
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 14, No. 6, December 2024, pp. 6753~6772 

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i6.pp6753-6772      6753  

 

Journal homepage: http://ijece.iaescore.com 

Text encryption using secure and expeditious multiprocessing 

𝑺𝒆𝒓𝒑𝒆𝒏𝒕𝑪𝑻𝑹 using logistic map 

 

 

Huwaida T. Elshoush1, Duaa M. Ahmed1, Abdalmajid A. Ishag1, Muawia A. Elsadig2,  

Abdelrahman Altigani3 
1Computer Science Department, Faculty of Mathematical Sciences and Informatics, University of Khartoum, Khartoum, Sudan 

2College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia 
3Computer Information Science, Higher Colleges of Technology, Al Ain, United Arab Emirates 

 

 

Article Info  ABSTRACT 

Article history: 

Received Dec 10, 2023 

Revised Jul 14, 2024 

Accepted Aug 6, 2024 

 

 Unarguably performance is a critical factor to the success of any cipher.  

Al-Beit Serpent is more secure than advanced encryption standard (AES), it 

faces limitations such as speed and memory requirement. Hence, this paper 

proffers a text encryption method S𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝 that ameliorates 

the performance by running Serpent in parallel using the counter (CTR) 

encryption mode and further enhances the security by generating sub-keys 

for each block using logistic map. The intricate logistic map generated keys 

adds robustness to the proposed algorithm. Comprehensive experiments 

using Python 3.9 on commonly used metrics verify the efficacy of the 

proposed method in terms of execution time, central processing unit (CPU) 

usage, security analysis including key space, strict avalanche effect and its 

randomness. The encryption/decryption reduction rate reached up to 

80.81%. It is worthy of note that it is effectually resistant to brute force 

attacks having a large key space in addition to its dependency on the number 

of blocks besides the randomly generated keys. The enhanced Serpent was 

examined using the statistical test suite (STS) recommended by the National 

Institute of Standards and Technology (NIST) and verified its randomness 

by passing all tests. Furthermore, it efficaciously resisted statistical analysis, 

particularly histogram and correlation coefficient analysis. Moreover, it 

prevails over current methods when juxtaposed with them in terms of 

performance, key space, key sensitivity, avalanche effect, histogram analysis 

and correlation coefficient, ergo affirming its efficiency. 

Keywords: 

Cryptography 

CTR mode 

Logistic map 

Multiprocessing 

Parallel computing  

Serpent  

Text encryption 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Huwaida T. Elshoush 

Computer Science Department, Faculty of Mathematical Sciences and Informatics, University of Khartoum 

Khartoum, Sudan 

Email: htelshoush@hotmail.com 

 

 

1. INTRODUCTION 

Sending and receiving data is a key element of computer network. The type of data exchanged differs 

in secrecy. Data can be classified as secret such as in personal information, and confidential or private in 

military and banking transactions. One of the most important requirements of these networks is to provide 

secure transmission of information. Cryptography is one of the techniques to provide the secure way to transfer 

the important information [1]. In 1997, the US National Institute of Standards and Technology [2] issued that 

they need to choose an alternative to data encryption standard (DES); hence appeared the chosen alternative 

which is known as advance encryption standard (AES). Many algorithms were proposed as candidates, and 

Serpent, which is also a symmetric block, was one of the AES competition finalists. Serpent and Rijndael-AES 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6753-6772 

6754 

winner- have many similarities; the main difference is that Rijndael is faster but Serpent is more secure [2]–[5]. 

Serpent runs on four 32-bit words (128-bits) data block and three different key sizes, namely 128, 192, or 256 

bits. It has 32 rounds, where each round utilizes one of eight 4×4 S-boxes. Its functions were developed to be 

implemented in parallel, using 32 bit slices, hence boosting parallelism [6]–[16]. The nonlinear layer in AES 

uses an 8×8 S-box whereas Serpent uses eight different 4×4 S-boxes. The 32 rounds means that Serpent has a 

higher security margin than Rijndael; however, Rijndael with 10 rounds is faster and easier to implement for 

small blocks, as the 32 rounds of Serpent make it a bit slower and complex to implement on small blocks. Thus, 

Serpent and Rijndael are somewhat similar; the main difference is that Rijndael is faster (having fewer rounds) 

yet Serpent is more secure. Compared to 3DES, Serpent is easy to implement, fast and more secure [14]–[17]. 

Serpent uses 256 bit key to encrypt 128 bit of plaintext in three main functions, namely initial per- mutation 

(IP), round function (R) and final permutation (FP) [18]. It is secure, and specifically has suitable functioning 

for protecting against power and timing attacks [19]. Yet, it faces limitations such as memory requirement and 

execution time. The number of rounds in Serpent, which is 32, affect the performance directly. The proposed 

approach enhances the execution time of Serpent by using parallel computing to speed-up encryption and 

decryption process. Furthermore, the proposed approach enhances the security by generating sub keys for each 

block using Logistic Map block key generation algorithm [20]–[29]. Moreover, the algorithm is run in counter 

(CTR) mode [30]–[34]. 

This work is an extension of research [18]. The inauguration of this research is entirely to improve the 

performance as well as the security of Serpent algorithm. Hence, the proposed method enhanced the execution 

performance time by running Serpent in CTR using multi-processes. Furthermore, logistic map is utilized to 

generate block keys randomly and hence boosting the security of the proposed method. Additionally, it is 

juxtaposed with prevailing methods and traditional Serpent and proved its efficiency. The contribution of this 

research can be summarized hereafter: i) The Serpent is expedited by splitting the plaintext input into blocks, 

and moreover generating sub-keys using logistic map, and finally running the proposed algorithm in CTR 

mode; ii) Using logistic map boost the proposed algorithm from the security facet as a consequence of the  

sub-key complexity and randomness. Moreover, different sub-keys for each block disguise the plaintext 

patterns; iii) The performance of the proposed method was tested and evince its efficient speed and security; and 

iv) Furthermore, when juxtaposed with traditional Serpent and current schemes, the proposed method surpassed 

them and gave favorable and supreme results. 

The remainder of the paper is structured as follows: The recent schemes in improving the performance 

and security of the Serpent are explored in section 2. Section 3 elucidates the proposed method, together with its 

detailed algorithms. The results and discussion are presented in section 4. Finally, section 5 concludes the paper 

as well as recommending some future work.  

 

 

2. RELATED WORK 

Hereafter, a review of some research attempts to improve the speed of Serpent. Some researchers 

such as [35]–[38] improved Serpent by changing the functionality of the algorithm. For instance, researchers 

[35] modified the original S-box to consume less time. In a similar fashion, researchers [36] also modified 

Serpent by modifying S-box. They use 4×4 S-box consisting of bytes instead of nibbles and achieved less 

speed by 16.54% than the tradition Serpent. On the other hand, researchers [37], [38] utilize chaotic map to 

enhance Serpent. In particular, Elkamchouchi et al. [37] replaced the S-box with chaotic mapping and 

cycling group and reduced the number of rounds to 10. While Yousif [38] exchanged the static permutation 

and substitution with dynamical properties using logistic chaos map, hence yielding great randomness when 

juxtaposed with traditional Serpent. The use of chaotic map enhanced the security and Serpent became more 

robust. Likewise, studies [39] and [40] considered the use of chaotic map in text encryption. Particularly, 

Ekhlas et al. [39] utilized chaotic to encrypt text files by diffusing the positions of the plaintext ASCII values. 

Their method has a large key space, a uniform histogram and is sensitive to any bit altering in text or key. 

Whereas, the work of Charalampidis et al. [40] presented a novel 1-D chaotic map that displays zones of 

constant chaos, and high values of Lyapunov exponent to generate a pseudorandom bit generator. Zagi and 

Maolood [41] suggested a new design to the key generation as the security of any encryption algorithm relies 

solely on the security of the generated keys. Singh and Singh [42] introduced the idea of running each block 

in parallel and generating different keys for every block. 

In a recent research, Elshoush et al. [43] proffered running the Serpent in parallel and further 

generating block keys using Lorenz 96 chaotic map. Their method attained a reduction of 53.2% compared to 

classical Serpent, whereas preliminary version of the proposed method in [18] achieved up to 91% when 

running in five processes as they used CTR mode. Hussain et al. [44] modified Serpent by using power 

associative loop and group of permutations. Their technique’s speed is comparable to 3-DES, and has higher 

security, sensitivity and is resistant to crypto analytic attacks. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Text encryption using secure and expeditious multiprocessing … (Huwaida T. Elshoush) 

6755 

3. RESEARCH METHOD 

3.1.  Key generation 

The proposed 𝑆𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  method has two options for generating the key: automated key 

generation using the user key as input or utilizing logistic map. Logistic map is a one-dimensional discrete- time 

map that exhibits unpredicted degree of complexity [18]. The automatic generation is more secure and thus 

preferred as the key is generated randomly using Algorithm 1. In the first instance, two initial values 𝑥 and 𝑟 are 

randomly generated between [0,1] and [0,4] respectively to 3 decimal places. The value 𝑟 then remains constant. 

Next, the key is generated after 𝐾𝑒𝑦𝑆𝑖𝑧𝑒 + 1 iterations to give a decimal number which after converting it to 

binary yields a 256-bit key. 
 

Algorithm 1. Key generation using logistic map 
Input: KeySize 

Output: HexaKey   // Hexadecimal 256 Key 

1. Function Logist icMap (KeySize): 

2.   𝑋𝑜 ← randomnumber (0, 1), 3; 
// generating an initial value X0 between 0 and 1 (to 3 decimal places) 

3.   𝑟 ← randommunber(0,4),3;4 
//generating a positive constant r between 0 and 4 (to 3 decimal places) 

4.   HexaKey ← empty  
5.   for i=0 to KeySize do 

6.      𝑋(𝑖 + 1) ← 𝑟 ∗ 𝑋𝑖(1 − 𝑋𝑖)  // Logistic map equation 

7.      HexaKey ← HexaKey.append(ConvertDecToHexa(DecValueOf (X*10ᴵ⁶)/256)); 
//Each time get one Hexadecimal Value  

8.   End 
9.   Return: HexaKey 

 

3.2.  Encryption/decryption using the proposed 𝑺𝒆𝒓𝒑𝒆𝒏𝒕𝑪𝑻𝑹−𝑳𝒐𝒈𝒊𝒔𝒕𝒊𝒄𝑴𝒂𝒑 

The proposed 𝑆𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  encryption/decryption Algorithm 2 runs the Serpent using CTR 

mode, and allows it to encrypt/decrypt multiple blocks in parallel using multiple CPUs, and that is done by 

dividing the input plaintext into data chunks. Each chunk will be handled by one CPU and the data chunk size is 

based on the number of CPUs. Hence, multiple CPUs will be running with part of an initial input, and handles 

the input the same way that the normal Serpent works. Algorithm 2 takes as input the 𝐼𝑛𝑝𝑢𝑡𝑇𝑒𝑥𝑡 to be 

encrypted/decrypted, a Key generated as explained previously in Algorithm 1, and initial vector IV and 

𝐶𝑜𝑛𝑐𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 which is the number of concurrent processes. First, it calls Algorithm 3 𝑆𝑝𝑙𝑖𝑡𝐵𝑙𝑜𝑐𝑘𝑠 

(𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, 𝐼𝑛𝑝𝑢𝑡𝑇𝑒𝑥𝑡) with parameters 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 and 𝐼𝑛𝑝𝑢𝑡𝑇𝑒𝑥𝑡 to split the text into blocks to be 

processed expeditiously using multiple CPUs and returns SplitBlocks, which is a list of split blocks. In the first 

instance, Algorithm 3 𝑆𝑝𝑙𝑖𝑡𝐵𝑙𝑜𝑐𝑘𝑠(𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, 𝑇𝑒𝑥𝑡𝑇𝑜𝑆𝑝𝑙𝑖𝑡) takes as input parameters 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, and the 

𝑇𝑒𝑥𝑡𝑇𝑜𝑆𝑝𝑙𝑖𝑡. First, it checks if the text to be split is divisible by the block size, and finally returns a list of split 

up blocks 𝑆𝑝𝑙𝑖𝑡𝐵𝑙𝑜𝑐𝑘𝑠, to be passed back to algorithm 2. This is depicted in the flowchart shown Figure 1. 

Next, Algorithm 2 continues to prepare the list of blocks to be scheduled for each CPU. It then calls  

Algorithm 4 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑜𝑛𝑐𝑒 with parameters IV and 𝑇𝑎𝑠𝑘𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥, which is the index of the list of 

blocks. Finally, Algorithm 4 returns a Nonce for each CPU to be used as an input to Algorithm 5 𝐵𝑢𝑙𝑘𝐸𝑛𝑐𝐷𝑒𝑐 

with the other two parameters 𝑇𝑎𝑠𝑘𝐵𝑙𝑜𝑐𝑘𝑠 and 𝐾𝑒𝑦. Subsequently, Algorithm 5 encrypt/decrypt each block 

using the proposed Serpent using logistic map and CTR mode. Thereafter, the encrypted/decrypted blocks are 

joined together to form the final cipher-text/plaintext to be returned as 𝑂𝑢𝑡𝑝𝑢𝑡𝑇𝑒𝑥𝑡 by the main Algorithm 2. It 

is worthy of mention that when decrypting, cipher text data will be split and at the end, the produced blocks are 

amalgamated together to construct the final plaintext. 
 

Algorithm 2. Proposed 𝑆𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝 encryption/decryption process 
Input: InputText, Key, IV, ConcProcesses 

// InputText = plaintext/ciphortext; Key=256-bits user key; IV=64-bits initial-vector; 

ConcProcesses no. of concurrent processes 

Output: OutputTert, 

1. Function EncDeCTR (InputText, Key, IV,ConcProcesses) : 

2.   BlockSize ← 128 

3.   SplitBlocks ← call SplitBlocks (BlockSize, InputText)  // Calling method SplitBlocks 

with parameters Blocksize and InputText to be encrypted/decrypted & output SpluBlocks 

4.   if there is an error in SplitBlocks method then  

5.      go to step 30 

6.   end 

7.      DataSize ← length (SplitBlocks) 

8.      ChunkSizelnt ← DataSize/ConcProcesses 

9.   if ChunkSizelnt is 0 then 

10.      ChunkSizeInt ← 1 

11.   end 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6753-6772 

6756 

//If the number of processes is more than number of blocks, then each process will 

handle one block 

12.   Task Datalndex ← 1 

13.   RunningProcessesHolder ← empty  

14.   while TaskDatalndex < DataSize do 

15.   TakeBlocks ← Split Blocks.take Blocks(from TaskDatalndex,..., to (TaskDatalndex + 

ChunkSizeInt)) 

16.   Task Nonce ← call GenerateNonce(IV.Task Datalndex)    // Calling method GenenuteNoec 

with parameters TaskDataIndex & output variable Nonce 

17.   StartNewProcess ← call Bulk EncDec(Task Blocks, TaskNonce. Key)   // Calling mathod 

BulkEnDec with parameter TaskBlocks, TaskNonce and key & outputEncrDecTaskBlocks 

18.   RunningProcessesHolder.add (StartNewProcess) 

19.   Task DataIndex ← Task DataIndex - ChunkSizeInt   // update chunk index 

20.   end  

21.   Wait until all processes are done  

22.   RunningP rocessIndex ← 1  

23.   OutputText ← empty 

24.   NumberOfTasks ← length(RunningP rocessesHolder) 

25.   while RunningProcessIndex < NumberOfTasks do 

26.         OutputText.join(RunningProcessesHolder[RunningProcessIndex].result)  

27.         RunningProcessIndex ← RunningProcessIndex + 1   // next process index  

28.   end  

29.   Return: OutputText  

30. End Function 

 

Algorithm 3. Splitting the blocks algorithm 
Input: BlockSize, T extT oSplit;    // Expected block size is 128 

Output: SplitBlocks;    // A list of split blocks 

1. Function SplitBlocks(BlockSize, TextToSplit): 

2. TextT oSplitBits ← length(TextT oSplit) 

3. if TextToSplitBits mod BlockSize ≠ 0 then 

4. raise error and go to step 14 

5. end 

;     // should be divisible by block size 

6. SplitBlocks ← empty 

7. BlockIndex ← 1 

8. while BlockIndex < TextToSplitBits do 

9. TakeBlockF romT ext ← TextToSplit.split(from BlockIndex to (BlockIndex + BlockSize)) 

10. SplitBlocks.add(TakeBlockF romText) 

11. BlockIndex ← BlockIndex + BlockSize ;    // update next block start point 

12. end 

13. Return: SplitBlocks;    // List of split blocks 

14. End Function 

 

Algorithm 4. Get Nonce by IV-base and ID algorithm 
Input: IV base, ID;    // IV-base is 64 bits; ID is an integer 

Output: Nonce 

1. Function GenerateNonce(IV base, ID):  

2.       NoncePostf ix ← ConvertDecTo64Bits(ID) 

3.       Nonce ← IV base.append(NonceP ostf ix)  

4.       Return: Nonce  

5. End Function 

 

Algorithm 5. Bulk encrypt/decrypt algorithm 
Input: TaskBlocks, TaskNonce, Key  

Output: EncDecTaskBlocks 

1. Function BulkEncDec(TaskBlocks, TaskNonce, Key):  

2.      TaskBlocksSize ← Length (TaskBlocks)  

3.      EncDecTaskBlocks ← empty  

4.      BlockIndex ← 1  

5.      while BlockIndex < TaskBlocksSize do  

6.         EncDecBlcok ←  

           BinaryXOR(TaskBlocks.getBlockAt[BlockIndex], SerpentEncDec(TaskNonce, Key))  

7.         EncDecTaskBlocks.add(EncDecBlcok) 

8.         TaskNonce ← IncrementNonce(TaskNonce) ;    // Add 1 to the current nonce  

9.         BlockIndex ← BlockIndex + 1;    // Go to the next block  

10.        end  

11.      Return: EncrDecTaskBlocks 

12. End Function 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Text encryption using secure and expeditious multiprocessing … (Huwaida T. Elshoush) 

6757 

 
 

Figure 1. The proposed encryption/decryption 𝑆𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  algorithm flowchart 

 

 

3. RESULTS AND DISCUSSION 

This section presents series of experiments to evaluate the performance and demonstrating the 

efficiency of the proposed expeditiousness 𝐒𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  in relation to the execution time, and 

comparing its performance with the traditional Serpent. From the security aspect, the key space of the proposed 

method has been investigated. Moreover, comparisons to related schemes are also conducted. 

 

4.1.  Preliminaries 

The proposed 𝐒𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝 and traditional Serpent were implemented using Python 3.9. 

All the experimental results were tested on a laptop with Windows 64 bit OS. The laptop specifications were 

4 GB RAM and Core i5 processor with 2.20 GHz speed. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6753-6772 

6758 

4.2.  Performance testing  

The execution time is one of the most significant metrics that reflects the performance of any 

encryption algorithm. Hence, the performance of proposed method 𝑆𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  was tested using 

10 different block sizes and different number of CPUs and the execution times were meticulously recorded in 

seconds. Each block size is tested twice for both encryption and decryption, hence a total of 80 experiments 

were performed using different processors yielding a grand total of 160 experiments. Furthermore, the 

performance of the proposed method is scrutinized and juxtaposed against the traditional Serpent as depicted 

in Table 1 and Table 2. These tables were split into two groups of small and large block sizes. The last three 

columns in each table expound the encryption/decryption reduction rates when compared with the traditional 

Serpent. 

 

 

Table 1. Encryption execution time and reduction rate (in %) of proposed 𝐒𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝 compared 

with traditional Serpent for different block sizes 
Block Size (in bits) Encryption execution time (in sec) Encryption reduction rate (in %) 

Traditional Serpent Proposed 𝐒𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝 

2 CPUs 4 CPUs 8 CPUs 2 CPUs 4 CPUs 8 CPUs 

Small Block Sizes 
64 0.88 0.59 0.41 0.34 32.23 54.13 61.42 

128 1.53 0.99 0.61 0.47 35.18 60.12 69.27 

256 3.18 1.91 1.09 0.77 39.85 65.72 75.65 
512 6.35 3.67 1.98 1.36 42.08 68.79 78.53 

1024 12.97 7.04 3.75 2.49 45.72 71.06 80.81 

Large Block Sizes 
10 000 123.33 101.31 47.89 28.95 17.85 61.17 76.52 

25 000 376.24 232.99 126.29 75.98 38.08 66.43 79.81 

50 000 617.85 471.48 258.87 152.55 23.69 58.10 75.31 
100 000 1218.84 955.74 515.98 305.28 21.58 57.66 74.95 

250 000 3040.86 2432.89 1291.02 773.56 19.99 57.54 74.56 

 

 

Table 2. Decryption execution time and reduction rate (in %) of proposed 𝑆𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  compared 

with traditional Serpent for different block sizes 
Block size (in bits) Decryption execution time (in sec) Decryption reduction rate (in %) 

Traditional Serpent Proposed 𝐒𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝 

2 CPUs 4 CPUs 8 CPUs 2 CPUs 4 CPUs 8 CPUs 

Small block sizes 
64 0.74 0.61 0.39 0.32 17.75 46.65 56.55 

128 1.47 0.95 0.61 0.46 35.37 58.78 68.43 

256 2.98 2.02 1.11 0.76 32.23 62.87 74.33 
512 5.89 3.69 1.99 1.33 37.17 66.27 77.45 

1024 11.81 6.93 3.77 2.64 41.28 68.10 77.66 

Large Block Sizes 
10 000 114.83 92.95 49.49 30.12 19.05 56.90 73.77 

25 000 289.62 235.73 128.84 76.15 18.61 55.51 73.71 

50 000 565.58 469.95 260.06 153.54 16.91 54.02 72.85 
100 000 1136.46 982.27 513.73 306.32 13.57 54.79 73.05 

250 000 2829.73 2349.86 1300.52 758.89 16.96 54.04 73.18 

 

 

4.2.1. The encryption process performance using 2, 4, and 8 CPUs  

Looking at Table 1, Figure 2(a) and 2(b) it is very obvious that the proposed 𝐒𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  

method outperformed the traditional Serpent in the encryption process. Regarding small block sizes, it is very 

blatant that the encryption time is much less especially when considering 8 CPUs. The more the number of 

CPUs, the less the encryption execution time. The reduction rates for the three tested CPUs are presented in 

the last three columns of Table 1, and the proposed method achieved up to 77.66% reduction rate for 1,024 bits 

of data compared with the traditional Serpent. Even for much larger block sizes, the reduction rate was on 

average 73% when juxtaposed with traditional Serpent. Figures 3(a) and 3(b) depicts the reduction rates for 

different block sizes (small size and large size), respectively. It is noteworthy to promulgate that the encryption 

reduction rate for the proposed method parallel execution of small block sizes is certainly less and will 

increase just as the block size increases. Nonetheless, the increase will remain roughly constant after a 

particular value as clearly manifested in Table 1. 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Text encryption using secure and expeditious multiprocessing … (Huwaida T. Elshoush) 

6759 

 
(a) 

 

 
(b) 

 

Figure 2. Encryption execution time of proposed 𝑆𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝 compared with traditional Serpent 

using different block sizes, (a) large size, (b) small size 

 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6753-6772 

6760 

 
(a) 

 

 
(b) 

 

Figure 3. Reduction rate of encryption execution time of proposed 𝑆𝒆𝒓𝒑𝒆𝒏𝐭𝐂𝐓𝐑−𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜𝐌𝐚𝐩  compared with 

traditional Serpent using different block sizes, (a) small size, (b) large size 

 

 

4.2.2. The decryption process performance using 2, 4 and 8 CPUs 

Table 2 and Figures 4(a) and 4(b) manifest the surpass of the proposed 𝑆𝒆𝒓𝒑𝒆𝒏𝐭𝐂𝐓𝐑−𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜𝐌𝐚𝐩  

method in the decryption execution time. Using 8 CPUs, alleviated the reduction rate up to 77.66% for  

1024 bytes of block data and an average of 73.5% for large data blocks. Scrutinizing the last three columns of 

Table 2, evidently proclaim that the proposed method outcompetes the standard Serpent and lessened the 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Text encryption using secure and expeditious multiprocessing … (Huwaida T. Elshoush) 

6761 

decryption time greatly. This is evinced in Figures 5(a) and 5(b) for small and large data blocks apiece. 

Consequently, using parallel processing and hence multiple CPUs abate the execution performance to a great 

extent. 

 

 

 
(a) 

 

 
(b) 

 

Figure 4. Decryption execution time of proposed 𝑆𝒆𝒓𝒑𝒆𝒏𝐭𝐂𝐓𝐑−𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜𝐌𝐚𝐩  compared with traditional Serpent 

using different block sizes, (a) large size, (b) small size 

 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6753-6772 

6762 

 
(a) 

 

 
(b) 

 

Figure 5. Reduction rate of decryption execution time of proposed 𝐒𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  compared with 

traditional Serpent using different block sizes, (a) large size, (b) small size 

 

 

4.2.3. CPU usage analysis 

Figure 6 displays the CPU usage of the traditional Serpent (using one CPU) together with that of the 

proposed 𝑆𝒆𝒓𝒑𝒆𝒏𝐭𝐂𝐓𝐑−𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜𝐌𝐚𝐩  method when using 2, 4, and 8 CPUs respectively. In Figure 6(a), only  

CPU 6 is utilized fully, while Figure 6(b) shows the full usage of both CPU 5 and CPU 6. On the other hand, 

Figures 6(c) and 6(d) display the exploitation of utterly multiple CPUs and hence the superior utilization of the 

CPUs. This has a high effect on the CPU usage and clearly the proposed method prevailed over the traditional 

Serpent with respect to CPU usage. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Text encryption using secure and expeditious multiprocessing … (Huwaida T. Elshoush) 

6763 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 6. CPU usage (a) traditional Serpent using ONLY one CPU; (b) 𝑆𝒆𝒓𝒑𝒆𝒏𝐭𝐂𝐓𝐑−𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜𝐌𝐚𝐩  using CPU 5 

and CPU 6; (c) 𝑆𝒆𝒓𝒑𝒆𝒏𝐭𝐂𝐓𝐑−𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜𝐌𝐚𝐩 using CPUs 4, 5, 6, and 8; and (d) 𝑆𝒆𝒓𝒑𝒆𝒏𝐭𝐂𝐓𝐑−𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜𝐌𝐚𝐩  using 8 

CPUs 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6753-6772 

6764 

4.3.  Security analysis 

4.3.1. Key space analysis 

For an encryption system to be impervious to brute force attack, it is recommended to have a large 

key space. The input to the proposed method besides the randomly generated 256-bit key is the set IV, Nonce, 

and ID. These are initial conditions and control parameters to the Logistic Map, which are all double-precision 

numbers. Therefore, if the computational precision of each of 𝑟 and 𝑥 are 10−16, then the key space is greater 

than 1016×1016×Key. Hence, from the security aspect, the key space of the proposed method is analyzed and is 

given by (1): 

 

𝑛 × 1016 × 1016 × 2256 (1) 

 

where 𝑛 is the number of blocks. 

The traditional Serpent, on the other hand, has a key space of only 2256. This is incomparable to our 

proposed method, which is 𝑛 × 1016 × 1016 × 2256. Furthermore, the more number of processes used, the 

better execution time as demonstrated in Figures 2 and 4. Hence, our proposed method excels the traditional 

Serpent in terms of key space.  

Ergo, the proposed method has an immense sufficient key space to resist all sorts of brute-force 

attacks, ensuring its effectiveness. Furthermore, because the proposed method is chaos-based, it is inferred that 

any small change in the initial conditions or parameter change values, will induce an unsuccessful decryption 

of the ciphertext [45]. Hence, the precise knowledge of the given key is necessary for decrypting the ciphertext 

[40]. 

 

4.3.2. Strict avalanche criterion 

Avalanche criterion is one of the most vital criteria in assessing the strength of any cipher technique. 

It evaluates how much the ciphertext changes as a result of a small change in the input. It is highly 

recommendable in any cipher technique to have avalanche score in the range 0.5±ε [46]. That is to say, if only 

one bit is modified in the input, then every output bit has a probability of 0.5±ε to change. Our proposed 

method has two inputs, key and plaintext. Therefore, the two aspects of avalanche criterion: 

- Key avalanche: changing just one bit in the key and using the same plaintext, the ciphertext will hence 

change with a probability of 0.5±ε. 

- Plaintext avalanche: changing just one bit in the plaintext and using the same key, and there will be a 

probability change of 0.5±ε.  

The avalanche score is gauged as (2). 

 
𝐾𝑒𝑦

𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡
𝑎𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒 𝑠𝑐𝑜𝑟𝑒 =  (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑏𝑖𝑡𝑠) 

/ (𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦/𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 𝑏𝑖𝑡𝑠)  ×  100  (2)  

 

Twelve experiments were conducted using different plaintext sizes, consequently the key and 

plaintext avalanche scores were evaluated and gave favorable results as demonstrated in Table 3. This attested 

that any incorrect guess will entirely change the obtained ciphertext. Conversely, any mistaken key prediction 

will produce a completely wrong plaintext. Noteworthy, that when the plaintext bit is changed in the middle, 

the avalanche score is higher than when the changed bit is at the end. In Table 4, a detailed example is 

explained showing an input key, 128 bits plaintext and their corresponding generated ciphertext. Then, the 

second row of the table shows the key avalanche where one bit in the key (shown in red) is changed to produce 

a ciphertext having 52.87% avalanche score. Similarly, the third row presents the plaintext avalanche score of 

50.29% when just one bit in the plaintext (shown in red) was changed. This affirms that the proposed method 

exhibits avalanche criteria. 

 

 

Table 3. Key and plaintext avalanche scores for different input plaintext sizes 
Number of bits in plain-text/ciphertext Key Avalanche Plaintext Avalanche 

# of changed bits % of changed bits # of changed bits % of changed bits 

128 86 50.29% 80 47.62% 

128 92 52.87% 86 50.29% 

384 196 40.66% 206 42.30% 
256 130 40.50% 148 44.85% 

512 264 40.93% 304 45.78% 

640 340 41.98% 338 41.78% 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Text encryption using secure and expeditious multiprocessing … (Huwaida T. Elshoush) 

6765 

Table 4. An example for key and plaintext avalanche scores for 128 bits input plaintext 
Avalanche Criteria Input Key Plaintext 128 bits Ciphertext 128 bits Avalanche Score 

 0c0c   c93b   d432 1001 1000 0010 1111 0001 1001 1110 0101  
fe0e    9a97   6a6b 0000 1011 1001 0100 1000 0000 0011 1001 

0e8e    ac43   a61c 1110 0010 0110 0010 1110 1111 0001 1111 

0103   259a   edb8 0111 0110 0100 1110 1110 0000 0010 1010 
e2a9 7b64 0817 0000 1011 0011 1100 1000 0100 1111 1110 

0100 0101 1011 0100 0101 0010 1110 0000 

1100 0010 1110 1110 0001 1001 0100 1101 
0010 1111 1101 1101 0000 1011 0111 1011 

Key avalanche 0c0c   c93b   d432 1001 1000 0010 1111 0011 0000 1011 1100 52.87% 

fe0e    9a97   6a6b 0000 1011 1001 0100 0010 0111 1101 0010 
0e8e    ac43   a61c 1110 0010 0110 0010 0110 1101 0001 1101 

0103   259a   edb8 0111 0110 0100 1110 1101 1001 1110 0011 

e2a9 7b64 0815 0000 1011 0011 1100 1011 0101 0110 0001 
0100 0101 1011 0100 0101 0100 0101 1110 

1100 0010 1110 1110 1011 1111 1111 0101 

0010 1111 1101 1101 1000 1110 1001 1101 

Plaintext avalanche 0c0c   c93b   d432 1001 1000 0010 1111 1001 0001 1010 0110 50.29% 

fe0e    9a97   6a6b 0000 1011 1001 0100 0001 1100 1001 1001 

0e8e    ac43   a61c 1110 0010 0110 0010 0100 0111 0000 0011 
0103   259a   edb8 0111 0110 0100 1111 1010 1100 1001 0001 

e2a9 7b64 0817 0000 1011 0011 1100 0011 0010 0110 1110 
0100 0101 1011 0100 0111 0100 0011 0111 

1100 0010 1110 1110 0001 1010 1101 1101 

0010 1111 1101 1101 1010 0000 0001 0001 

 

 

4.3.3. The security of the logistic map 

Due to the chaotic systems’ characteristics of being unforeseeable, random, ergodic and high 

sensitive to preliminary conditions, they are well suited to crypto systems and secure communication [6]. The 

proposed 𝑆𝒆𝒓𝒑𝒆𝒏𝐭𝐂𝐓𝐑−𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜𝐌𝐚𝐩  method improves the security by generating distinct block sub-keys 

utilizing logistic map. Ergo, adding intricacy to the proposed enhanced Serpent. Furthermore, all block sub-

keys can be generated prior to the inauguration of the enhanced Serpent, consequently running the blocks in 

parallel and further conceal the plaintext patterns. Noteworthy to mention that executing the ameliorated 

Serpent in parallel CTR mode results in expeditious execution.  

 

4.3.4. The randomness of the proposed method 𝐒𝒆𝒓𝒑𝒆𝒏𝒕𝑪𝑻𝑹−𝑳𝒐𝒈𝒊𝒔𝒕𝒊𝒄𝑴𝒂𝒑 

The statistical test suite (STS) recommended by the NIST [18], [46] was used to evaluate the random- 

ness feature of the proposed 𝑆𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  method. This NIST suite test verifies that the produced 

output is statistically imperceptible from an unpredictable random output. A probability, P-value, is calculated 

for 15 different tests, where a range [0.01, 1] for P is required for passing the tests. The experiments have been 

performed on a significance level of 0.01, which certifies that the likelihood of declining the null hypothesis 

while it is true is 0.01 [18], [46]. The proposed method succeeded in passing all tests as verified in Figure 7 

and therefore signifies its efficiency. 

 

 

 
 

Figure 7. NIST statistical test suite for scrutinizing the proposed 𝑆𝒆𝒓𝒑𝒆𝒏𝐭𝐂𝐓𝐑−𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜𝐌𝐚𝐩 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6753-6772 

6766 

4.4.  The statistical analysis 

4.4.1. Histogram analysis 

The frequency analysis is based on histograms, which measures if any data can be collected about 

the plaintext by scrutinizing a histogram [39]. Figure 8 depicts the histogram analysis. The plaintext 

histogram is shown in Figure 8(a), whilst Figure 8(b) demonstrates the histogram of ciphertext which is 

uniform and does not testify any information about the plaintext that generated it. Ergo, the proposed 

S𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  method is robust against histogram attacks in addition to frequency attacks. 

 

 

Plaintext (280 characters):  

“Once upon a time there was a dear little girl who was loved by every one who looked at her, 

but most of all by her grandmother, and there was nothing that she would not have given to the child. 

Once she gave her a little cap of red velvet, which suited her so well that she would never wear anything 

else. She was always called little red riding hood.” 

 

 
 

(a) 

 

Ciphertext: 

 
 

 
 

(b)

Figure 8. Histogram of the (a) plaintext and (b) ciphertext 

 

 

4.4.2. Correlation coefficient analysis 

To avoid statistical attacks, correlation coefficient analysis is used to measure the association 

between the plaintext and ciphertext [39], [47]. It is calculated using (3). Figures 9(a) and 9(b) depict the 

correlation distribution of adjacent bits in a 280-characters plaintext and ciphertext respectively. It is evident 

Figure 9(b) that the correlation distribution of ciphertext is uniform when juxtaposed with the plaintext 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Text encryption using secure and expeditious multiprocessing … (Huwaida T. Elshoush) 

6767 

generating it. The attained correlation values for plaintext and ciphertext were very close to zero, having 

values of -0.2709 and 0.2341 respectively. Table 5 shows the correlation results when considering different 

text files of different sizes. These robust confounding properties achieved by the examined correlation 

analysis evade statistical attacks and affirms the efficacy of the proposed method. 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
∑(𝒙𝒊−�̅�)(𝒚𝒊−�̅�)

√∑(𝒙𝒊−�̅�)𝟐𝜮(𝒚𝒊−�̅�)𝟐
  (3) 

 

where 𝑥𝑖 and 𝑦𝑖  are the values of the 𝑥 and 𝑦 variables in a sample, and (�̅�) and (�̅�) are the mean values of 

the 𝑥 and 𝑦 variables respectively. 

 

 

 
(a) 

 

 
(b) 

 

Figure 9. Correlation analysis of (a) the plaintext (280 characters) and (b) the ciphertext  

 

 

Table 5. The results of correlation between different text files 
File name Correlation Size (in Bytes) 

Plaintext1 & ciphertext1 0.039694093 256 

Plaintext2 & ciphertext2 -0.2709 280 

Plaintext3 & ciphertext3 0.154811841 352 
Plaintext4 & ciphertext4 -0.021667779 496 

 

 

4.5.  Comparison with related schemes 

This section shed the light on the propitious prospective of the proposed method by comparing it 

with related schemes, namely Traditional Serpent, AES running in multiprocessing environment and 

references [1], [36]–[41], [43], [44], [48]–[54]. It is juxtaposed in terms of performance, security analysis 

including key space, key sensitivity, plaintext avalanche criterion, in addition to statistical analysis, namely 

histogram analysis and correlation coefficient analysis. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6753-6772 

6768 

4.5.1. Comparing the time execution performance 

Table 6 presents the execution time taken by the proposed 𝐒𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝 method 

juxtaposed with Pendli et al. [1], Shah et al. [36], Zagi and Maolood [41], Shah et al. [48], Elkamchouchi  

et al. [37] and Elshoush et al. [43]. It is very obvious that the proposed method is superior to the current 

methods manifesting an encryption reduction of up to 80.81% compared with the maximum procured by 

Shah et al. [48] attaining an encryption reduction rate of 52.05%. 
 

 

Table 6. Comparison of the time execution reduction rate in % for the proposed method with different Serpent 

enhanced schemes and a multiprocessor AES 
Text encryption algorithm Reference Encryption reduction rate (in %) Decryption reduction rate (in %) 

Multiprocessing AES Pendli et al. [1] 2016 40-45% 38-45% 

Serpent-based Shah et al. [36] 2018 16.54% 30.11% 

Zagi et al. [41] 2020 20.63%-23.8% 27.08% -38.54% 
Shah et al. [48] 2020 52.05% 52.31% 

Serpent and Chaotic-based Elkamchouchi et al. [37] 2018 50.3% 51.87% 

Elshoush et al. [43] 2022 48.1%-53.2% 45.3%-51.5% 

Proposed 𝑺𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝 61.42%- 80.81% 56.55%-77.66% 

 

 

4.5.2. Comparison of key space analysis 

It is essential for every cryptosystem to have a large key space to be infallible versus a brute-force 

attack. Table 7 shows the key space of our proposed enhanced Serpent compared to different encryption 

schemes, specifically serpent-based, chaotic-based and Serpent-chaotic-based ones. Blatantly, the proposed 

S𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  outperforms all related schemes and doubtlessly substantiated its robustness and 

resistance to brute force attack. 

 
 

Table 7. Comparison of key space for the proposed method and related encryption schemes 
Text encryption algorithm Reference Key space 

Serpent-based Traditional Serpent 2256 

Tayel et al. [50] 2018 2256 

Shah et al. [48] 2020 2264 
Hussain et al. [44] 2023 2100 

Chaotic-based Murillo-Escobar et al. [52] 2014 2128 

Ekhlas et al. [39] 2017 2213((1016)4) 
Menon et al. [51] 2020 2128 

OleiwiTuama et al. [54] 2021 2545(1015)11 

Charalampidis et al. [40] 2022 2480 
Serpent and Chaotic-based Elkamchouchi et al. [37] 2018 12810 

Yousif [38] 2019 10112 

Elshoush et al. [43] 2022 n×2256 (n=no. of blocks) 
Proposed 𝑺𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝 n×1016×1016×2256 (n=no. of blocks) 

 

 

4.5.3. Comparison of key sensitivity 

A good cryptosystem must be highly sensitive to secret keys which reveals how ciphertext alters as 

a result of a tiny change in the secret key. Section 4.3.2. proffer how the proposed system unveils key 

sensitivity with a score of 50.29%. Even when compared with related works of Elkamchouchi et al. [37], 

Ekhlas et al. [39], Murillo-Escobar et al. [52], Mangi et al. [53] and OleiwiTuama et al. [54], our proposed 

method blatantly achieved superb results compared to their claimed results. 

 

4.5.4. Comparison of plaintext avalanche effect 

Table 8 presents the plaintext avalanche of the proposed method together with recent work. Our 

proposed method achieved supreme results for plaintext avalanche as elucidated in section 4.3.2. when 

juxtaposed with the work of Hussain et al. [44] and Mangi et al. [53] as delineated in Table 8. This affirms 

the efficacy of the proposed method in terms of plaintext avalanche effect. 
 

 

Table 8. Comparison of plaintext avalanche for the proposed method and related work of [44] and [53] 
Text encryption algorithm Reference Plaintext avalanche 

Serpent-based Hussain et al. [44] 50.0% 
Logistic map Mangi et al. [53] 52.04% 

Serpent and Chaotic-based Proposed 𝐒𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝 52.87% 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Text encryption using secure and expeditious multiprocessing … (Huwaida T. Elshoush) 

6769 

4.5.5. Comparison of histogram analysis 

Figure 8 shows the histograms of our proposed method. Obviously, they show uniformity of 

ciphertext histograms. Thus referring to the histograms of researches Elkamchouchi et al. [37], Ekhlas et al. 

[39], Murillo-Escobar et al. [52], Charalampidis et al. [40] and OleiwiTuama et al. [54] our proposed 

method’s results were superlative showing uniformity of ciphertext histogram. 

 

4.5.6. Comparison of correlation coefficient 

Regarding correlations coefficient, Table 9 presents results achieved by different researches. The 

proposed method attained good results -0.2709. Palpably our proposed method attained excellent results 

compared to prevailing schemes. 

 

 

Table 9. Comparison of correlation coefficient for the proposed method and related encryption schemes 
Text encryption algorithm Reference Correlation coefficient 

Serpent-based Traditional Serpent 0.0814 

Chaotic-based Mangi et al. [53] -0.0024 

Ekhlas et al.[39] -0.0215 

Serpent and Chaotic-based Ali et al. [49] 0.0023 
Elkamchouchi et al. [37] 0.006 

Proposed 𝐒𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝 -0.2709 

 

 

4. CONCLUSION 

Yet the most secure and robust cipher will be deemed impractical if it has substandard performance. 

In this paper, we proffered an enhanced 𝐒𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  for encrypting text using logistic map and 

running in multiprocessing CTR mode. The security is further boosted by randomly generating intricate sub-

keys for each block using logistic map. Using Python 3.9, we comprehensively tested the enhanced 

𝐒𝑒𝑟𝑝𝑒𝑛𝑡𝐶𝑇𝑅−𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑀𝑎𝑝  using the most widely metrics, viz. performance execution time, CPU usage, key 

space analysis, key/plaintext avalanche effect, histogram analysis and correlation coefficient analysis. 

Compared to the traditional Serpent, it effectively achieved an encryption reduction rate of up to 80.81% for 

1K block and 74.56% for 250 000 bits blocks of data. Whereas the decryption reduction rate came up to 

77.66% for 1K block and 73.18% for 250 000 bits data blocks. It is noteworthy to mention that the reduction 

rate increased considerably when encrypting/decrypting small texts whilst stayed on an average reduction 

rate when applied to large text. It has an excessive key space due its dependency on the number of blocks and 

the randomly generated logistic map keys, thus giving it superiority regarding brute force attacks. Moreover, 

any change in key/plaintext made a considerable percentage change in the ciphertext, thus exhibiting 

avalanche criteria, specifically 52.87% for key avalanche and 50.29% for plaintext avalanche for 128 bits of 

plaintext. Additionally, it withstood statistical and frequency attacks. Furthermore, NIST Statistical Test 

Suite (STS) was utilized to test its randomness, where it passed all tests successfully. When juxtaposed with 

prevailing methods, the expeditious proposed method was infallible and beyond comparison and assuredly 

confirmed its efficacy. As future work, we recommend testing the proposed method in encrypting/decrypting 

images, seeing that it is unquestionably will attain superior results. 

 

 

DATA AVILIBILTY 

The data is available at GitHub: Enhanced SerpentCTR−LogisticMap Code. 

 

 

REFERENCES 
[1] V. Pendli, M. Pathuri, S. Yandrathi, and A. Razaque, “Improvising performance of advanced encryption standard algorithm,” 

2016 Second International Conference on Mobile and Secure Services (MobiSecServ), Gainesville, FL, USA, 2016, pp. 1-5, doi: 

10.1109/MOBISECSERV.2016.7440224. 
[2] M. E. Smid, “Development of the advanced encryption standard,” Journal of Research of the National Institute of Standards and 

Technology, vol. 126, p. 126024, Aug. 2021, doi: 10.6028/jres.126.024. 

[3] S. Yadav, U. Verma, and C. Bhardwaj, “Data security in cloud computing using homomorphic encryption,” International Journal 
of Scientific Research, vol. 3, no. 5, pp. 78–81, Jun. 2012, doi: 10.15373/22778179/may2014/26. 

[4] R. Anderson, “Serpent - A candidate block cipher for the advanced encryption standard,” University of Cambridge, 2001. 

[5] M. Nagendra and M. C. Sekhar, “Performance improvement of advanced encryption algorithm using parallel computation,” 
International Journal of Software Engineering and its Applications, vol. 8, no. 2, pp. 287–296, 2014, doi: 10.14257/ijseia.2014.8.2.28. 

[6] H. T. Elshoush, B. M. Al-Tayeb, and K. T. Obeid, “Enhanced serpent algorithm using Lorenz 96 chaos-based block key 

generation and parallel computing for RGB image encryption,” PeerJ Computer Science, vol. 7, p. e812, Dec. 2021, doi: 
10.7717/PEERJ-CS.812. 

[7] B. Najafi, B. Sadeghian, M. S. Zamani, and A. Valizadeh, “High speed implementation of serpent algorithm,” in Proceedings of 

the International Conference on Microelectronics, ICM, 2004, pp. 718–721, doi: 10.1109/icm.2004.1434767. 

https://github.com/majidsd/serpent-algorithm


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6753-6772 

6770 

[8] K. Kabilan, M. Saketh, and K. K. Nagarajan, “Implementation of Serpent cryptographic algorithm for secured data transmission,” 

in 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Mar. 2017, 
pp. 1–6, doi: 10.1109/ICIIECS.2017.8275863. 

[9] R. Anderson, E. Biham, and L. Knudsen, “The case for serpent,” AES Candidate Conference, pp. 349–353, 2000. 

[10] S. Simha, Prathibha, and H. Priya, “Enhancing cloud security with the implementation of serpent encryption algorithm,” Imperial 
Journal of Interdisciplinary Research, vol. 3, no. 5, 2017. 

[11] D. A. Osvik, “Speeding up serpent,” in AES candidate conference, 2000, pp. 317–329. 

[12] M. H. Taher, A. E. T. El_Deen, and M. E.Abo-Elsoud, “Hardware implementation of the serpent block cipher using FPGA 
technology,” International Journal of Electronics and Communication Engineering & Technology (IJECET), vol. 5, no. 10,  

pp. 34–44, 2014. 

[13] D. Ivančić, D. Runje, and M. Kovač, “Implementation of serpent encryption algorithm on 24-bit DSP processor,” in International 
Symposium on Image and Signal Processing and Analysis, ISPA, 2001, pp. 411–416, doi: 10.1109/ISPA.2001.938665. 

[14] M. Naeemabadi, B. S. Ordoubadi, A. M. Dehnavi, and K. Bahaadinbeigy, “Comparison of Serpent, Twofish and Rijndael 

encryption algorithms in teleophthalmology system,” Advances in Natural and Applied Sciences, vol. 9, no. 4, pp. 137–149, 2015.  
[15] K. J. Compton, B. Timm, and J. Vanlaven, “A simple power analysis attack on the serpent key schedule,” Ratio, pp. 1–10, 2009. 

[16] E. Biham, R. Anderson, and L. Knudsen, “Serpent: A new block cipher proposal,” in Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1372, Springer Berlin 
Heidelberg, 1998, pp. 222–238. 

[17] M. A. Al-Shabi, “A survey on symmetric and asymmetric cryptography algorithms in information security,” International Journal 

of Scientific and Research Publications (IJSRP), vol. 9, no. 3, Mar. 2019, doi: 10.29322/ijsrp.9.03.2019.p8779. 
[18] H. T. Elshoush, B. H. Abdallah, D. M. Ahmed, A. A. Ishag, and S. O. Afifi, “Expeditiousness serpent using CTR mode and 

logistic map,” Journal of Information Hiding and Multimedia Signal Processing, vol. 13, no. 3, pp. 214–225, 2022. 

[19] M. Aljohani, I. Ahmad, M. Basheri, and M. O. Alassafi, “Performance analysis of cryptographic pseudorandom number 
generators,” IEEE Access, vol. 7, pp. 39794–39805, 2019, doi: 10.1109/ACCESS.2019.2907079. 

[20] R. Matthews, “On the derivation of a ‘chaotic’ encryption algorithm,” Cryptologia, vol. 13, no. 1, pp. 29–42, Jan. 1989, doi: 
10.1080/0161-118991863745. 

[21] Z. Lin, G. Wang, X. Wang, S. Yu, and J. Lü, “Security performance analysis of a chaotic stream cipher,” Nonlinear Dynamics, 

vol. 94, no. 2, pp. 1003–1017, Jun. 2018, doi: 10.1007/s11071-018-4406-8. 
[22] S. M. H. Alwahbani and H. T. I. Elshoush, “Chaos-based audio steganography and cryptography using LSB method and one-time 

pad,” in Lecture Notes in Networks and Systems, vol. 16, Springer International Publishing, 2018, pp. 755–768. 

[23] S. M. H. Alwahbani and H. T. I. Elshoush, “Hybrid audio steganography and cryptography method based on high least significant 
bit (LSB) layers and one-time pad—A novel approach,” in Studies in Computational Intelligence, vol. 751, Springer International 

Publishing, 2018, pp. 431–453. 

[24] K. Audhkhasi, “Chaos based cryptography,” Citeseerx, pp. 1–8, 2009, Accessed: Mar. 04, 2024. [Online]. Available: 
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6a8a9ad63e38a8f26f89c56e2d6affc8b6daa584 

[25] L. Kocarev, “Chaos-based cryptography: a brief overview,” IEEE Circuits and Systems Magazine, vol. 1, no. 3, pp. 6–21, 2001, 

doi: 10.1109/7384.963463. 
[26] D. Xiao, X. Liao, and S. Deng, “One-way hash function construction based on the chaotic map with changeable-parameter,” 

Chaos, Solitons and Fractals, vol. 24, no. 1, pp. 65–71, Apr. 2005, doi: 10.1016/S0960-0779(04)00456-4. 

[27] A. G. Marco, A. S. Martinez, and O. M. Bruno, “Fast, parallel and secure cryptography algorithm using Lorenz’s attractor,” 
International Journal of Modern Physics C, vol. 21, no. 3, pp. 365–382, Mar. 2010, doi: 10.1142/S0129183110015166. 

[28] O. M. Al-Hazaimeh, M. F. Al-Jamal, N. Alhindawi, and A. Omari, “Image encryption algorithm based on Lorenz chaotic map 

with dynamic secret keys,” Neural Computing and Applications, vol. 31, no. 7, pp. 2395–2405, Aug. 2019, doi: 10.1007/s00521-
017-3195-1. 

[29] S. C. Phatak and S. S. Rao, “Logistic map: a possible random-number generator,” Physical Review E, vol. 51, no. 4, pp. 3670–

3678, Apr. 1995, doi: 10.1103/PhysRevE.51.3670. 
[30] National Bureau of Standards, “DES modes of operation,” Federal Information Processing Standards Publications (FIPS PUBS), 

1980. 

[31] M. Dworkin, Recommendation for block cipher modes of operation methods and techniques, no. December. 2001. 
[32] A. Altigani, M. Abdelmagid, and B. Barry, “Analyzing the performance of the advanced encryption standard block cipher modes 

of operation: highlighting the national institute of standards and technology recommendations,” Indian Journal of Science and 

Technology, vol. 9, no. 28, Jul. 2016, doi: 10.17485/ijst/2016/v9i28/97795. 
[33] D. Bujari and E. Aribas, “Comparative analysis of block cipher modes of operation,” International Advanced Researches and 

Engineering Congress, pp. 2–5, 2017. 

[34] H. Lipmaa, P. Rogaway, and D. Wagner, “Comments to NIST concerning AES-modes of operations: CTR-mode encryption,” 
ResearchGate (unpublished), pp. 1–4, 2000. 

[35] H. T. Elshoush, B. M. Al-Tayeb, and K. T. Obeid, “New approach for serpent block cipher algorithm based on multi techniques,” 

PeerJ Computer Science, p. 1, 2017, doi: 10.34279/0923-007-003-004. 
[36] T. Shah, T. U. Haq, and G. Farooq, “Serpent algorithm: An improvement by 4×4 Sbox from finite chain ring,” in International 

Conference on Applied and Engineering Mathematics, Proceedings, Sep. 2018, pp. 32–37, doi: 10.1109/ICAEM.2018.8536293. 

[37] H. M. Elkamchouchi, A. E. Takieldeen, and M. A. Shawky, “A modified serpent based algorithm for image encryption,” in 
National Radio Science Conference, NRSC, Proceedings, Mar. 2018, pp. 239–248, doi: 10.1109/NRSC.2018.8354369. 

[38] I. A. Yousif, “Proposed a permutation and substitution methods of serpent block cipher,” Ibn AL-Haitham Journal for Pure and 

Applied Sciences, vol. 32, no. 2, pp. 131–144, May 2019, doi: 10.30526/32.2.2120. 
[39] A. Ekhlas, T. Albahrani, and A. Karam, “A text encryption algorithm based on self-synchronizing stream cipher and chaotic 

maps,” International Journal of Scientific Research in Science, Engineering and Technology, 2017, doi: 

10.13140/RG.2.2.31642.70085. 
[40] N. Charalampidis, C. Volos, L. Moysis, A. V Tutueva, D. Butusov, and I. Stouboulos, “Text encryption based on a novel one 

dimensional piecewise chaotic map,” in Proceedings of the 2022 Conference of Russian Young Researchers in Electrical and 

Electronic Engineering, ElConRus 2022, Jan. 2022, pp. 263–268, doi: 10.1109/ElConRus54750.2022.9755622. 
[41] H. R. Zagi and A. T. Maolood, “A novel serpent algorithm improvement by the key schedule increase security,” Tikrit Journal of 

Pure Science, vol. 25, no. 6, pp. 114–125, Dec. 2020, doi: 10.25130/tjps.v25i6.320. 

[42] H. Singh, “Enhancing AES using novel block key generation algorithm and key dependent S-boxes,” International Journal of 
Cyber-Security and Digital Forensics, vol. 5, no. 1, pp. 30–45, 2016, doi: 10.17781/p001985. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Text encryption using secure and expeditious multiprocessing … (Huwaida T. Elshoush) 

6771 

[43] H. T. Elshoush, K. T. Obeid, and M. M. Mahmoud, “A novel approach to improve the performance of serpent algorithm using 
Lorenz 96 chaos-based block key generation,” Journal of Information Hiding and Multimedia Signal Processing, vol. 13, no. 1, 

pp. 49–63, 2022. 

[44] S. Hussain, M. Asif, T. Shah, A. Mahboob, and S. M. Eldin, “Redesigning the serpent algorithm by PA-loop and its image 
encryption application,” IEEE Access, vol. 11, pp. 29698–29710, 2023, doi: 10.1109/ACCESS.2023.3261568. 

[45] M. A. Murillo-Escobar, C. Cruz-Hernández, F. Abundiz-Pérez, and R. M. López-Gutiérrez, “Implementation of an improved 

chaotic encryption algorithm for real-time embedded systems by using a 32-bit microcontroller,” Microprocessors and 
Microsystems, vol. 45, pp. 297–309, Sep. 2016, doi: 10.1016/j.micpro.2016.06.004. 

[46] M. M. Mahmoud and H. T. Elshoush, “Enhancing LSB using binary message size encoding for high capacity, transparent and 

secure audio steganography-an innovative approach,” IEEE Access, vol. 10, pp. 29954–29971, 2022, doi: 
10.1109/ACCESS.2022.3155146. 

[47] F. Thabit, S. Alhomdy, and S. Jagtap, “Security analysis and performance evaluation of a new lightweight cryptographic 

algorithm for cloud computing,” Global Transitions Proceedings, vol. 2, no. 1, pp. 100–110, Jun. 2021, doi: 
10.1016/j.gltp.2021.01.014. 

[48] T. Shah, T. U. Haq, and G. Farooq, “Improved serpent algorithm: design to RGB image encryption implementation,” IEEE 

Access, vol. 8, pp. 52609–52621, 2020, doi: 10.1109/ACCESS.2020.2978083. 
[49] Y. Hussain Ali and H. Aabdali Ressan, “Image encryption using block cipher based serpent algorithm,” Engineering and 

Technology Journal, vol. 34, no. 2, pp. 278–286, Feb. 2016, doi: 10.30684/etj.34.2b.10. 

[50] M. Tayel, G. Dawood, and H. Shawky, “A proposed serpent-elliptic hybrid cryptosystem for multimedia protection,” in 2018 
International Conference on Advances in Computing, Communications and Informatics, ICACCI 2018, Sep. 2018, pp. 387–391, 

doi: 10.1109/ICACCI.2018.8554950. 

[51] U. Menon, A. Hudlikar, and A. R. Menon, “A novel chaotic system for text encryption optimized with genetic algorithm,” 
International Journal of Advanced Computer Science and Applications, vol. 11, no. 10, pp. 34–40, 2020, doi: 

10.14569/IJACSA.2020.0111005. 

[52] M. A. Murillo-Escobar, F. Abundiz-Perez, C. Cruz-Hernandez, and R. M. Lopez-Gutierrez, “A novel symmetric text encryption 
algorithm based on logistic map,” in the 2014 International Conference on Communications, Signal Processing and Computers 

(ICNC’14), 2014, vol. 2, no. 1, pp. 49–53. 

[53] H. T. Mangi, S. A. Ali, and M. J. Jawad, “Encrypting of Text Based on Chaotic Map,” Journal of University of Babylon for Pure 
and Applied Sciences, pp. 25–39, Apr. 2023, doi: 10.29196/jubpas.v31i1.4526. 

[54] S. OleiwiTuama, S. A. Kadum, and Z. Hussein, “Text encryption approach using DNA computation and hyperchaotic system,” in 

Proceedings of 2021 2nd Information Technology to Enhance E-Learning and other Application Conference, IT-ELA 2021, Dec. 
2021, pp. 100–105, doi: 10.1109/IT-ELA52201.2021.9773674. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Huwaida T. Elshoush     received the bachelor’s degree in computer science 

(division 1), the master’s degree in computer science, and the Ph.D. degree in information 

security from the Faculty of Mathematical Sciences and Informatics, University of Khartoum, 

Sudan, in 1994, 2001, and 2012, respectively. Her M.Sc. dissertation dealt with frame relay 

security. She is currently an associate professor within the Computer Science Department, 

Faculty of Mathematical Sciences and informatics, University of Khartoum, where she is also 

acting as the head of research office. Also, she is the deputy dean in the Graduate College at 

University of Khartoum, Sudan. She has more than 32 publications and some of her 

publications appeared in Applied Soft Computing Journal (Elsevier), PLOS One Journal, IEEE 

Access, Multimedia Tools and Applications, PeerJ Computer Science, Journal of Information 

Hiding and Multimedia Signal Processing and Springer book chapters. Her research interests 

include the information security, cryptography, steganography, and intrusion detection systems. 

She is a reviewer of many international reputable journals related to her fields, including 

Applied Soft Computing Journal (Elsevier). Dr. Elshoush’s awards and honors include the 

second-place prize in the ACM Student Research Com- petition SRC-SAC in 2013 in Coimbra, 

Portugal. Her article entitled “An improved framework for intrusion alert correlation” has been 

awarded the Best Student Paper Award of the 2012 International Conference of Information 

Security and Internet Engineering (ICISIE) in WCE 2012. Other prizes were the best student 

during the five years of her undergraduate study. She can be contacted at email: 

htelshoush@uofk.edu. 

  

 

Duaa M. Ahmed     received her bachelor’s degree from the Department of 

Mathematical and Computer Sciences, Faculty of Mathematical Sciences and Informatics, 

Khartoum University, Sudan, Khartoum. She is currently working with Mobile 

Telecommunication Network (MTN) Sudan in information Security Department with a 

bachelor’s degree in mathematical and computer sciences. She has one publication in Journal 

of Information Hiding and Multimedia Signal Processing. She can be contacted at email: 

duaamusaab27@gmail.com. 

  

https://orcid.org/0000-0003-0142-393X
https://scholar.google.com/citations?user=TMKo0pMAAAAJ&hl=ar&oi=ao
https://orcid.org/0009-0000-0674-3997
https://scholar.google.com/citations?user=9xHfZIwAAAAJ&hl=en
https://www.webofscience.com/wos/author/record/LFU-4394-2024
file://///Users/huwaidaelshoush/Downloads/ORCID%20https:/orcid.org/my-orcid%3forcid=0009-0000-0674-3997%20%20Web%20of%20Science%20https:/www.webofscience.com/wos/author/record/LFU-4394-2024%20%20Google%20scholar%20https:/scholar.google.com/citations%3fuser=9xHfZIwAAAAJ&hl=en%20Scopus%20https:/www.scopus.com/dashboard.uri%3forigin=&zone=TopNavBar


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6753-6772 

6772 

 

Abdalmajid A. Ishag     received a B.Sc. degree in computer science from the 

University of Khartoum, Sudan in 2015, and an MSc degree in computer science which was 

focused on software engineering in 2018. He is currently working as a software developer at 

Universal Postal Union (UPU), Bern, Switzerland. He worked on multiple domains using his 

knowledge of software engineering helping in the process of converting theoretical ideas to a 

living product. He worked on IoT solutions while he was an IoT Senior developer at Vision 

Valley (Sudan), and e-government solutions while he was a software engineer at Nile Center 

for Technology Research (NCTR) (Sudan). In his M.Sc. research in face detection using deep 

learning, he used his experience to implement his idea, since he decided to participate in the 

research community by converting theoretical ideas into a working product. He has one 

publication in Journal of Information Hiding and Multimedia Signal Processing. He can be 

contacted via email: majid.fms010@gmail.com. 
  

 

Muawia A. Elsadig     received the bachelor’s degree in computer engineering, the 

M.Sc. degree in computer networks, and Ph.D. degree in computer science (information 

security). He is currently an assistant professor of cybersecurity at the Imam Abdulrahman bin 

Faisal University (IAU), Dammam, Saudi Arabia. He worked for different accredited 

international universities and had a rich record of publications in recognized international 

journals and conferences. He has many years of teaching experience and considerable industry 

contributions. He has contributed as a reviewer to many reputable international journals and 

has received many awards for his research activities. His research interests include information 

security, network security, cybersecurity, wireless sensor networks, bioinformatics, and 

information extraction. Ranging from theory to design to implementation. He can be contacted 

at email: muawiasadig@yahoo.com. 

  

 

Abdelrahman Altigani     earned his Ph.D. from the University of Technology, 

Malaysia. He has published 18 papers in international refereed journals and conferences. He 

was awarded the best research paper in the computing track at the ICCEEE2013 conference. 

Additionally, he was a three-time recipient of the International Doctoral Fellowship 

Scholarship, recognizing his exceptional academic achievements. He has also contributed as a 

reviewer for numerous research articles in various journals. He can be contacted at email: 

a.altigani@gmail.com. 

 

mailto:majid.fms010@gmail.com
mailto:muawiasadig@yahoo.com
https://orcid.org/0009-0009-0372-5721
https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=BKfkyDoAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57997734400
https://www.webofscience.com/wos/author/record/LFU-0931-2024
https://orcid.org/0000-0002-2622-6724
https://scholar.google.com/citations?user=G60mrEUAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57203151858
https://publons.com/researcher/2447584/muawia-abdelmagid-elsadig/
https://orcid.org/0000-0002-0631-5009
https://scholar.google.com/citations?user=ik77dQ0AAAAJ&hl=ar&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=55954326800

