and 16 inputs, the total number of multipliers, and adders 

is 64 with 4 activation functions; each of them realized using the read-only memory (ROM) structure.  

Each of the input data 𝑋 as shown in Figure 4 is represented by N-bits 2’s complement format with 

most significant bit (MSB) for sign bit and N-1 bits for magnitude. The weights of the network, after training, 

are also represented by N bits 2’s complement representation. Each multiplier generates 2N-1 bits and 

requires 2N-1 clock cycles to perform multiplication. The output of each multiplier is accumulated in the 

adder array structure; each adder will perform the addition of two inputs each of size 2N-1 bits to generate 2N 

bits. As there are four neurons in the hidden layer to generate four outputs Y1 to Y4, a structure similar to one 

in Figure 4 is used.  

 

 

 
 

Figure 4. FCNN hidden layer architecture with arithmetic blocks 

 

 

The adder array is a three-stage structure with each array consisting of 8 adders in the first stage, 4 

adders in the second stage, 2 adders in the third stage, and 1 adder in the fourth stage. The final stage adder is 

used to add the bias. The adder array structure is represented as an (8-4-2-1-1) structure. The first stage adder 

outputs are represented by 2N bits, the second stage adder outputs are represented by 2N+1 bits, the third 

stage adder requires 2N+2 bits, and fourth stage adder requires 2N+3 bits, and the adder that adds bias 

requires 2N+4 bits for output representation. With N bits entering the hidden layer, the intermediate output 

generated requires 2N+4 bits for representation. For N=8, there is a 60% increase in bit width as there are six 

stages of the data path (one multiplier stage and five addition stages). The network activation function which 

is tansig is designed using ROM. The min-max value of tansig is +/- 1 and the digital equivalent of tansig is 
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computed by considering 512 samples between +/-1 and each sample scaled by 256 and rounded to the 

nearest integer. Tansig function output for 512 possible inputs is represented by N bits in 2’s complement 

format. The ROM depth is 512 with a width of 2N, at each memory location or address starting from “0 0000 

0000” to “1 1111 1111” there is 𝑎𝑛 N-bit tansig equivalent stored in the ROM. With the master clock 

represented by ‘f’, the multiplier is operated at clock frequency ‘f’, adder is operated at clock frequency f1, 

where f1=f/N. For the computation of every output in the hidden layer, the input data ‘X’ is loaded into the 

input register, and each neuron is designed to operate in parallel to compute the final outputs. Loading of 

input data requires 16 clock cycles (f1 is the reference clock frequency). Multiplication requires N clock 

cycles (multiplication is successive addition, and N is the number of bits), the adder array requires 5 clock 

cycle and the activation function requires 1 clock cycle. From the loading of data to the generation of output 

requires a total of 22+N clock cycles. The latency of the hidden layer network is 22+N clock cycles. 

Figure 5 presents the structure of the output layer, comprising four inputs being processed by each 

of the 16 neurons to generate 16 outputs represented by X’. The four inputs represented by Y are processed by 

each of the neurons to generate the intermediate output C. The network activation function ‘purelin’ is used 

to process the output layer intermediate function to generate output represented by ‘a’ which is stored in 

output register R whose output is represented by X’. The total number of multipliers and adders required for 

realizing 16 neurons in the output layer is 64. As the activation function used is purelin, the output adders are 

directly stored in the output register. The input to output layer is loaded in four clock cycles, multiplication is 

carried out in N clock cycles, and addition (adder array represented by 2-1-1-1) requires 4 clock cycles. In 

total computation of one output in the output layer requires 8+N clock cycles and hence the latency is 8+N 

clock cycles. All 16 neurons are designed to process data in parallel. The hardware implementation of FFNN 

shown in Figure 3 requires 128 multipliers and 128 adders. With the hidden layer requiring an additional 4 

ROMs of size 512×N, the number of adders and multipliers are dependent upon the number of neurons 

selected in the hidden layer and the number of neurons selected in the output layer. If the purelin activation 

function is used, then ROMs can be avoided. The structure in Figure 5 will be used 16 times to generate all 

16 outputs of the proposed network.  

 

 

 
 

Figure 5. FCNN output layer architecture with arithmetic blocks 

 

 

4. MODIFIED STRUCTURE FOR FULLY CONNECTED NETWORK 

Figure 6 presents the proposed FFNN architecture, designed by optimizing the number of arithmetic 

elements required for hardware implementation. The architecture consists of first-stage input registers, 

second-stage de-multiplexers, third-stage de-multiplexers, fourth-stage weight registers, fifth-stage 

multipliers, sixth-stage adder array, seventh-stage bias adder unit, eight-stage ROM or LUT unit, and final 

stage output register. In the first stage register, there are 16 registers with a data width of N-bits, and the data 

is loaded from the top register to the bottom register. The output of each register is connected to the 

corresponding de-multiplexer in the second stage, the select signal ‘C’ transfers the input data to either 

multiplier input or to the successive register input with control input ‘C’ set to ‘0’ or ‘1’ respectively. During 

load operation ‘C’ is set to ‘1’ the input register is activated, and 16 inputs are loaded into the register array. 

After 16 clocks, ‘C’ is set to ‘0’ so that the contents of the register are connected to the multiplier for the 

multiplication process. Each neuron has 16 weights, and for four neurons there are 64 weights, which are 

stored in a 64-depth register shown in Figure 6. The 16 weights corresponding to each neuron are loaded into 

the weight register, represented by ‘W’. The third stage de-multiplexer unit control input ‘D’ is set to ‘0’ for 

16 clock cycles to read the weights from the 64-depth register and load the 16 weights into the weight 

registers. After 16 clock cycles, ‘D’ is disabled by setting it to ‘0’ enabling the weights to feed the multiplier 

input. At the 17th clock cycle, the multiplier array comprising 16 multipliers is enabled to perform 

multiplication. 
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The output of each multiplier is to be added and fed into the adder array for accumulation 

operations. As there are 16 products generated, 15 adders are required to accumulate these results; the adder 

array designed accomplishes the addition operation using 7 adders. Figure 7 is the reduced multiplier array 

structure for hidden layer realization of a single neuron network. 

 

 

 
 

Figure 6. Pipelined architecture of single neuron of hidden unit 

 

 

As discussed, 16 multipliers perform multiplication in parallel and increase the area requirement for 

FFNN implementation. The present work addresses this issue by developing a pipelined logic that comprises 

8 multipliers instead of 16 multipliers that are activated in parallel. Each of the multipliers is driven by a 

serial in serial out (SISO) register of depth 2, in which the weights are stored as shown in Figure 7. The 

weights in each of the SISOs are loaded from the 64-depth SISO register at the bottom of the structure, which 

stores the network weights. During the first 16 clock cycles, the weights are loaded from the bottom SISO, 

and each two-stage SISO stores two alternate weight elements. The demultiplexer unit reads out the 

corresponding weights from the SISO and performs multiplication with the input data. The demultiplexer 

unit at the output routes the multiplied data into respective registers V1-V16. The multiplication operation is 

carried out in two clock cycles, in the first clock cycle eight products are computed (V1, V3, V5, V7, V9, 

V11, V13, and V15), and in the second stage, another eight products are computed (V2, V4, V6, V8, V10, 

V12, V14, and V16). 

Figure 8 presents the array adder structure designed with 7 adders for the addition of 16 inputs. The 

adder array unit consists of a first-stage multiplexer with E1 control, second-stage adders (four adders),  

third-stage de-multiplexers and registers, fourth-stage multiplexers, fifth-stage adders (2 adders), sixth-stage 
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de-multiplexers with registers, seventh stage multiplexers, and last stage adders (1 adder). In the first clock, 

‘E1’ is set to ‘0’, and out of 16 inputs, only 8 are selected, which are added by the corresponding four adders 

to generate four outputs. The de-multiplexer with control signal ‘E’1’ is set to ‘0’ to store the output of the 

adder into registers R1, R3, R5, and R6. In the second clock cycle, ‘E1’ is set to ‘1’ and the next eight inputs 

are added by four adder units and the results are stored in the registers R2, R4, R6, and R8, by routing the 

output of adder through the de-multiplexer by setting the control input ‘E’1’ to ‘1’. The eight outputs 

generated and stored in R1-R8 are added in two successive clock cycles to generate four outputs. The 

multiplexer unit in the fourth stage, the adder unit in the fifth stage, and the de-multiplexer unit in the sixth 

stage are activated to perform the addition operations. The four registers R9 to R12 store the corresponding 

outputs. Four outputs are further added to generate one output by the seventh and eighth stage units as shown 

in Figure 7. The FIFO stage with a depth of 4 stores the corresponding bias values of each neuron as shown 

in Figure 8, which are sequentially loaded into the adder unit, and the final addition operations, are performed 

to add the bias with the multiplied weights. The result of the final adder stage is fed into the ROM, the input 

data forms the address for the ROM, and the corresponding memory content is read out which is stored in the 

output register. 

The output register which is of depth four stores the four outputs of each neuron. The addition 

operation is carried out in 7 clock cycles, each stage of addition requires 2 clock cycles, and the last stage of 

bias addition requires an additional clock cycle. The total clock cycles (latency) required to compute the 

hidden layer outputs are 2N+23 (2N for multiplication operation, 7 for addition operation, 16 for input data 

loading). The present work reduces the hardware requirement by 75% in terms of area and the computation 

delay is increased by 23% as compared with direct implementation for the hidden layer architecture. 

 

 

 
 

Figure 7. Reduced multiplier array structure 
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Figure 8. Pipelined adder array structure 

 

 

Figure 9 presents the proposed architecture for the output layer. The first stage is the input register 

stage with four registers (Reg1–Reg4) and the weight registers (W1-W4), the second stage is the multiplier 

array, the third stage is the adder array, the fourth is the bias adder array with corresponding FIFO register 

with depth 16 (represented by B1 to B16), fifth stage is the LUT or ROM unit with output register; and the 

last stage is the output memory unit with depth 16 to store the outputs. The output layer comprises 16 

neurons, with each neuron having 4 weights, these weights are stored in the weight memory as shown at the 

bottom of Figure 9. During the first clock cycle, the inputs, corresponding weights, and bias are loaded into 

the input register, weight register, and bias register. The multiplication and corresponding addition operations 

are performed as discussed in the previous section for the hidden layer structure. As there are 16 neurons in 

the hidden layer, using a single neuron to compute all 16 outputs will increase the computation delay. The 

work presented in this is the design of a parallel architecture that is shown in Figure 10. In the parallel 

architecture, two pipelined architectures are designed as shown in Figure 9, which is used to compute the 16 

neuron outputs. The top architecture in Figure 10 is a single neuron structure that is designed to compute 

eight outputs (O1–O8), similarly, the bottom architecture computes the remaining eight neuron outputs  

(O9–O16). The delay in the computation of output layer outputs is increased by 33% and the area 

requirement is reduced by 87.5% as compared with the direct implementation structure. The latency in the 

computation of outputs is 2N+8 clock cycles. A detailed discussion on ANN implantation on FPGA is 

presented in [25]–[27]. Optimization regarding area, power, and speed is carried out by a suitable selection of 

an arithmetic unit, data synchronization, and memory operations. the memory operation techniques proposed 

in this work use pipeline operations. 
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Figure 9. Pipelined architecture of single neuron of output layer unit 

 

 

 
 

Figure 10. Parallel architecture of output layer unit 

 

 

5. FPGA IMPLEMENTATION 

It is possible to model the fully connected network (FCN) architecture shown in Figure 11 in HDL 

using both the direct structure form and the reduced structure with pipelined architecture. The developed 

HDL model is verified for its functionality with a known set of test vectors and validated against known 

outputs. The HDL code that works properly is made with Xilinx ISE and is meant to be put into action on the 

Xilinx Virtex-5 FPGA XCVLX110 device. The internal building blocks of the FCN are designed as sub-

systems, considering modular logic and reusable logic. The modelled sub-blocks are verified for their 

functionality and logical correctness. The modelled sub-blocks are integrated into the top module, and HDL 

code for the test bench is developed to verify the FCN structure. The developed structure is implemented on 

Virtex-5 FPGA and synthesized using Xilinx ISE. 
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Figure 11. Top-level block diagram of FCN 

 

 

The first hidden layer processes an input layer that is part of the designed FCNAs every hidden layer 

consists of arithmetic units for performing multiplication with weights and addition of multiplied weights the 

hidden layer structure is considered a data path structure. The data path operator is designed to work on 2’s 

complement number system, and the weights of the FCN are represented using 9-bit signed numbers. Every 

multiplication result in an increase in product bit width to 18 bits. In this data path operation design, as the 

weights are scaled by 256 to represent them as integers, after every multiplication the scaling down operation 

is performed by discarding the 8 LSBs thus limiting the product width to be 9-bit. The adder operation 

increases the output width by one bit and hence the network output generates the final output of 10 bits in 2’s 

complement representation. The data path structure for the RFFNN is implemented considering the Virtex-5 

FPGA, and the resource utilization is evaluated from the synthesis report. 

The RTL synthesis schematic of the hidden layer structure is obtained from the synthesis report after 

implementation, and it is observed for multipliers and adder stages. The output stage is designed using LUTs. 

The output layer as discussed in the earlier section is designed using a data path unit comprising multipliers 

and adders that operate on a 10-bit number system. As the input from the hidden layer is 10-bit, which is 

further processed by the output layer, the data path unit both multiplier and adder is designed to work with a 

10-bit number system. 

The overflow of data output is avoided as the scaling of input is performed to limit the input data 

range between +/- 64. The LUT width is also limited to 10-bit and hence the FCN structure design processes 

9-bit input data and generates 10-bit output data. The HDL code is verified and implemented to identify 

FPGA resources and the synthesized netlist. The synthesized report is obtained, and the hardware 

implementation performance parameters such as the number of slices, gates, frequency of operation, and 

power dissipation are noted and tabulated in Tables 1 and 2. 

 

 

Table 1. Comparisons between conventional FCN and modified FCN arithmetic units 
  Conventional FCN Modified FCN 

Parameters Hidden unit Output unit Hidden unit Output unit 

Multipliers 64 64 8 4 

Adders 64 64 8 6 

Latency  N+22 2N+23 N+8 2N+8 

Delay  T T T+23% T+33% 

Area  100% 100% 25% 12.50% 

 

 

Table 2. Comparisons between conventional FCN and modified FCN FPGA implementation  
FPGA implementation – Virtex 5 FPGA 

Parameter Conventional FCN Modified FCN 

No. of slices  42364 11,235 

No. of gates 45968K 734K 

Max. clock speed  104 MHz 285 MHz 

Power dissipation  1.3 W 0.49 W 

 

 

The comparison of FCN architecture with direct implementation shows that the current work is 3 

times faster than direct implementation, reduces the total area required by 73% in terms of the number of 

slices, and reduces power dissipation by 58%. Synthesized results show that the FCN structure operates at a 

frequency of 285 MHz, with 11,235 slices utilized, and power consumption of less than 0.49 W. 
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In the proposed method the area requirement per neuron is 561.75, which is observed to be a 

reduction of 39% [28]. The operating frequency of the proposed work is 285 MHz, which is a 100x 

improvement compared to the work reported in reference [28]. The total power dissipation for the proposed 

work is 0.49 W which is 38% less as compared to the reference [29] as shown in Table 3. 

 

 

Table 3. Comparison with other hardware implementation models 
Parameters Area Clock Time Power (W) 

[20] 12964 65.3 kHz 15.3 µs 0.74 

[28] 1013002 0.56 MHz 1.705 µs 0.767 

[29] 144450 0.11 MHz 8.561 µs 0.798 

[30] 62695 819 clock cycle 819 clock cycle 4.982 

Proposed 11235 285 MHz 0.003 µs 0.49 

 

 

6. CONCLUSION 

This paper proposes the FPGA implementation of a modified structure for the FCN model, 

optimizing area, power, and speed. The proposed model uses intermediate memories and pipelining methods 

to improve throughput and reduce latency. The reuse logic that controls the data flow into the designed 

structure synchronizes the movement of data and weight vectors, reducing latency in the design. The parallel 

structure that has been developed provides a trade-off between resource utilization and speed. The proposed 

architecture is implemented on FPGA, demonstrating a maximum operating frequency of 285 MHz, and 

consumes less than 0.49 W power, occupying less than 12% of FPGA resources. The developed model is 

suitable for high-speed implementation of CNN structures and can be used as a hardware accelerator soft IP 

for both DNN and CNN models. 
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