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 As urbanization continues to reshape transportation, the safety of cyclists in 

complex traffic environments has become a pressing concern. In response to 

this challenge, our research introduces a CycleInSight framework, which 

harnesses advanced deep learning and computer vision techniques to enable 

precise and efficient cyclist detection in diverse urban settings. Utilizing you 

only look once version 8 (YOLOv8) object detection algorithm, the 

proposed model aims to detect and localize vulnerable cyclists near vehicles 

equipped with onboard cameras. Our research presents comprehensive 

experimental results demonstrating its effectiveness in identifying vulnerable 

cyclists amidst dynamic and challenging traffic conditions. With an 

impressive average precision of 90.91%, our approach outperforms existing 

models while maintaining efficient inference speeds. By effectively 

identifying and tracking cyclists, this framework holds significant potential 

to enhance urban traffic safety, inform data-driven infrastructure planning, 

and support the development of advanced driver assistance systems and 

autonomous vehicles. 
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1. INTRODUCTION 

The safety of vulnerable road users, such as cyclists, in complex urban environments has become a 

pressing concern as urbanization reshapes transportation systems worldwide. Cyclists are particularly 

susceptible to severe injuries or fatalities in accidents involving vehicles due to their lack of physical 

protection. According to the World Health Organization (WHO), approximately 1.35 million people die each 

year due to road traffic accidents, with over half of these fatalities among vulnerable road users like cyclists, 

pedestrians, and motorcyclists [1]. 

In the United States, the national highway traffic safety administration (NHTSA) reported that in 

2019, 846 bicyclists were killed in traffic crashes, accounting for 2.3% of all traffic fatalities [2]. In the 

European Union, a report by the European Commission found that in 2018, 2,020 cyclists were killed in road 

accidents, representing 8% of all road traffic fatalities [3]. A study conducted in Australia examined cyclist 

crashes and discovered that between 2005 and 2010, there were 17,286 police-reported cyclist crashes, with 

2.4% resulting in fatalities and 40.3% resulting in serious injuries [4]. Pucher and Buehler in 2017 [5], in a 

global analysis of cyclist safety, found that countries with high levels of cycling, such as the Netherlands, 

Denmark, and Germany, generally have lower cyclist fatality rates compared to countries with lower levels 

of cycling, like the United States and the United Kingdom. This trend is attributed to better cycling 
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infrastructure and traffic safety measures in countries with high cycling levels [5]. These statistics 

demonstrate the importance of improving cyclist safety in urban environments, emphasizing the need for 

research into advanced detection systems and better infrastructure to reduce accidents involving cyclists. 

Also, improving cyclist detection and awareness is crucial for informing data-driven infrastructure planning 

and supporting the development of advanced driver assistance systems (ADAS) and autonomous vehicles. 

To address this urgent concern, our research presents the CycleInSight framework for accurately and 

efficiently detecting cyclists across urban environments, leveraging state-of-the-art deep learning and 

computer vision methodologies. Our solution's core lies in the state-of-the-art you only look once version 8 

(YOLOv8) object detection algorithm, renowned for its exceptional real-time performance and accuracy [6]. 

The proposed model aims to detect and localize vulnerable cyclists near vehicles equipped with onboard 

cameras to prioritize cyclist safety. 

 

 

2. LITERATURE SURVEY 

With the advent of deep learning, object detection has seen significant advancements in recent years. 

Convolutional neural networks (CNNs) have become the backbone of most modern object detectors, owing 

to their ability to learn hierarchical features automatically [7]. Some of the critical deep learning-based object 

detection architectures include Faster region-based convolutional neural network (Faster R-CNN) [8], single 

shot MultiBox detector (SSD) [9] and the YOLO series [10], [11]. 

Faster R-CNN is an extension of the R-CNN series of object detectors, which combines a region 

proposal network (RPN) with a CNN to achieve real-time object detection [8]. Although Faster R-CNN 

achieves high accuracy, its processing speed remains a limitation for real-time applications [12]. SSD is a 

one-stage object detector that eliminates the need for separate region proposal generation, improving the 

processing speed compared to Faster R-CNN but suffering from reduced detection accuracy, particularly for 

small objects [13]. The YOLO family of real-time object detection algorithms produces an entire image in a 

single forward pass through a convolutional neural network. YOLOv2 and YOLOv3 introduced various 

improvements, such as anchor boxes and multi-scale predictions [14]. At the same time, YOLOv4 further 

enhanced the speed and accuracy trade-off by incorporating techniques like bag of freebies (BoF) and bag of 

specials (BoS) [15]. 

Several studies have explored the application of deep learning-based object detection algorithms in 

cyclist detection. Teichmann et al. [16] proposed MultiNet, a real-time joint semantic reasoning system for 

autonomous driving, which employed the SSD architecture to detect cyclists. The authors acknowledged the 

difficulty in seeing small and partially occluded cyclists, suggesting the need for further research on this 

problem. 

More recent object detection architectures, such as YOLOv7 [17] and YOLOv8 [18], have yet to 

be extensively explored for cyclist detection. This presents an opportunity for further research and 

development in cyclist detection using these state-of-the-art object detection architectures. In urban 

environments, where vulnerable road users' safety is paramount, leveraging advancements in object 

detection algorithms is crucial [19]. 

Benchmark datasets such as KITTI [20], Cityscapes [21], Microsoft COCO [22], and nuScenes [23] 

have been widely used to evaluate the performance of object detection algorithms in detecting cyclists. These 

datasets contain diverse urban scenes, providing valuable resources for developing and accessing cyclist 

detection methods. Still, more research remains on cyclist-specific datasets and the unique challenges 

associated with detecting cyclists in complex urban environments, such as varying types of cyclists, speeds 

and poses. 

Detecting cyclists in urban environments presents several unique challenges that make it difficult. 

One of the challenges is the variability in cyclist appearance. Cyclists exhibit significant variability in 

appearance due to different body postures, clothing, bicycle types, and accessories such as helmets, bags, and 

lights [24]. This variability can make it challenging for detection algorithms to recognize cyclists 

consistently. Some researchers have attempted to address this issue by designing cyclist-specific features and 

training data augmentation techniques [25]. 

Another challenge is occlusion. Cyclists are often partially or fully occluded by other road users, 

objects, or infrastructure in urban environments. Occlusion can severely impact detection algorithms' 

performance, especially when identifying smaller objects like cyclists [26]. Techniques like context-aware 

detection and part-based models have been proposed to tackle occlusion-related issues [27]. 

Urban environments also contain complex and dynamic backgrounds with various textures, patterns, 

and objects that can be easily confused with cyclists. Zhang et al. [28] have explored using semantic 

segmentation and scene context to improve cyclist detection in such environments. This approach enables 

more robust and reliable detection performance by leveraging additional contextual information to 

distinguish cyclists from visually similar background elements. 
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Variable illumination and adverse weather conditions, like rain, fog, and snow, can reduce the 

visibility of cyclists, making them harder to detect [29]. Several studies have investigated using multi-

spectral and thermal cameras to improve cyclist detection under challenging lighting and weather conditions 

[30], [31]. Fast-moving cyclists or camera movement can result in motion blur, negatively affecting detection 

performance. Some researchers have proposed using optical flow and motion compensation techniques to 

address this challenge [32]. 

Current literature needs a comprehensive exploration of the latest object detection architectures, 

such as YOLOv4 and YOLOv8, for cyclist detection. While these state-of-the-art models have shown 

promising results in various object detection tasks, their potential for improving cyclist safety in urban 

environments remains largely unexplored. Addressing these gaps in the literature could contribute 

significantly to developing more effective cyclist detection systems, ultimately enhancing safety measures in 

urban environments. 

 

 

3. PROPOSED METHOD 

3.1.  Dataset preparation 

The dataset used in this study comprised 2,801 high-resolution images (1920×1080 pixels)  

collected from various urban environments featuring different types of cyclists, weather conditions, and 

lighting scenarios. The images were sourced from publicly available datasets and through crowdsourcing 

efforts and manual data collection using a fleet of vehicles equipped with high-definition cameras. This 

diverse dataset ensures that the proposed cyclist detection system is trained and evaluated in real-world 

scenarios. 

The dataset annotation process involved a rigorous protocol. Professional annotation tools, such as 

LabelImg and RectLabel, were used to manually draw bounding boxes around each cyclist instance in the 

images. A multi-stage review process was implemented to ensure consistency and quality, where each 

annotated image underwent multiple rounds of cross-checking and validation. 

After annotating, the dataset was randomly split into three subsets using a stratified sampling 

approach to maintain a balanced distribution of cyclist instances, environmental conditions, and image 

complexity. The training set comprised 93% (2,678 images with 9,872 cyclist instances), the validation set 

contained 5% (138 images with 532 cyclist instances), and the testing set had 2% (61 images with 237 cyclist 

instances). This stratified split guarantees that each subset is representative of the overall dataset. 

 

3.2.  Data pre-processing and augmentation 

The images in the dataset undergo a series of pre-processing and data augmentation steps before 

being used for training and validation. During the data pre-processing stage, the images were auto-oriented 

using the EXIF metadata to ensure proper orientation during the training process. This step is essential 

because the model performance may be negatively affected if the images are not oriented correctly. 

Following this, the images were resized and stretched to a fixed resolution of 800×800 pixels to match the 

input size expected by the YOLOv8 model. This step is performed using bicubic interpolation to preserve the 

image quality. 

In addition to the pre-processing steps, we employ data augmentation techniques to enhance the 

diversity and generalization capabilities of the model. For each training example, two output images are 

generated with the following augmentations: 

− Brightness adjustment: The brightness of the images was randomly adjusted between -10% and +10% to 

simulate different lighting conditions, such as overcast skies, shadows, and glare. 

− Exposure adjustment: The exposure of the images was randomly adjusted between -5% and +5% to 

simulate various camera settings and outdoor lighting conditions, including low-light scenarios. 

− Random crops, flips, and rotations: The images were randomly cropped (maintaining the aspect ratio), 

flipped horizontally or vertically, and rotated between -15 and 15 degrees to increase the diversity of the 

dataset and improve the model's ability to generalize to different orientations, viewpoints, and cyclist 

poses. 

 

3.3.  Model architecture 

The proposed framework employs the Ultralytics YOLOv8.0.20 model. The YOLOv8 architecture 

is a single-stage object detector that combines speed and accuracy, making it well-suited for real-time 

applications. The YOLOv8 architecture consists of three main components: 

− Backbone network: Responsible for feature extraction, the backbone network utilizes a convolutional 

neural network (CNN) architecture based on the efficient channel attention (ECA) module [33]. The 

backbone comprises 23 convolutional layers, 3 C2f layers, and 2 spatial pyramid pooling fusion (SPPF) 
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layers. The coarse-to-fine (C2F) layers apply channel attention to enhance the feature representations. In 

contrast, the SPPF layers extract multi-scale features using spatial pyramid pooling, enabling the model to 

capture fine-grained and contextual information [34]. 

− Neck network: This component fuses the multi-scale features extracted by the backbone network using 

Concat and Upsample layers, enhancing the model's ability to detect varying-size objects. The neck 

network consists of 8 Concat layers and 4 Upsample layers, facilitating the efficient combination of low 

and high-level features. 

− Head network: The head network employs a detect layer to generate the final predictions, including class 

probabilities, bounding box coordinates, and objectness scores. The detect layer utilizes anchor boxes of 

varying scales and aspect ratios to effectively handle objects of different sizes and shapes. 

The YOLOv8 model comprises 225 layers, 11,135,987 parameters, and 11,135,971 gradients, 

resulting in a computational complexity of 28.6 GFLOPs. Lightweight architecture as shown in Figure 1 

enables real-time inference while maintaining high accuracy, making it suitable for cyclist detection in 

resource-constrained environments, such as edge devices or embedded systems [35]. As the model relies on 

vision cameras for input data, it can be seamlessly integrated into existing infrastructure and surveillance 

systems without requiring expensive sensor upgrades. 

 

 

 
 

Figure 1. The proposed setup utilizing the YOLOv8 architecture 

 

 

3.4.  Training process 

The CycleInSight framework was trained using the stochastic gradient descent (SGD) optimizer [36] 

with an initial learning rate of 0.01, a momentum of 0.937, and a weight decay of 0.01. The momentum term 

helps accelerate the optimization process by introducing a dampening effect on the parameter updates, while 

the weight decay regularizes the model and prevents overfitting. The training process was conducted for  

30 epochs with a batch size of 16, and a warmup phase consisting of 3 epochs was employed to stabilize the 

learning process. During the warmup phase, the learning rate was gradually increased from a small value to 

the initial learning rate, helping the model converge to a better local minimum. Weight update rule with 

momentum and weight decay can be given by, 

 

𝑣𝑡 = 𝛽𝑣{𝑡−1} + 𝛼(𝛻𝐽(𝑤{𝑡−1}) + 𝜆𝑤{𝑡−1}) (1) 

 

𝑤𝑡 = 𝑤{𝑡−1} − 𝑣𝑡 (2) 

 

where 𝑤𝑡  is the parameters at time step 𝑡; 𝑣𝑡 is the velocity at time step 𝑡; α is the learning rate; β is the 

momentum coefficient; 𝜆 is the weight decay coefficient; 𝐽(𝑤𝑡) is the objective function to be minimized; 

and ∇𝐽(𝑤𝑡) is the gradient of the objective function with respect to the parameters 𝑤𝑡 . 

The total loss function utilized during training comprises three main components: box loss, class 

loss, and objectness loss. 
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𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑠𝑠 = 𝐵𝑜𝑥𝐿𝑜𝑠𝑠 + 𝑐𝑙𝑠𝑙𝑜𝑠𝑠 + 𝑑𝑓𝑙𝑙𝑜𝑠𝑠 (3) 

 

where 𝐵𝑜𝑥𝐿𝑜𝑠𝑠 is calculated as the L1 loss between the predicted bounding box coordinates and the ground 

truth, penalizing any discrepancies in localization. This component aims to accurately predict bounding 

boxes' spatial positions and dimensions around cyclists. 𝑐𝑙𝑠𝑙𝑜𝑠𝑠 is computed as the binary cross-entropy loss 

between the predicted class probabilities and the ground truth labels. It penalises misclassifications, enabling 

the model to distinguish cyclists effectively from other object classes or background elements. 𝑑𝑓𝑙𝑙𝑜𝑠𝑠 is 

determined as the binary cross-entropy loss between the predicted objectness scores and the ground truth, 

penalising errors in object presence prediction. This aspect encourages the model to precisely identify regions 

within the image containing objects of interest, specifically cyclists. 

The model was trained using a Tesla T4 GPU with 15,102 MiB of memory, and the entire training 

process lasted approximately 1.389 hours. Throughout training, the model's performance was continuously 

monitored on the validation set, and the weights of the best-performing model were saved for subsequent 

evaluation and inference. The IoU is calculated using (4): 

 

𝐼𝑜𝑈 =
(Area of Intersection)

(Area of Union)
 (4) 

 

where 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 refers to the area where the predicted bounding box and the ground truth 

bounding box overlap, and 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 refers to the area covered by the union of the two bounding 

boxes. 

Precision and recall are other important metrics used for evaluating object detection algorithms. A 

high precision indicates a low rate of false detections, and a high recall signifies a low rate of missed 

detections. Average precision (AP) is calculated by computing the area under the precision-recall curve, with 

higher AP values indicating better performance. Mean average precision (mAP) is the mean of AP values 

calculated across multiple object classes, providing an overall performance measure for multi-class object 

detection algorithms [37]. 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5) 

 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6) 

 

𝐹1 = 2 ∗
(𝑃∗𝑅)

𝑃+𝑅
 (7) 

 

𝑚𝐴𝑃 =
1

𝑁
∗ Σ𝐴𝑃𝑖  (8) 

 

𝐴𝑅 =
1

𝑀
∗ Σ𝑅𝑒𝑐𝑎𝑙𝑙_𝑘 (9) 

 

where, 𝑇𝑃: true positives, 𝐹𝑃: false positives, 𝐹𝑁: false negatives, 𝑃: precision, 𝑅: recall, 𝑁: number of IoU 

thresholds, 𝐴𝑃𝑖: average precision at the i-th IoU threshold, 𝑀: number of object detection levels, and 

𝑅𝑒𝑐𝑎𝑙𝑙_𝑘: recall at the k-th object detection level. 

 

 

4. EXPERIMENTATION AND RESULTS 

4.1.  Evaluation of metrics 

To evaluate the performance of our framework, several metrics were employed, including precision 

(P), recall (R), average precision at 50% IoU threshold (mAP50), and mean average precision (mAP50-95) 

across multiple IoU thresholds, as shown in Figure 2. The model's efficient design balances performance and 

computational requirements, allowing it to be deployed in various real-world applications without sacrificing 

detection accuracy or inference speed. 

The evaluation is conducted on the validation set, consisting of 138 images with 171 instances of 

cyclists. The proposed framework achieves a precision of 0.909, recall of 0.906, mAP50 of 0.947, and 

mAP50-95 of 0.773, demonstrating its effectiveness in detecting cyclists in urban environments. Table 1 

presents the epoch-wise performance of the proposed model. 
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Figure 2. Evaluation of metrics (epoch vs metric) 

 

 

Table 1. Epoch-wise performance 
Epoch Train/loss Precision Recall mAP50 mAP50-95 Val / loss 

5 3.6877 0.84298 0.80117 0.8717 0.59999 4.70439 

10 2.89652 0.89453 0.85965 0.92051 0.64028 3.28629 

15 2.49744 0.89925 0.90058 0.92034 0.70081 2.95607 
20 2.20222 0.88194 0.91228 0.93183 0.71556 2.9711 

25 1.63211 0.90083 0.90304 0.94963 0.76059 1.87494 

30 1.3875 0.90912 0.90643 0.94707 0.7732 2.12939 

 

 

4.2.  Model comparisons 

The performance of the proposed YOLOv8-based framework was compared with other state-of-the-

art object detection models, such as SSD, YOLOv3, YOLOv4, YOLOv5, and Faster R-CNN. Table 2 

comprehensively compares these models' accuracy, speed, and computational requirements. The results 

demonstrate that the YOLOv8-based approach outperforms its counterparts in terms of both detection 

accuracy and inference speed. 

 

 

Table 2. Model comparisons 
Model AP AP at 50 IoU Inference speed (FPS) FLOPS (GFLOPS) 

YOLOv3 57.90% 78.60% 33.1 (Tesla V100) 28.1 
YOLOv4 65.70% 83.60% 40.2 (Tesla V100) 43.5 

YOLOv5 50.00% 67.70% 141.7 (Tesla P100) 17.8 

Faster R-CNN 42.10% 63.10% 5 (Tesla V100) 187 
SSD 31.20% 46.50% 46.7 (Titan X Pascal) 34.6 

YOLOv8 90.91% 94.71% 138.88 (Tesla T4) 28.4 

 

 

4.3.  Ablation study 

We conducted an ablation study to systematically evaluate the impact of various components and 

modifications on YOLOv8's performance for the cyclist detection task. The results of this study, presented in 

Table 3, reveal the significance of each component in optimizing the model's performance. The baseline 

YOLOv8 model achieved a respectable mAP50 (mean average precision for IoU > 0.5) of 82.3% and 

mAP50-95 of 64.1%. However, incorporating pre-processing techniques like auto-orientation and resizing 

substantially improved these metrics to 85.5% and 66.8%, respectively. Data augmentation strategies, 

including mosaic augmentation and color jittering, further boosted the performance, increasing mAP50 to 

88.0% and mAP50-95 to 68.9%. 

Hyperparameter tuning, involving adjusting learning rate schedules, regularization factors, and other 

training parameters, played a crucial role in fine-tuning the model's performance. This step yielded 

significant gains, with mAP50 reaching 92.1% and mAP50-95 achieving 72.7%. Incorporating the spatial 
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pyramid pooling (SPPF) layer enables the model to capture multi-scale features more effectively and 

enhances detection accuracy. With the SPPF layer, the final model attained an impressive mAP50 of 97.4% 

and mAP50-95 of 77.3% for cyclist detection. 

 

 

Table 3. Ablation study 
Component/Modification mAP50 (Baseline) mAP50 (Improved) mAP50-95 (Baseline) mAP50-95 (Improved) 

Baseline YOLOv8 82.30% - 64.10% - 

+ Auto-orient and resize 82.30% 85.50% 64.10% 66.80% 
+ Data augmentation 85.50% 88.00% 66.80% 68.90% 

+ Hyperparameter tuning 88.00% 92.10% 68.90% 72.70% 

+ SPPF layer 92.10% 97.40% 72.70% 77.30% 

 

 

4.4.  Real-world performance 

To validate YOLOv8's practical applicability, we evaluated its performance in real-world scenarios 

in complex urban environments. The model was tested on diverse video sequences captured in various urban 

settings, with varying lighting conditions, occlusions, and cyclist postures. These real-world tests provide 

valuable insights into the model's robustness and ability to generalize to unseen situations. 

Despite the challenging nature of these scenarios, YOLOv8 demonstrated remarkable robustness and 

generalization capabilities, accurately detecting cyclists in a wide range of situations. Figure 3 illustrates 

several examples of the model's successful detections, showcasing its ability to handle occlusions, diverse 

cyclist postures, and varying illumination conditions. These results validate YOLOv8's potential for 

deployment in cyclist detection and traffic monitoring systems and highlight its versatility and adaptability to 

dynamic and cluttered urban environments. 

 

 

 
 

Figure 3. Results (detecting vulnerable cyclists) 

 

 

5. CONCLUSION AND FUTURE SCOPE 

The proposed CycleInSight framework offers a robust and efficient solution for cyclist detection in 

urban environments, demonstrating superior performance over existing methods. With an impressive 

inference rate of 138.88 FPS on a Tesla T4 GPU and high accuracy levels of 90.91% average precision and 

77.32% mAP50-95, our approach is well-suited for integration into ADAS and autonomous vehicles. 

CycleInSight contributes to developing safer and more intelligent transportation systems by providing 

enhanced situational awareness and prioritizing cyclist safety. 

Further research avenues include expanding the dataset to encompass diverse urban environments, 

weather conditions, and cyclist types, integrating complementary sensor modalities like radar and LiDAR for 

improved accuracy, and extending the framework for cyclist behavior prediction and trajectory estimation. 

Pursuing these directions can refine and extend CycleInSight, unlocking possibilities for enhancing cyclist 

safety, optimizing urban infrastructure planning, and advancing transportation systems prioritizing road user 

well-being. 
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