
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 15, No. 1, February 2025, pp. 870~882

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i1.pp870-882 870

Journal homepage: http://ijece.iaescore.com

Timed concurrent system modeling and verification of home

care plan

Acep Taryana1,2, Dieky Adzkiya1, Muhammad Syifa’ul Mufid1, Imam Mukhlash1
1Department of Mathematics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

2Department of Electrical Engineering, Engineering Faculty, Universitas Jenderal Soedirman, Purwokerto, Indonesia

Article Info ABSTRACT

Article history:

Received Dec 9, 2023

Revised Sep 20, 2024

Accepted Oct 1, 2024

 A home care plan (HCP) can be integrated with an electronic medical

records (EMR) system, serving as an example of a real-time system with

concurrent processes. To ensure effective operation, HCPs must be free of

software bugs. In this paper, we explore the modeling and verification of

HCPs from the perspective of scheduling data operationalization.

Specifically, we investigate how patients can obtain home services while

preventing scheduling conflicts in the context of limited resources. Our goal

is to develop and verify robust models for this purpose. We employ

formalism to construct and validate the model, following these steps:

i) develop requirements and specifications; ii) create a model with

concurrent processes using timed automata; and iii) verify the model using

UPPAAL tools. Our study focuses on HCP implementation at a regional

general hospital in Banyumas District, Central Java, Indonesia. The results

include models and specifications based on timed automata and timed

computation tree logic (TCTL). We successfully verified a concurrent model

that utilizes synchronized counter variables and a sender-receiver approach

to analyze collision constraints arising from the synchronization of patient

and resource plans.

Keywords:

Deadlock

Formalism

Home care plan

Synchronization

Verification

This is an open access article under the CC BY-SA license.

Corresponding Author:

Dieky Adzkiya

Department of Mathematics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember

Keputih, Sukolilo, Surabaya, East Java 60111, Indonesia

Email: dieky@its.ac.id

1. INTRODUCTION

Electronic medical records (EMR) systems are still developing, as information communication

technologies are prioritized in developed and developing countries [1]–[3]. Various problems with EMR system

implementation have been reported, such as those reported by Ebbers et al. [4] recording medical records can

increase the burden on doctors. More specifically, in Indonesia: "the government has regulated the

implementation of EMR systems, however, specific rules are needed to regulate the implementation it" [5], the

development of it is currently concentrated on a single institution [6], Indonesia is in the process of

developing it to replace manual systems with electronic alternatives or to establish a new system [1]. In 2019,

2.8% of hospital health facilities had already adopted it, and it was also reported that of those 78 hospitals, many

still needed to implement it [7]. The challenges encountered in the implementation of it stem from issues

related to infrastructure, standard operating procedures (SOPs), inadequate coding quality, system

integration, hospital governance, service errors, and application bugs [8].

At a time when EMR systems implementation problems were still emerging, several researchers had

written the results of their studies regarding the need for patient services from being provider-centered to being

expanded to patient-centered [9]. These extensions are known as integrated home care (IHC) [10] and home

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

Timed concurrent system modeling and verification of home care plan (Acep Taryana)

871

care plan (HCP) according to [11]. Both systems can be connected to the hospital medical record facilities, thus

improving the adoption of EMR systems [12]. One example of a patient-centered service is a HCP.

Gani et al. [11] state that the formulation for the specifications of home care plans is challenging for several

reasons: care plans are inherently nonstructured processes that involve repetitive activities but are irregular

and require complex temporal expressions.

HCP is an example of a real-time system or software with concurrent processes. Quality software must

meet reliability, performance, and ease of use [13]. Errors and bugs are major software problems that can cause

plane crashes, disrupt space shuttle missions, and even stop trading on the stock market. Ariane’s rocket launch

crashed due to a floating-point overflow, a bug that caused the crash [14]. The cause of the bug is a deadlock

[15], [16]. Conditions such as deadlock, starvation, and inconsistency must be prevented as early as possible

[15], [17].

Gani et al. [11] have discussed the formal modeling and verification of HCP problems, but it still

needs to address the issue of deadlock conditions. As mentioned above, deadlocks cause software bugs that

must be resolved. In HCP systems, deadlocks may occur if health services do not provide sufficient medical

personnel to provide patient care at home.

The operation of an HCP system requires guarantees as a quality criterion in terms of development and

operation. An HCP must be free of software bugs. In this paper, we discuss HCP modeling and verification

from the perspective of scheduling data operationalization. How can patients obtain services at home to avoid

scheduling conflicts with providers such as doctors and nurses? Each patient's business processes are unique and

may be complex as they adapt to the patient's circumstances. Each proposed case requires a business process

model to be checked to determine whether it can satisfy the request. The system must provide the best business

process flow to serve patients. There is a lot of literature that has investigated improving business process

modeling, for example, using petri nets [18] business process modeling and notation (BPMN), and unified

modeling language (UML) [19], and conformance checking using graph databases [20]. However, researchers

chose to use timed automata modeling for the HCP problem because timed automata can be formed through

UML state-machine translation [21], which is helpful for automation development. The other advantage of

timed automata is that they can model complex systems, unlike petri nets [22]. We propose a method to model

and verify HCP. The study aims to develop and verify these plans so they are flexible for patients to create a

home care plan and more accessible for the coordinator to control the collision and monitor the use of limited

resources. Apart from being an example of real-time software, HCP can also be critical software [23] in health

services because there are crucial aspects of the sequence of events and timing (not speed of performance) [24]

and errors or bugs that can have a critical impact on patients. Based on the deadlock potential that causes bugs

and critical systems, we conducted a study to contribute to the formal verification of the healthcare sector. The

proposed solutions are as follows: i) formulate requirements and specifications; ii) model concurrent

processes using timed automata; and iii) employ UPPAAL for verification. Note: UPPAAL is a formal

modeling and verification tool for timed automata-based systems that allows us to verify properties using

temporal logic [25].

This paper explores formal methods for modeling and verifying HCP. For this purpose, we model it

using timed automata. The model encompasses a home care plan, a counter variable, and a medical staff

automaton. We present two proposed verification methods. The first approach was modeled using a counter

variable automaton, while the second used a medical staff automaton. We handle only postoperative and

diabetic wound care cases. In three stages, we carried out our research study. Identifying a compatible

healthcare system for implementing HCPs is the initial step. Home care health service systems are identified

in the second stage. The HCP is formally modeled in the third stage. The final stage verifies the reachability,

satisfaction, invariance, and certainty of the proposed automata with UPPAAL. The verification results are

either satisfying or unsatisfying.

The rest of the paper is organized as follows: section 2 defines the formalism of the requirements

and specifications, model, and UPPAAL verification. Section 3 discusses the study results, including the

formulation of requirements and specifications of HCP, construction of home care patterns, modeling for

limited resource synchronization, and verifying the automata of HCP using UPPAAL. Section 4 presents the

study’s conclusions.

2. METHOD

In this section, we discuss the formalization of HCP systems. The case study used was related to

postoperative and diabetic wound care. Additionally, we have added a process synchronization aspect, a

novelty for synchronizing some timed automata for home care plan systems, so that processes can avoid

deadlocks [16]. The research design involves formalizing timed systems and UPPAAL verification.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 870-882

872

2.1. Formalizing timed systems

In general, verification is a step to find a model (𝑀) that meets the specification (𝜙) in a formal

language,

𝑀 ⊨ 𝜙 (1)

(read "𝑀 satisfies 𝜙 "). In this paper, we propose modeling a home care plan. Home care is a new service that

supports EMR systems. Integrating home care services with EMR systems is critical because many urgent

operations or processes threaten safety [26]. Home care is also a system that has timed requirements that can

be clearly stated [11] and can be seen as a real-time system in which there are concurrent processes [27], [28]

that require modeling using timed automata [11]. Proper home care involves modeling and preparing

specifications that include the time aspect in the discussion. According to Gani et al., timed automata can

model an example home care system (as a 𝑀) [11].

In addition, specifications are prepared more precisely using timed computational tree logic (TCTL)

[29]. The verification steps include i) developing requirements and specifications; ii) developing timed

models; and iii) verifying the models. Each step is explained in subsections 2.1.1, 2.1.2, and 2.1.3.

2.1.1 Requirements and specifications

First, regarding the development of requirements and specifications, in the case of timed systems,

we use TCTL-based specifications. An example of a timed requirement for a home care unit is as follows:

According to Neal [30], postoperative wound care adapts to the location of the wound: i) the criteria for

treating surgical wounds on the face are 3 to 5 days; ii) surgical wounds on the scalp and arms for

7 to 10 days; iii) surgical wounds on the chest, stomach, hands, and legs for 10–14 days; and iv) surgical

wounds on the palms of the hands and feet for 14 to 21 days. Patients' home care requirements differ from

those of hospital services. Home care is repetitive, unstructured (regular and irregular), and specific to certain

patients. The specifications are determined based on time information expressed as a quadruplet (days, time

ranges, period, duration) [11]. We will conduct a survey, collect data, and prepare requirements for home

care services at one of the government hospitals in the Banyumas District.

2.1.2 Timed models

The second involves developing timed system models. The theory underlying the development of

timed system specifications, specifically, using timed automata, is explained in more detail in a previous

paper [31]. Gani et al. defined automata models as follows, especially for modeling a home care plan inside

timed automata [11]. Definition 1 (Automata). Automata 𝐴 = (𝑆, 𝑠0, 𝛴, 𝑋, 𝐼𝑛𝑣, 𝑇, 𝐹, 𝑊, 𝐸, 𝑆𝑡) where:

− S is a finite set of the locations or states of the automaton; 𝑠0 is the initial state; F ⊆ S is the final state; W

⊆ S is the set of waiting states; E ⊆ S is the set of executed states; St ⊆ S is start states;

− 𝛴 is a finite set of transition labels including {𝜖};

− 𝑋 is a finite set of clocks;

− 𝐼𝑛𝑣: 𝑆 ⟶ 𝜙(𝑋), which associates an invariant in each state of the automaton;

− 𝑇 ⊆ 𝑆 × 𝛴 × 𝜙(𝑋) × 2𝑥 × 𝑆 is a transition set.

Based on definition 1, we construct two automata to model patient care and nurse or physicians

services. To model these two instances, several conditions need to be observed, such as scheduling and

arrangements with limited resources e.g., nurses and physicians. Therefore, we discuss the synchronization

settings for the resources, which are explained as follows.

The synchronization approach between processes in the model is implemented using two methods:

i) one automaton uses shared global variables [32]–[34]; and ii) two automatons are synchronized (∥) using

process synchronization: "sender!" and "receiver?" [25]. The first method uses a global variable to manage

limited resources. Dinsdale-Young et al. [33] use the semaphore and counter variable to manage

concurrency. Furthermore, Cicirelli and Nigro [32] state the semaphore using a counter variable in the Morris

algorithm. The second method explains how the two automatons communicate synchronously. For example,

a lamp automaton communicates with the user automaton. According to definition 1, the lamp automaton has

the attribute S = {off, low, bright}, y clock is written as X = {y}, whereas the user automaton has the

attribute S = {idle}. The behaviors of the automata are as follows: If the user presses a button in Figure 1 that

is identified with "press!" as a sender (i.e., it synchronizes with "press?" as a receiver, the lamp is turned on,

as shown in Figure 2). In addition, the user presses the button randomly at any time or does not press the

button at all. The clock y of the lamp is used to detect whether the user is moving (y < 5) quickly or slow

(𝑦 ≥ 5). We use this concept to manage limited resources for the home care system, which will be discussed

in the next section. The first and second synchronization methods are combined.

Int J Elec & Comp Eng ISSN: 2088-8708

Timed concurrent system modeling and verification of home care plan (Acep Taryana)

873

Furthermore, we also developed a reactive home care algorithm while creating a home care model

using automata. The purpose of pseudocode is to enhance readers’ comprehension of automaton behavior

through code. This code includes sequential instructions that can be interpreted concurrently [35]. Therefore,

this algorithm can solve a similar problem.

2.1.3. Model verification

A formal verification approach is a systematic method for ensuring that a system or model meets its

specifications and properties. This approach uses mathematical logic, formalisms, and formal analysis tools

[25], [29], [36], [37]. In general, the objective of formal verification is to prove or carefully check whether a

system or model conforms to specified requirements. In (1), 𝑀 represents the model, while 𝜙 is the properties

or specifications.

Figure 1. User automaton

Figure 2. Lamp automaton

2.2. UPPAAL verification

Previous research that utilized UPPAAL included modeling and verification using UPPAAL [32] to

formally verify deadlock-free as well as safety and response properties expressed in TCTL using an existing

model checker, e.g., UPPAAL [38], facilitates automatic conversion of verified timed automata-based

models (in UPPAAL) [39]. UPPAAL is a worldwide-famous model checking tool for timed automata [40].

UPPAAL timed automata take advantage of validation and verification support in the UPPAAL tool [41]. We

use the following formula to check the model [25], [42]:

− 𝐸 <> ∅ (Possibly ∅, i.e., a state exists where ∅ holds)

− 𝐴[]∅ (Invariantly ∅, equivalent to not 𝐸 <> not ∅)

− 𝐸[]∅ (Potentially always ∅, i.e., a state path exists over which ∅ always holds)

− 𝐴 <> ∅ (Always eventually ∅, equivalent to not 𝐸[]∅ not ∅)

− ∅ ⟶ 𝜓 (∅ always leads to 𝜓, equivalent to 𝐴 [](∅ implies 𝐴 <> 𝜓))

3. RESULTS AND DISCUSSION

3.1. Requirements and specifications of home care plans

Survey results: a hospital in Banyumas District has developed home care particularly for treating

diabetic and postoperative wounds. The service is simple: patients register for treatment via a specific

WhatsApp, and then the nursing team approves the patient for the visit. One example of the requirements for

patients participating in the HCP is as follows:

a. Diabetic wounds were treated daily for approximately 7 to 10 days. Wound treatment times can depend

on patient availability. For example, Patient_1: every day from 1 to 10 October 2023, Patient_2: like

Patient_1, but there are other restrictions; namely, visits are held every 08.00 am. Patient_3: Like

Patient_2, there are exceptions, namely, except on 4 October 2023 at 12.30 noon.

b. Postoperative wound care adapts to the location of the wound: The criteria for treating surgical wounds

on the face are approximately 3to 5 days, surgical wounds on the scalp and arms approximately 7–10

days, surgical wounds on the chest, stomach, hands, and legs for approximately 10 to 14 days, and

surgical wounds on the palms of the hands and feet for approximately 14–21 days [30].

Specifically, regarding the specifications for diabetes and postoperative wound services, patient

specifications were prepared based on the requirements statements explained in the introduction. The

sentences arranged in a set of requirements have words that express temporality, such as "every day," "for ten

days," and "from 08.00 to 20.00". Requirements also have different times than regular ones (except).

Example: Patient_3 planned to treat diabetes wounds from 10/01/23 to 10/10/23 every morning except on

10/04/23 at 12.30. Examples of Patient_1 and Patient_2 are in Table 1.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 870-882

874

The construction of the requirements sentence for postoperative wound care is presented in

quadruplet form in Table 2. Example: Patient_3 planned treatment by receiving reinforcement dressing and

daily injection activities except for 10/04/23. Each activity requires a treatment time of approximately

30 min.

Table 1. Specification of activities "diabetic wounds" for any patients
Patients Activity Days Time ranges Period Duration

Patient_1 Changes in diabetic wound bandages Every day Morning 10/01/23-10/10/23 30

Patient_2 Changes in diabetic wound bandages Every day Morning, 08.00 10/01/23-10/10/23 30

Patient_3 Changes in diabetic wound bandages
Every day except

(10/04/23)
Morning 10/01/23-10/10/23 30

 10/04/23 12.30 10/01/23-10/10/23 30

Table 2. Specification of activities "postoperative wounds" for any patients
Patients Activity Days Time ranges Period Duration

Patient_1 Reinforce dressing Every day Morning 10/01/23-10/10/23 30

Patient_2 Reinforce dressing Every day Morning, 08.00 10/01/23-10/10/23 30

Patient_3 Reinforce dressing Every day except (10/04/23) Morning 10/01/23-10/10/23 30

 Injection 10/04/23 12.30 10/01/23-10/10/23 30

3.2. HCP pattern

HCP patterns can be categorized into three distinct types: daily care patterns, relative daily care

patterns on specific dates, and absolute patterns on certain dates. The focus of this study is on the

specifications and development of automata that utilize the first two categories of HCP patterns. These

patterns will be elaborated upon in the subsequent subsection.

3.2.1 Every day pattern

This pattern represents a patient's need to visit the hospital daily in the morning, evening, or at

certain times, such as 09:00. Table 3 specifies visits for patients with diabetes to receive medical procedures

such as "diabetic wound care" and "injection". Figure 3 shows an everyday pattern automaton for treating

patients with diabetes, which refers to the specifications in Table 1.

Table 3. Examples of "diabetic wounds”
Activity Days Time ranges Period Duration

Treating wounds Every day Morning 10/01/23-10/10/23 30

Injection Every day 09:00 10/01/23-10/10/23 20

Wound treatment was planned every morning from 10/01/2023 to 10/10/2023, and injection activity

was carried out every day starting at 09:00. Transition 1 explains that injection activity can begin at 9:00, and

transition 2 explains that wound treatment activity begins after injection. Injection can be performed after

wound treatment, as shown in transitions 5 and 7. The automata resets the day clock value (𝑥𝑑) every 𝑥𝑑 up

to 1,440 minutes (one day). All possible schedules of injection and treating wound activities acceptable to the

automata include "(treating wound, 480), (injection, 540), (injection, 1980), (treating wound, 2001),

(Injection, 406620) " in a certain period.

Figure 3. Diabetic automata for “every day pattern”

Int J Elec & Comp Eng ISSN: 2088-8708

Timed concurrent system modeling and verification of home care plan (Acep Taryana)

875

3.2.2. Relative days pattern with exception

During making a home care plan, the patient determines the day of the visit. However, some visits

are forbidden on specific dates. For instance, postoperative patients may select a Thursday visit service for

ten days (10/01/23 to 10/10/23) except for 10/04/23. Table 4 explains the specifications of the home care plan

for postoperative activities, including reinforcing dressing and injection. Both activities were conducted

within 60 minutes on Thursdays except for 10/04/23. Figure 4 shows the automata activity plan. Transitions

1, 2, 3, and 4 state Saturday, Sunday, Monday, and Tuesday, respectively. Transitions 5 and 8 execute

injection and reinforce dressing activities, which last for a maximum of 60 minutes in locations 𝑆1 and 𝑆2.

Transition 7 is a transition to accommodate the date exception "10/04/23". Transitions 10 and 11 state

activities for Wednesday and Friday, respectively. Here, transition 12 represents an activity to reset the day

and week clocks, and transition 13 resets the day clock. The final transition is transition 14, which represents

the transition at the end of location 𝑆4.

Table 4. Examples of “postoperative wound care”
Activity Days Time ranges Period Duration

Reinforce dressing Thursday except(10/04/23) Morning 10/01/23-10/10/23 30

Injection 10/04/23 — 10/01/23-10/10/23 30

3.3. Limited resource synchronization

Home care practices lead to the joint use of limited resources. Home care may result in struggle or

competition for resources. Limited resources for home care include home care medical equipment and health

workers like nurses and doctors. To address this issue, we first model the limitation of nurses’ resources. Due

to the fact that healthcare workers’ resources are limited, synchronization is necessary when patients use

home care services. For example, five patients are planning home care with only two nurses available on the

same day, at the same time, or at different times. Designing an automaton to handle resource contention

problems is an exciting challenge. Tables 1 and 2 show the plans of many patients for home care services for

diabetic and postoperative wound treatment.

Patients who are planning treatment must immediately receive confirmation of the availability of

services according to their scheduled appointment. The timed automaton in Figure 4 regulates postoperative

wound care. Automata still needs to discuss managing the limited availability of medical personnel to serve

the many and varied patient care plans. When a patient plans home care, the automata must be able to check

the possibility of a reliable schedule to avoid scheduling collisions.

To overcome the conflict in the use of medical staff resources, we propose two approaches. In the

first approach, we design the automata as follows.

a. Increase the need for medical personnel to ensure a synchronization between home care services and the

availability of medical personnel.

b. A global variable that detects medical use, for example, is the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 variable. It initially has the value

of the number of medical staff, decreases by one if a patient has used it, and increases by one again if a

patient has finished using it.

Figure 4. Postoperative wound care for "relative pattern"

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 870-882

876

The first automaton design based on the literature [34] guarantees correct sequential and temporal

logic. This is a relatively simple strategy for managing the use of limited resources. In this proposal, only one

automaton is arranged, and the availability of home care services is expressed as a global counter variable.

Figure 5 explains the synchronization of care and availability of medical personnel services using the

variable 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 with a maximum number of medical personnel of 2 people (𝑚𝑎𝑥 = 2). Home care services

start from 08.00 to 11.00 every week. The variable 𝑥𝑑 represents the clock for the day, and 𝑥𝑤 represents the

weekly clock.

Figure 5. Synchronization of activity using a 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 variable

The second approach uses a synchronization method between the home care automaton and a

medical staff automaton. In this case, we discuss the maintenance activities for postoperative wound care, as

in Figure 4, by adding sending "serve!" synchronization at transitions 5 and 8. Then, we create a new

automaton to synchronize the availability of medical services in Figures 6 and 7, respectively. The addition

of synchronization methods for source automata refers to the UPPAAL instructions [26] and the use of

sender and receiver semaphores in UPPAAL [33].

Figure 6. Medical staff automaton for postoperative wounds

The two approaches ensure that the temporal logic is guaranteed, that realizability is achieved, and

that it can detect deadlocks. To describe the progress of the process, we developed an algorithm to explain

the automaton synchronization process. Algorithm 1 contains an algorithm that demonstrates using the

𝐶𝑜𝑢𝑛𝑡𝑒𝑟 variable for concurrency in the home care automaton.

Figure 7. Automated home care plan automaton for postoperative wounds

Int J Elec & Comp Eng ISSN: 2088-8708

Timed concurrent system modeling and verification of home care plan (Acep Taryana)

877

Algorithm 2 presents the concurrency of the process formed from the two automata in Figure 6 and

Figure 7. The two automata communicate using a serving channel to obtain permission to use "Injection" and

"Reinforce_dressing" services from medical personnel's limited resources. The 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 variable represents

the available capacity of medical personnel.

Algorithm 1. Concurrency in a home care algorithm using "counter" variable
Program Homecare_1

{ 𝑆 = {𝑠1, 𝑠2, 𝑠3} with 𝑠1 the initial state and 𝐹 ={𝑠4} is final state. 𝑋 ={𝑥𝑡, 𝑥𝑑, 𝑥𝑤} with 𝑥𝑡,

𝑥𝑑, 𝑥𝑤 represents a duration clock, day clock, week clock, and a period clock in minutes,

respectively.}

{ Global Declaration For Variables, Constants, and Primitives }

 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 : Integer,

 𝑀𝑎𝑥 : Integer {Max = 2}

Procedure Homecare_post_everyday()

{Local Variable Declaration}

 𝑥𝑡, 𝑥𝑑, 𝑥𝑤 : Clock

{ Algorithm :}

 Repeat

 𝑥𝑑 = 0
 𝑠1 :

 While (𝑥𝑑 < 480)

 𝑥𝑑 + +
 Endwhile

 While (𝑥𝑑 < 660) AND 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 𝑀𝑎𝑥)

 𝑥𝑑 + + or break {Optional because it is a non deterministic\}
 Endwhile

 𝑥𝑡 = 0
 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + +
 𝑠2:

 𝑥𝑡 = 0
 While (𝑥𝑡 < 60)

 𝑥𝑡 + +
 Endwhile

 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 − −
 𝑠3:

 Until (𝑥𝑑 > 1440) AND (𝑥𝑤 > 10080)

 𝑠4:

{Main Program}

 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0 { Resources of nurses or doctors}
 Patient1=Homecare_post_everyday() { Patient1 instantiation }

 Patient2=Homecare_post_everyday() { Patient2 instantiation }

 Patient3=Homecare_post_everyday() { Patient3 instantiation }

 Patient4=Homecare_post_everyday() { Patient4 instantiation }

 Patient5=Homecare_post_everyday() { Patient5 instantiation }

 Patient6=Homecare_post_everyday() { Patient6 instantiation }

 Patient7=Homecare_post_everyday() { Patient7 instantiation }

 Patient8=Homecare_post_everyday() { Patient8 instantiation }

End of the template

Algorithm 2. Concurrency in a home care algorithm using synchronization
Program Homecare_2

𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3} with 𝑆0 the initial state and 𝐹 = {𝑠4 } is final state. 𝑋 = {𝑥𝑡, 𝑥𝑑 , 𝑥𝑤, 𝑥𝑝} with 𝑥𝑡, 𝑥𝑑 , 𝑥𝑤, 𝑥𝑝

represents a duration clock, day clock, week clock, and a period clock, in minutes,

respectively.

{ Global Declaration For Variables, Constants, and Primitives }

 𝑠𝑒𝑟𝑣𝑒 : Chan {Channel for synchronization}
Procedure Post_services()

{Local Variable Declaration}

 𝑥𝑡 : Clock

 { Algorithm :}

 Repeat

 Idle :

 While (𝑁𝑂𝑇 𝑠𝑒𝑟𝑣𝑒?) OR (𝐶𝑜𝑢𝑛𝑡𝑒𝑟 > 1)
 𝑥𝑡 = 0, 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + +
 Endwhile

 Injection :

 𝑥𝑡 = 0

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 870-882

878

 While (𝑥𝑡 ≤ 30)
 𝑥𝑡 + +
 Endwhile

 Reinforce_dressing :

 𝑥𝑡 = 0
 While 𝑥𝑡 ≤ 30)
 𝑥𝑡 + +
 Endwhile

 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 − −
 Until TRUE

Procedure Care_plan_post_except_syn()

{Local Variable Declaration}

 𝑥𝑑 , 𝑥𝑡, 𝑥𝑤, 𝑥𝑝 : Clock

{ Algorithm :}

 𝑥𝑝 = 0
 Repeat

 𝑥𝑤 = 0
 Repeat

 𝑥𝑑 = 0
 Repeat

 𝑠0 :

 if (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 in Figure) then transition_1

 if (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2 in Figure) then transition_2

 if (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛3 in Figure) then transition_3

 if (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛4 in Figure) then transition_4

 if (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛7 in Figure) then transition_7

 if (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛10 in Figure) then transition_10

 if (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛11 in Figure) then transition_11

 if (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛5 in Figure) then

 While (NOT 𝑠𝑒𝑟𝑣𝑒)
 Injection(), Reinforce_dressing()

 Endwhile

 𝑠1 :

 𝑥𝑡 = 0
 While (𝑥𝑡 < 60)
 𝑥𝑡 + +
 if (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛8 in Figure) then

 While (NOT 𝑠𝑒𝑟𝑣𝑒)
 Injection(), Reinforce_dressing()

 Endwhile

 𝑠2 :

 𝑥𝑡 = 0
 While (𝑥𝑡 < 60)
 𝑥𝑡 + +
 𝑠3 :

 Until (𝑥𝑑 > 1440)
 Until (𝑥𝑑 > 1440 𝐴𝑁𝐷 𝑥𝑤 > 10080)
 Until (𝑥𝑑 > 1440 𝐴𝑁𝐷 𝑥𝑝 > 407520)

 𝑠4 :

{Main Program}

 S1=Post_Services() {S1 instantiation }

 Patient5=Care_plan_post_except_syn() { Patient5 instantiation }

 Patient6=Care_plan_post_except_syn() { Patient6 instantiation }

 Patient7=Care_plan_post_except_syn(). { Patient7 instantiation }

 Patient8=Care_plan_post_except_syn() { Patient8 instantiation }

End of Template

3.4. Formal analysis of care plans using timed automata

Figure 8 depicts the instantiation of the eight patients using the template automata shown in

Figure 5. Eight patients were planned to receive home care with a limited number of medical personnel (two

people). The average medical service takes a maximum of 60 minutes. Similar to Figure 8, we also simulate

the instantiation of 4 Care_plan_post_excep_syn automata consisting of Patient5, Patient6, Patient7, and

Patient8 and a Post_services automaton, namely 𝑆1.

After describing and simulating the automata, the next step is to verify the properties of the

proposed automata model. All modeling and verification steps use the UPPAAL tool [43]. We tried to check

the model shown in Figures 6 and 7. Reachability checks are expressed as follows: 𝐸 <> (𝑃5. 𝑆4) &&

(𝑃6. 𝑆4) && (𝑃7. 𝑆4) && (𝑃8. 𝑆4). All properties in Figure 9 are satisfied. Therefore, state 𝑆4 (final state)

can be reached through transitions that pass through several states, and no deadlock occurs.

Int J Elec & Comp Eng ISSN: 2088-8708

Timed concurrent system modeling and verification of home care plan (Acep Taryana)

879

Figure 8. Automata instantiation for eight patients using synchronization counter variable

Figure 9. Reachability checking for the synchronization approach of two automata

4. CONCLUSION

The criticality of the home care system was addressed by proposing two approaches. The first

approach uses a counter variable, and the second approach uses synchronization with a sender-receiver

channel. The main focus of HCP discussed in this paper is diabetic and postoperative wound care. Modeling

of patients who registered for home care is modeled using timed automata. The time automata are designed

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 870-882

880

according to every day patterns and relative patterns. The reachability, satisfaction, invariance, and certainty

of the proposed automata are checked using UPPAAL. The result shows that all properties are satisfied. In

addition, the proposed automata implement the concurrency concept. For future work, we will develop a

model and the corresponding properties to identify underserved and unserved patients in model verification.

ACKNOWLEDGEMENTS

The authors thank the Directorate of Research, technology and community service, Ministry of

Education, Culture, Research and Technology, Indonesian Government, for financial support through the

Doctoral Dissertation Research scheme (main contract number 112/E5/PG.02.00.PL/2023 and researcher

contract number 1926/PKS/ITS/ 2023).

REFERENCES
[1] N. Amalia, M. Z. A. Rustam, A. Rosarini, D. R. Wijayanti, and M. A. Riestiyowati, “The implementation of electronic medical

record (EMR) in the development health care system in Indonesia,” International Journal of Advancement in Life Sciences

Research, vol. 4, no. 3, pp. 8–12, Jul. 2021, doi: 10.31632/ijalsr.2021.v04i03.002.

[2] M. C. Azubuike and J. E. Ehiri, “Health information systems in developing countries: benefits, problems, and prospects,” Journal

of the Royal Society for the Promotion of Health, vol. 119, no. 3, pp. 180–184, Sep. 1999, doi: 10.1177/146642409911900309.

[3] M. H. Alshammari, “Electronic-health in Saudi Arabia: a review,” International Journal of Advanced and Applied Sciences, vol.

8, no. 6, pp. 1–10, Jun. 2021, doi: 10.21833/ijaas.2021.06.001.

[4] T. Ebbers, R. P. Takes, L. E. Smeele, R. B. Kool, G. B. van den Broek, and R. Dirven, “The implementation of a

multidisciplinary, electronic health record embedded care pathway to improve structured data recording and decrease electronic

health record burden,” International Journal of Medical Informatics, vol. 184, pp. 1–7, 2024, doi:

10.1016/j.ijmedinf.2024.105344.

[5] T. S. Tilaar and P. L. S. Sewu, “Review of electronic medical records in Indonesia and its developments based on legal

regulations in Indonesia and its harmonization with electronic health records (manual for developing countries),” Daengku:

Journal of Humanities and Social Sciences Innovation, vol. 3, no. 3, pp. 422–430, Apr. 2023, doi: 10.35877/454RI.daengku1662.

[6] D. C. A. Nugraha and I. Aknuranda, “An overview of e-health in Indonesia: past and present applications,” International Journal

of Electrical and Computer Engineering (IJECE), vol. 7, no. 5, pp. 2441–2450, Oct. 2017, doi: 10.11591/ijece.v7i5.pp2441-2450.

[7] C. Saragih, C. Nafa Sari, B. N. Moch, and E. Muslim, “Adoption of electronic medical record in hospitals in Indonesia based on

technology readiness and acceptance model,” in 2020 The 6th International Conference on Industrial and Business Engineerin,

Sep. 2020, pp. 79–85, doi: 10.1145/3429551.3429565.

[8] Z. N. Indira, A. P. Widodo, and F. Agushybana, “Literature review: The effectiveness of electronic medical records (RME) on

hospital service quality,” J-Kesmas: Jurnal Fakultas Kesehatan Masyarakat (The Indonesian Journal of Public Health), vol. 10,

no. 1, pp. 57–64, Apr. 2023, doi: 10.35308/j-kesmas.v10i1.7278.

[9] N. C. Harahap, P. W. Handayani, and A. N. Hidayanto, “Barriers and facilitators of personal health record adoption in Indonesia:

health facilities’ perspectives,” International Journal of Medical Informatics, vol. 162, Jun. 2022, doi:

10.1016/j.ijmedinf.2022.104750.

[10] M. Cingolani, R. Scendoni, P. Fedeli, and F. Cembrani, “Artificial intelligence and digital medicine for integrated home care

services in Italy: opportunities and limits,” Frontiers in Public Health, vol. 10, pp. 1–7, 2023, doi: 10.3389/fpubh.2022.1095001.

[11] K. Gani, M. Bouet, M. Schneider, and F. Toumani, “Using timed automata framework for modeling home care plans,” in 2015

International Conference on Service Science (ICSS), May 2015, pp. 1–8, doi: 10.1109/ICSS.2015.36.

[12] J. Scholl, S. Syed-Abdul, and L. A. Ahmed, “A case study of an EMR system at a large hospital in India: challenges and strategies

for successful adoption,” Journal of Biomedical Informatics, vol. 44, no. 6, pp. 958–967, Dec. 2011, doi:

10.1016/j.jbi.2011.07.008.

[13] A. Z. Khan, S. Iftikhar, R. H. Bokhari, and Z. I. Khan, “Issues/challenges of automated software testing: a case study,” Pakistan

Journal of Computer and Information Systems, vol. 3, no. 2, pp. 61–75, 2018.

[14] G. Le Lann, “An analysis of the Ariane 5 flight 501 failure-a system engineering perspective,” in Proceedings International

Conference and Workshop on Engineering of Computer-Based Systems, 1997, pp. 339–346, doi: 10.1109/ECBS.1997.581900.

[15] J. C. Corbett, “Evaluating deadlock detection methods for concurrent software,” IEEE Transactions on Software Engineering, vol.

22, no. 3, pp. 161–180, Mar. 1996, doi: 10.1109/32.489078.

[16] E. Kamburjan, “Detecting deadlocks in formal system models with condition synchronization,” in Electronic Communications of

the EASST, 2019, vol. 76, pp. 1–19.

[17] K. Tai, “Definitions and detection of deadlock, livelock, and starvation in concurrent programs,” in 1994 International

Conference on Parallel Processing (ICPP’94), Aug. 1994, vol. 2, pp. 69–72, doi: 10.1109/ICPP.1994.84.

[18] I. Mukhlash, W. N. Rumana, D. Adzkiya, and R. Sarno, “Business process improvement of production systems using coloured

petri nets,” Bulletin of Electrical Engineering and Informatics, vol. 7, no. 1, pp. 102–112, Mar. 2018, doi: 10.11591/eei.v7i1.845.

[19] F. L. Ayachi, H. B. Rahmouni, M. Ben Ammar, and H. Mahjoubi, “A reverse-engineering methodology for medical enhancement

processes,” Procedia Computer Science, vol. 164, pp. 714–723, 2019, doi: 10.1016/j.procs.2019.12.240.

[20] I. Waspada, R. Sarno, E. S. Astuti, H. N. Prasetyo, and R. Budiraharjo, “Graph-based token replay for online conformance

checking,” IEEE Access, vol. 10, pp. 102737–102752, 2022, doi: 10.1109/ACCESS.2022.3208098.

[21] F. Peres and M. Ghazel, “A proven translation from a UML state machine subset to timed automata,” ACM Transactions on

Embedded Computing Systems, vol. 23, no. 5, pp. 1–32, Sep. 2024, doi: 10.1145/3581771.

[22] S. Medina-Garcia, J. Medina-Marin, O. Montaño-Arango, M. Gonzalez-Hernandez, and E. S. Hernandez-Gress, “A petri net

approach for business process modeling and simulation,” Applied Sciences, vol. 13, no. 20, pp. 1–30, Oct. 2023, doi:

10.3390/app132011192.

[23] M. Madkour, K. Butler, E. Mercer, A. Bahrami, and C. Tao, “Semantic based model of conceptual work products for formal

verification of complex interactive systems,” arXiv preprint arXiv:2008.01623, pp. 1–11, 2020.

[24] M. Sirjani, L. Provenzano, S. A. Asadollah, M. H. Moghadam, and M. Saadatmand, “Towards a verification-driven iterative

Int J Elec & Comp Eng ISSN: 2088-8708

Timed concurrent system modeling and verification of home care plan (Acep Taryana)

881

development of software for safety-critical cyber-physical systems,” Journal of Internet Services and Applications, vol. 12, no. 1,

pp. 1–29, Dec. 2021, doi: 10.1186/s13174-021-00132-z.

[25] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,” in Lecture Notes in Computer Science, vol. 3185, 2004,

pp. 200–236.

[26] M.-F. Bouaziz, P. Marange, A. Voisin, and P. Jean-François, “Health checkup indicators-based safety criteria for operating

sequences ranking of critical systems,” IFAC-PapersOnLine, vol. 48, no. 21, pp. 808–813, 2015, doi:

10.1016/j.ifacol.2015.09.626.

[27] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance in real-time systems: identifying the future research

questions,” ACM Computing Surveys, vol. 55, no. 14, pp. 1–30, Dec. 2023, doi: 10.1145/3589950.

[28] A. Burns and R. I. Davis, “Mixed criticality systems - a review,” Department of Computer Science, University of York, Tech.

Rep., pp. 1–52, 2022.

[29] T. Vogel, M. Carwehl, G. N. Rodrigues, and L. Grunske, “A property specification pattern catalog for real-time system

verification with UPPAAL,” Information and Software Technology, vol. 154, pp. 1–18, Feb. 2023, doi:

10.1016/j.infsof.2022.107100.

[30] L. J. Neal, “Outpatient ACL surgery: the role of the home health nurse,” Orthopaedic Nursing, vol. 15, no. 4, pp. 9–14, 1996.

[31] R. Alur, “Timed automata,” in Computer Aided Verification, Berlin, Heidelberg: Springer, 1999, pp. 8–22.

[32] F. Cicirelli and L. Nigro, “Modelling and verification of starvation-free mutual exclusion algorithms based on weak semaphores,”

in Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, Oct. 2015, vol. 5, pp. 773–779,

doi: 10.15439/2015F32.

[33] T. Dinsdale-Young, P. da R. Pinto, and P. Gardner, “A perspective on specifying and verifying concurrent modules,” Journal of

Logical and Algebraic Methods in Programming, vol. 98, pp. 1–25, Aug. 2018, doi: 10.1016/j.jlamp.2018.03.003.

[34] J. Baumeister, N. Coenen, B. Bonakdarpour, B. Finkbeiner, and C. Sánchez, “A temporal logic for asynchronous

hyperproperties,” in Computer Aided Verification, Cham: Springer International Publishing, 2021, pp. 694–717.

[35] S. Foster, K. Ye, A. Cavalcanti, and J. Woodcock, “Automated verification of reactive and concurrent programs by calculation,”

Journal of Logical and Algebraic Methods in Programming, vol. 121, pp. 1–39, Jun. 2021, doi: 10.1016/j.jlamp.2021.100681.

[36] S. E. Z. Soudjan, D. Adzkiya, and A. Abate, “Formal verification of stochastic max-plus-linear systems,” IEEE Transactions on

Automatic Control, vol. 61, no. 10, pp. 2861–2876, Oct. 2016, doi: 10.1109/TAC.2015.2502781.

[37] D. Adzkiya and A. Abate, “Modeling of railway networks using timed automata,” Applied Mathematical Sciences, vol. 10, no. 49,

pp. 2429–2436, 2016, doi: 10.12988/ams.2016.65208.

[38] A. David, M. O. Möller, and W. Yi, “Formal verification of UML statecharts with real-time extensions,” in Fundamental

Approaches to Software Engineering, 2002, pp. 218–232, doi: 10.1007/3-540-45923-5_15.

[39] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam, “From verification to implementation: a model translation tool and a

pacemaker case study,” in 2012 IEEE 18th Real Time and Embedded Technology and Applications Symposium, Apr. 2012, pp.

173–184, doi: 10.1109/RTAS.2012.25.

[40] K. Okano et al., “A bounded model checker for timed automata and its application to LTL properties,” in Procedia Computer

Science, 2022, vol. 207, pp. 532–541, doi: 10.1016/j.procs.2022.09.108.

[41] M. Nobakht and D. Truscan, “An approach for validation, verification, and model-based testing of UML-based real-time

systems,” in ICSEA 2013, The Eighth International Conference on Software Engineering Advances, 2013, pp. 79–85, doi:

10.13140/RG.2.1.4021.8723.

[42] G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL implementation secrets,” in Lecture

Notes in Computer Science, 2002, vol. 2469, pp. 3–22, doi: 10.1007/3-540-45739-9_1.

[43] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model checking for real-time systems,” in Information and

Computation, Jun. 1994, vol. 111, no. 2, pp. 193–244, doi: 10.1006/inco.1994.1045.

BIOGRAPHIES OF AUTHORS

Acep Taryana received the S.Si. degree in mathematics from Padjadjaran

University, Indonesia, in 1997 and the M.T. degree in informatics engineering from Institut

Teknologi Bandung, Indonesia, in 2001. Currently, he is a student at the Department of

Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia. His research

interests include software engineering, formal methods, verification, and real-time systems.

He can be contacted at email: acep@unsoed.ac.id.

Dieky Adzkiya holds a PhD degree from Delft University of Technology, The

Netherlands, in 2014. He is an assistant professor in the Department of Mathematics, Institut

Teknologi Sepuluh Nopember, Indonesia. He was a postdoctoral researcher at the Delft Center

for Systems and Control (DCSC), Delft University of Technology (TU Delft), The

Netherlands, working with Manuel Mazo Jr. on networked control systems. His research

interests include the analysis, verification, and control of max-plus-linear systems and their

applications. In addition, he is currently the Head of the Postgraduate Study Program at the

Department of Mathematics, Institut Teknologi Sepuluh Nopember. He can be contacted at

email: dieky@its.ac.id.

https://orcid.org/0000-0001-9302-3540
https://scholar.google.com/citations?hl=en&user=EjvohFkAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57202788822
https://www.webofscience.com/wos/author/record/HNS-4091-2023
https://orcid.org/0000-0002-4718-2871
https://scholar.google.com/citations?hl=en&authuser=1&user=jxd84eQAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55488612100
https://www.webofscience.com/wos/author/record/AAF-4760-2021

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 870-882

882

Muhammad Syifa'ul Mufid received the doctoral degree from Oxford

University, England, in 2021. He is an assistant professor in the Department of Mathematics,

Institut Teknologi Sepuluh Nopember, Indonesia. His research interests include Latin squares,

max-plus algebra, min-max-plus algebra, and computer science. He can be contacted at email:

syifaul.mufid@its.ac.id.

Imam Mukhlash received the doctoral degree from Institut Teknologi Bandung,

Indonesia, in 2010. He is an associate professor in the Department of Mathematics, Institut

Teknologi Sepuluh Nopember, Indonesia. His research interests include computational

mathematics, data mining, artificial intelligence, and software engineering. He can be

contacted at email: imamm@matematika.its.ac.id.

https://orcid.org/0000-0003-0817-1106
https://scholar.google.com/citations?hl=en&authuser=1&user=E8_BanAAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56431051900
https://orcid.org/0000-0001-8877-354X
https://scholar.google.com/citations?hl=en&authuser=1&user=2MBZF7EAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55820478900

